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1. Introduction

Fractional differential equations (FDEs) provide a
powerful tool to describe the memory effect and
hereditary properties of various materials and processes
(Podlubny, 1998; Sierociuk and Dzieliński, 2006; Li
et al., 2010; Luchko, 2009; Datsko and Gafiychuk, 2018;
Datsko et al., 2019). While linear systems of FDEs
represent a fairly well investigated field of research,
relatively few papers deal with linear FDEs involving
variable coefficients. Meanwhile, a number of real-life
systems and processes can be described by linear FDEs
with variable coefficients, e.g., linearized aircraft models,
linearized models of population restricted growth, models
related to the distribution of parameters in the charge
transfer and the diffusion of batteries, etc.

Linear differential equations with variable
coefficients arise in a natural way when modeling
RLC-circuits with variable capacitance or inductance.
With the advent of electronic components like
super-capacitors (also called ultracapacitors) and
fractances, one should employ fractional differential
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equations for circuit models (Kaczorek and
Rogowski, 2015; Skovranek et al., 2019). Some
examples of circuit models involving linear FDEs with
variable coefficients can be found in the work of Martı́nez
et al. (2018). This provides a motivation for research
into FDEs with variable coefficients and related control
problems.

Explicit solutions to linear systems of differential
equations provide a basis to perform stability analysis and
to solve control problems. Analytical solutions of linear
systems of fractional differential equations with constant
coefficients were derived by Chikrii and Eidelman (2000),
Chikrii and Matichin (2008), or Kaczorek (2008), and
then applied to solving control problems by Matychyn
and Onyshchenko (2015; 2018b; 2018a; 2019), Dzieliński
and Czyronis (2013), Balaska et al. (2020), and Si et al.
(2021). Explicit solutions to linear systems of differential
equations are usually expressed in terms of the state
transition matrix. In the case of FDEs with constant
coefficients the state transition matrix can be represented
using the matrix Mittag-Leffler function (Chikrii and
Eidelman, 2000; Chikrii and Matichin, 2008).

In recent years a number of papers have been devoted
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to solutions of systems of FDEs with variable coefficients
and their control. A solution to the initial value problem
for a linear system with variable coefficients involving
Caputo derivatives was obtained by Kaczorek and Idczak
(2017). In the work of Eckert et al. (2019) explicit
solutions for the linear systems of initialized (Lorenzo
and Hartley, 2000) FDEs are obtained in terms of the
generalized Peano–Baker series (Baake and Schlägel,
2011). Linear systems of FDEs with variable coefficients
and their state-transition matrices are also discussed
by Bourdin (2018), Matychyn (2019), Matychyn and
Onyshchenko (2020), or Malesza et al. (2019).

This paper deals with the initial value problem
for linear systems of FDEs with variable coefficients
involving Riemann–Liouville and Caputo derivatives. For
these systems a solution of the initial-value problem
is derived in terms of the generalized Peano–Baker
series and a time-optimal control problem is formulated.
The optimal control problem is treated from the
convex-analytical viewpoint. Necessary and sufficient
conditions for time-optimal control similar to that of
Pontryagin’s maximum principle are obtained. The paper
is a further development of the approach consisting in
the extension of the Pontryagin maximum principle to
fractional-order systems (Kamocki, 2014; Matychyn and
Onyshchenko, 2015; 2018b; 2018a; 2019; Bergounioux
and Bourdin, 2020). Theoretical results are supported by
illustrative examples.

2. Preliminary results

2.1. Fractional integrodifferentiation. Denote by R
n

the n-dimensional Euclidean space and by I some interval
of the real line, I ⊂ R. In what follows we will assume
that I = [t0, T ] for some T > t0 and denote I̊ = (t0, T ).
Suppose f : I → R

n is an absolutely continuous function.
Recall that the Riemann–Liouville (left-sided) fractional
integral and derivative of order α, 0 < α < 1, are
respectively defined as

t0J
α
t f(t) =

1

Γ(α)

∫ t

t0

(t− τ)α−1f(τ) dτ,

t0D
α
t f(t) =

d

dt
t0J

1−α
t f(t), t ∈ I̊ .

Hereafter, Γ(·) stands for the Gamma function defined by

Γ(α) =

∞∫

0

tα−1e−t dt.

The Riemann–Liouville fractional derivative of a
constant does not equal zero. Moreover, it becomes
infinite as t approaches t0 and due to this fact FDEs
with the Riemann–Liouville derivative require initial
conditions of a special form lacking clear physical

meaning. That is why the regularized Caputo derivative
was introduced, which is free from these shortcomings.

The Caputo (regularized) derivative of a fractional
order α, 0 < α < 1, can be introduced by the following
formula:

t0D
(α)
t f(t) = t0J

1−α
t

d

dt
f(t), t ∈ I̊ . (1)

The following properties of the fractional integrals
and derivatives (Kilbas et al., 2006; Podlubny, 1998) will
be used in the sequel.

Lemma 1. If α, β > 0, and f(t) is such that the deriva-
tives and integrals below exist, the following equalities
hold true:

t0D
α
t t0J

α
t f(t) = f(t), (2)

t0D
(α)
t t0J

α
t f(t) = f(t), (3)

t0J
α
t t0J

β
t f(t) = t0J

α+β
t f(t). (4)

If, moreover, α < 1, then

t0D
(α)
t f(t) = t0D

α
t f(t)− f(t0)

(t− t0)
−α

Γ(1− α)
. (5)

Lemma 2. For β > 0,

t0J
α
t (t− t0)

β−1 =
Γ(β)

Γ(β + α)
(t− t0)

β+α−1, (6)

t0D
α
t (t− t0)

β−1

=

{
0, β ∈ {α−m+ 1, . . . , α},
Γ(β)

Γ(β−α) (t− t0)
β−α−1, otherwise,

(7)

t0D
(α)
t (t− t0)

β−1,

=

⎧⎪⎨
⎪⎩
0, β ∈ {1, 2 . . . ,m},
Γ(β)

Γ(β−α) (t− t0)
β−α−1 β > m,

non-existent, otherwise,

(8)

where m = �α� is the least integer greater than or equal
to α.

In particular, from (6)–(8) it follows that

t0D
α
t

(t− t0)
α−1

Γ(α)
= 0, (9)

t0D
(α)
t 1 = 0, (10)

t0J
1−α
t

(t− t0)
α−1

Γ(α)
= 1. (11)

2.2. Time-varying linear systems with Riemann–Lio-
uville fractional derivatives. Consider the following
initial value problem:

t0D
α
t x(t) = A(t)x(t), t ∈ I̊ ,

t0J
1−α
t x(t)

∣∣
t=t0

= x0.
(12)
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Hereafter it is assumed that x(t) is a vector function
taking values in R

n and the matrix function A(t) =
(aij(t))i,j=1,...,n such that aij(t) : I → R, i = 1, . . . , n,
j = 1, . . . , n are continuous and

aij(t) ≥ 0, i = 1, . . . , n, j = 1, . . . , n, t ∈ I.
(13)

Definition 1. The state-transition matrix of the system
(12) is defined as follows:

Φ(t, t0) =

∞∑
k=0

Iαk (t, t0), (14)

where

Iα0 (t, t0) =
(t− t0)

α−1

Γ(α)
I,

Iαk+1(t, t0) = t0J
α
t (A(t)I

α
k (t, t0)), k = 0, 1, . . . .

Hereafter I stands for an identity matrix.
We will refer to the series on the right-hand side of

(14) as the generalized Peano–Baker series (Eckert et al.,
2019; Baake and Schlägel, 2011).

Assumption 1. The generalized Peano–Baker series on
the right-hand side of (14) converges uniformly.

The following lemma was presented by Matychyn
(2019), as well as Matychyn and Onyshchenko (2020).

Lemma 3. Under Assumption 1 the state-transition ma-
trix Φ(t, t0) satisfies the following initial value problem:

t0D
α
t Φ(t, t0) = A(t)Φ(t, t0), t0J

1−α
t Φ(t, t0)

∣∣
t=t0

= I.
(15)

On the other hand, the following lemma also holds
true.

Lemma 4. Let the matrix function Φ(t, t0) be a solution
to the initial value problem (15). Then Φ(t, t0) can be
represented in the form of the generalized Peano–Baker
series (14).

Proof. As shown by Diethelm (2010), the initial
value problem (15) is equivalent to the following Volterra
integral equation:

Φ(t, t0) =I
(t− t0)

α−1

Γ(α)

+
1

Γ(α)

∫ t

t0

(t− τ)α−1A(τ)Φ(τ, t0) dτ

=I
(t− t0)

α−1

Γ(α)
+ t0J

α
t (A(t)Φ(t, t0)).

(16)

By means of a formal Picard iteration, this leads to
the desired representation in the form of the generalized
Peano–Baker series (14). �

As shown by Bourdin (2018), there exists a unique
solution to the initial value problem (15). Thus, in view
of Dini’s theorem (Zorich and Paniagua, 2016) as well as
Lemmas 3 and 4, taking into account (13), this implies
Assumption 1 holds true.

Consider the state transition matrix Φ(t, t0) =
(ϕij(t, t0))i,j=1,...,n. The following result was presented
by Bourdin (2018).

Lemma 5. There exists Θ ≥ 0 such that

|ϕij(t, s)| ≤ (t− s)α−1Θ (17)

for almost every t0 ≤ s < t ≤ T and for every i, j ∈
{1, . . . , n}.

Lemma 3 implies the following result.

Theorem 1. Under Assumption 1, the solution to the
homogeneous initial value problem (12) is given by the
following expression:

x(t) = Φ(t, t0)x0. (18)

Remark 1. If A(t) is a constant matrix, i.e., A(t) ≡ A,
then in view of (6) one gets

Iαk (t, t0) =
(t− t0)

(k+1)α−1

Γ((k + 1)α)
Ak

and

Φ(t, t0) = e(t−t0)Aα

= (t− t0)
α−1

∞∑
k=0

Ak(t− t0)
αk

Γ[(k + 1)α]

= (t− t0)
α−1Eα,α(A(t− t0)

α),

where Eα,α(A(t − t0)
α) is a matrix Mittag-Leffler

function and e(t−t0)Aα is the matrix α-exponential function
(Kilbas et al., 2006).

Equation (18) takes on the form

x(t) = e(t−t0)Aα x0,

which is consistent with the formulas obtained for
systems of fractional differential equations with
constant coefficients (Kilbas et al., 2006; Matychyn
and Onyshchenko, 2015).

Example 1. Consider a homogeneous system with
fractional dynamics described by the equation

0D
α
t x(t) = A(t)x(t), t ∈ (0, T ), 0 < α < 1, (19)

under the initial condition

0J
1−α
t x(t)

∣∣
t=0

= x0, (20)

where x ∈ R
2,

A(t) =

(
0 t
0 0

)
.
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Direct calculation yields

Φ(t, τ) =

(
(t−τ)α−1

Γ(α)
α(t−τ)2α−1(t+τ)

Γ(2α+1)

0 (t−τ)α−1

Γ(α)

)
.

It can be readily seen that

0D
α
t Φ(t, 0) =

(
0 tα

Γ(α)

0 0

)
= A(t)Φ(t, 0),

0J
1−α
t x(t)

∣∣
t=0

Φ(t, 0) =

(
1 tα+1

Γ(α+1)

0 1

)∣∣∣∣∣
t=0

= I,

hence Lemma 3 holds true.
Suppose that

x0 =

(
1
1

)
.

Then, the solution of the initial value problem (19), (20)
can be written as follows:

x(t) =

(
tα−1

Γ(α)
α

Γ(2α+1) t
2α

0 tα−1

Γ(α)

)(
1
1

)

=

(
tα−1

Γ(α) +
α

Γ(2α+1) t
2α

tα−1

Γ(α)

)
.

�
Now consider the inhomogeneous linear initial value

problem

t0D
α
t x(t) = A(t)x(t) + u(t), t ∈ I̊ , (21)

t0J
1−α
t x(t)

∣∣
t=t0

= x0. (22)

We assume u : I → U ⊂ R
n to be measurable on I ,

taking values from a nonempty compact set U ⊂ R
n.

The following theorem was proved by Matychyn
(2019), as well as Matychyn and Onyshchenko (2020).

Theorem 2. Provided that Assumption 1 is fulfilled, a so-
lution to the initial value problem (21), (22) can be written
as follows:

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, τ)u(τ) dτ. (23)

Remark 2. Since the Mittag-Leffler function becomes
equal to an exponential when α = 1, i.e., E1,1(A(t −
t0)) = e

A(t−t0)
1 = eA(t−t0), it should be noted that for

A(t) ≡ A = const and α = 1 one gets Φ(t, t0) =
eA(t−t0), where eA(t−t0) is the matrix exponential defined
as the sum of the following convergent series:

eA(t−t0) =
∞∑
k=0

(t− t0)
k

k!
Ak,

and (23) yields the well-known explicit formula

x(t) = eA(t−t0)x0 +
∫ t

t0

eA(t−τ)u(τ) dτ

for the solution of the integer-order Cauchy problem

ẋ = Ax+ u,

x(t0) = x0.

2.3. Time-varying linear systems with Caputo
fractional derivatives. We now examine homogeneous
linear FDEs with variable coefficients involving Caputo
derivatives. Consider the following initial value problem:

t0D
(α)
t x(t) = A(t)x(t), t ∈ I̊ ,

x(t0) = x̃0,
(24)

where the matrix functionA(t) is continuous on I .

Definition 2. The state-transition matrix of the system
(24) is defined as follows:

Ψ(t, t0) =

∞∑
k=0

Jαk (t, t0) (25)

where

Jα0 (t, t0) = I,

Jαk+1(t, t0) = t0J
α
t (A(t)J

α
k (t, t0)), k = 0, 1, . . .

Again, we will refer to the series on the right-hand
side of (25) as the generalized Peano–Baker series (Eckert
et al., 2019; Baake and Schlägel, 2011).

Assumption 2. The generalized Peano–Baker series on
the right-hand side of (25) converges uniformly.

In view of Lemma 1 as well as (10), (11), the
following lemma holds true.

Lemma 6. Under Assumption 2 the state-transition ma-
trix Ψ(t, t0) satisfies the following initial value problem:

t0D
(α)
t Ψ(t, t0) = A(t)Ψ(t, t0), Ψ(t0, t0) = I.

Lemma 6 implies the following.

Theorem 3. Under Assumption 2 a solution to the initial
value problem (24) is given by the following expression:

x(t) = Ψ(t, t0)x̃0. (26)

Remark 3. If A(t) is a constant matrix, i.e., A(t) ≡ A,
then in view of (6) we get

Jαk (t, t0) =
(t− t0)

kα

Γ(kα+ 1)
Ak
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and

Ψ(t, t0) = Eα((t− t0)
αA) =

∞∑
k=0

Ak(t− t0)
αk

Γ[kα+ 1]
,

where Eα(tαA) = Eα,1(t
αA).

Equation (26) takes on the form

x(t) = Eα((t− t0)
αA)x̃0,

which is consistent with the formulas obtained for
the systems of fractional differential equations with
constant coefficients (Kilbas et al., 2006; Matychyn and
Onyshchenko, 2015).

Example 2. Consider the system

0D
(α)
t x(t) =

(
0 t
0 0

)
x(t),

x(0) = x̃0.

(27)

Direct calculation yields

Ψ(t, τ) =

(
1 (t−τ)α(t+ατ)

Γ(α+2)

0 1

)
. (28)

It can be readily seen that

0D
(α)
t Ψ(t, 0) =

(
0 t
0 0

)
= A(t)Ψ(t, 0),

Ψ(0, 0) = I.

Hence Lemma 6 holds true.
Suppose that

x̃0 =

(
1
1

)
.

Then, the solution of the initial value problem (28) can be
written as follows:

x(t) =

(
1 tα+1

Γ(α+2)

0 1

)(
1
1

)
=

(
1 + tα+1

Γ(α+2)

1

)
.

�
Consider the inhomogeneous linear initial value

problem

t0D
(α)
t x(t) = A(t)x(t) + u(t), t ∈ I̊ ,

x(t0) = x̃0
(29)

Again, we assume u : I → R
n to be continuous on I .

The following theorem was proved by Matychyn
(2019).

Theorem 4. Under Assumption 2 a solution to the initial
value problem (29) can be written as follows:

x(t) = Ψ(t, t0)x̃0 +

∫ t

t0

Φ(t, τ)u(τ) dτ. (30)

2.4. Convex analysis. Denote by coX and coX the
convex hull and the closure of the convex hull of a set
X ⊂ R

n, respectively. Here we recall the definition of the
support function. Let M ⊂ R

n be a convex closed set,
i.e., M = coM . Then the function

σM (ψ) = sup
m∈M

(ψ,m), ψ ∈ R
n,

where (·, ·) stands for the scalar (inner) product, is called
the support function of M . An important property of the
support function is as follows:

m ∈M ⇔ (ψ,m) ≤ σM (ψ), ∀ψ ∈ R
n. (31)

Let us present a useful result of convex analysis
(Matychyn and Onyshchenko, 2018a).

Lemma 7. Let X and M be convex closed sets. More-
over, assume that X is bounded. Then X ∩M = ∅ if and
only if there exist a vector ψ ∈ R

n and a number ε > 0
such that

σX(ψ) + σM (−ψ) ≤ −ε. (32)

Corollary 1. Let X = coX , M = coM and X be
bounded. Then X ∩M �= ∅ if and only if

λX,M = min
‖ψ‖=1

[σX(ψ) + σM (−ψ)] ≥ 0. (33)

Let us recall the definition and some properties of the
normal cone (Rockafellar, 1970).

The normal cone of a set K ⊂ R
n at the point x0 is

given by

NK(x0) =

{
ψ ∈ R

n : sup
x∈K

(ψ, x − x0) ≤ 0

}
.

The coneNK(x0) is always nonempty since 0 ∈ NK(x0).
The cone NK(x0) is convex and closed. If there exists
ψ ∈ NK(x0), ψ �= 0, then the hyperplane {x ∈ R

n :
(ψ, x − x0) = 0} is called the hyperplane supporting the
set K at the point x0, while x0 is referred to as a support
point. If the set K ⊂ R

n is closed and convex, then any
boundary point x0 ∈ ∂K is a support point, i.e., there
exists ψ ∈ NK(x0), ψ �= 0.

2.5. Set valued maps. Consider a set-valued map
G(τ), G : I → K(Rn), where I ⊂ R is some interval
and K(Rn) is the set of all nonempty compacts (closed
and bounded subsets of R

n). The following theorems
can be found in the work of Blagodatskikh and Filippov
(1985) and are useful in integrating set-valued maps.
In view of the properties of the Lebesgue integral, the
interval I can be assumed either open or closed, without
loss of generality. In what follows for any A ∈ K(Rn)
we write |A| = supa∈A ‖a‖.
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Theorem 5. Let the set-valued map G(τ) be measur-
able and satisfy the inequality |G(τ)| ≤ k(τ), τ ∈ I,
where k(τ) is some scalar valued function integrable over
I. Then the following equality holds:

σ∫
I G(τ)dτ(ψ) =

∫
I
σG(τ)(ψ) dτ. (34)

Theorem 6. Let the set-valued map G(τ) be measur-
able and satisfy the inequality |G(τ)| ≤ k(τ), τ ∈ I,
where k(τ) is some scalar valued function integrable over
I. Then the integral

∫
I G(τ) dτ is a convex compact set

in R
n.

The integral
∫
I G(τ) dτ is to be thought of in the

sense of Aumann (1965), i.e., as the set of integrals of
all measurable selections of the set-valued map G(τ).

3. Time optimal control of fractional linear
systems with variable coefficients
(Riemann–Liouville case)

3.1. Problem statement. A system of linear FDEs
with variable coefficients described by (21) and (22) can
be considered a control system in state-space form. Since
we do not deal with the subjects of controllability or
observability in this paper, we assume for simplicity that
the input matrix B(t) is an identity matrix. Let us repeat
the equations here for the sake of convenience:

t0D
α
t x(t) = A(t)x(t) + u(t), t ∈ I̊ , (21 revisited)

subject to the initial condition

t0J
1−α
t x(t)

∣∣
t=t0

= x0. (22 revisited)

As before, we assume the matrix A(t) to have continuous
nonnegative components and u(t) to be measurable on I ,
taking values from a nonempty compact set U ⊂ R

n.
Let us fix a point m ∈ R

n. Here we formulate the
optimal control problem: Find a control function u(·),
u : I → U , from the class U(I) of measurable functions
taking their values in a nonempty compact setU , U ⊂ R

n,
such that the corresponding trajectory of (21), (22) hits m
in the shortest time t∗.

3.2. Reachable set. If we fix some admissible control
function u(·) ∈ U(I), then the solution to the initial
value problem (21), (22) is given by (23). Consider the
reachable set

R(t, x0) =
{
Φ(t, t0)x0 +

∫ t

t0

Φ(t, τ)u(τ) dτ :

u(·) ∈ U(I)
}

= Φ(t, t0)x0 +

∫ t

t0

Φ(t, τ)U dτ.

(35)

Since the set U is bounded, there exists a number K ,
0 < K < ∞, such that |U | ≤ K . Hence, in view
of Lemma 5, |Φ(t, τ)U | < k(τ), τ ∈ (t0, t), where
k(τ) = (t − τ)α−1KΘ. As can be easily verified, k(τ)
is a scalar valued function integrable over I . Therefore,
according to properties of integrals of set-valued maps, in
view of Theorem 6, the reachable set R(t, x0) is closed
and convex.

3.3. Necessary conditions of optimal control.

Theorem 7. If u∗(·) ∈ U(I) is a time optimal con-
trol with the minimum time t∗ > 0, then for any ψ ∈
NR(t∗,x0)(x(t∗)) the following equality holds:

(Φ∗(t∗, t)ψ, u∗(t)) = max
v∈U

(Φ∗(t∗, t)ψ, v), (36)

where Φ∗(t∗, t) stands for the conjugate transpose of the
matrix Φ(t∗, t), for a.e. t ∈ [t0, t∗].

Proof. Let ψ �= 0 be an element of the normal cone of
R(t∗, x0) at the point x(t∗), i.e., ψ ∈ NR(t∗,x0)(x(t∗)).
Then for any x ∈ R(t∗, x0) we have

(ψ, x− x(t∗)) ≤ 0. (37)

Let u∗(·) be the time optimal control function and u(·) ∈
U be an admissible control that corresponds to x ∈
R(t∗, x0). In view of (23), (37) yields(

ψ,

∫ t∗

t0

Φ(t∗, τ)[u(τ) − u∗(τ)] dτ
)

≤ 0.

Therefore, for any admissible control u(·) ∈ U(I) we
have ∫ t∗

t0

(Φ∗(t∗, τ)ψ, u∗(τ)− u(τ)) dτ ≥ 0. (38)

Now, let us prove that

(Φ∗(t∗, t)ψ, u∗(t)) = max
u∈U

(Φ∗(t∗, t)ψ, u).

Obviously, it suffices to show that (Φ∗(t∗, t)ψ, u∗(t)) ≥
max
u∈U

(Φ∗(t∗, t)ψ, u). For each k ∈ N we introduce the set

Zk =

{
t ∈ [t0, t∗] :

(Φ∗(t∗, t)ψ, u∗(t)) ≤ max
u∈U

(Φ∗(t∗, t)ψ, u)− 1

k

}
.

Then we have

Zk =

{
t ∈ [t0, t∗] :

(Φ∗(t∗, t)ψ, u∗(t)) < max
u∈U

(Φ∗(t∗, t)ψ, u)

}

=
⋃
k∈N

Zk.
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Observe that the function [t0, t∗] � t �→
max
u∈U

(Φ∗(t∗, t)ψ, u) is measurable. Thus, the set Zk is

measurable for any k ∈ N. Let for some k the measure
of Zk be positive: μ(Zk) = εk > 0. Using theorems
on measurable selections (Blagodatskikh and Filippov,
1985), one can show that there exists a measurable
function v : Zk → U such that (Φ∗(t∗, t)ψ, v(t)) =
max
u∈U

(Φ∗(t∗, t)ψ, u). Then, for t ∈ Zk we have

(Φ∗(t∗, t)ψ, u∗(t)) ≤ (Φ∗(t∗, t)ψ, v(t))− 1

k
. (39)

Consider the following control function:

u(t) =

{
u∗(t) for t ∈ [t0, t∗]\Zk,
v(t) for t ∈ Zk.

Then, u(·) ∈ U(I) and, in view of (39),

∫ t∗

t0

(Φ∗(t∗, τ)ψ, u∗(τ) − u(τ)) dτ

=

∫
Zk

(Φ∗(t∗, τ)ψ, u∗(τ) − v(τ)) dτ ≤ −εk
k
< 0,

which contradicts (38). �

3.4. Sufficient condition for optimal control.
Consider the support function of the reachable set (35):

σR(t,x0)(ψ)

= sup
x∈R(t,x0)

(x, ψ)

= sup
u(·)∈U(I)

{
(ψ,Φ(t, t0)x0) +

∫ t

t0

(ψ,Φ(t, τ)u(τ)) dτ

}

= (ψ,Φ(t, t0)x0) +

∫ t

t0

σU (Φ
∗(t, τ)ψ) dτ.

(40)

Here we applied the property of the conjugate transpose
matrix with the inner product and Theorem 5.

Introduce the function

λ(t, x0) = min
‖ψ‖=1

[σR(t,x0)(ψ)− (m,ψ)] (41)

and set

T (x0) = min{t > t0 : λ(t, x0) ≥ 0}. (42)

Then the following theorem holds true.

Theorem 8. The trajectory of the system (21), (22) can
be brought to the pointm at the minimal time t∗ = T (x0),
given by the formula (42), with the help of a control func-
tion of the form

û(τ) = argmax
v∈U

(Φ∗(t∗, τ)ψ̂, v), (43)

where

ψ̂ = arg min
‖ψ‖=1

[σR(t∗,x0)(ψ)− (ψ,m)].

Proof. Observe that the minimal time at which a
trajectory of (21), (22) hits the terminal point m is given
by t∗ = min{t ≥ 0 : m ∈ R(t, x0)}. Here the minimum
is attained due to the closedness of R(t, x0).

Moreover, m is a boundary point of R(t∗, x0), i.e.
m ∈ ∂R(t∗, x0). The separation theorem (Rockafellar,
1970) implies that there exists a supporting hyperplane

H(ψ̂) = {x ∈ R
n : (ψ̂, x) = σR(t∗,x0)(ψ̂)} (44)

passing throughm.
Hence, for some ψ̂,

(ψ̂,m) = σR(t∗,x0)(ψ̂). (45)

Thus, the control function û(·) that ensures bringing
the trajectory of (21), (22) to the point m at time t∗ is
the function at which the maximum in (40) is attained.
Therefore, it must satisfy

û(τ) = argmax
v∈U

(Φ∗(t∗, τ)ψ, v), τ ∈ [0, t∗].

According to Corollary 1, m ∈ R(t, x0) if and only
if λ(t, x0) ≥ 0; hence, t∗ = T (x0) = min{t ≥ t0 :
λ(t, x0) ≥ 0}. Since λ(t∗, x0) ≥ 0, in virtue of (45),
ψ̂ yields the minimum of the expression σR(t∗,x0)(ψ) −
(ψ,m). �

Example 3. Let us illustrate the above theoretical results
with the following example. Consider a system with
fractional dynamics described by the equation

0D
α
t x(t) = A(t)x(t) + u(t), 0 < α < 1, (46)

subject to the initial condition

0J
1−α
t x(t)

∣∣
t=0

= x0 =

(
x01
x02

)
, (47)

where x, u ∈ R
2 and

A(t) =

(
0 t
0 0

)
.

As shown in Example 1, the state-transition matrix has the
form

Φ(t, τ) =

(
(t−τ)α−1

Γ(α)
α(t−τ)2α−1(t+τ)

Γ(2α+1)

0 (t−τ)α−1

Γ(α)

)

=

(
φ1(t, τ) φ2(t, τ)

0 φ1(t, τ)

)
,

where

φ1(t, τ) =
(t− τ)α−1

Γ(α)
,

φ2(t, τ) =
α(t − τ)2α−1(t+ τ)

Γ(2α+ 1)
.
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Let us assume that t0 = 0, the terminal point is the
origin: m = 0, and U = {(u1, u2)T ∈ R

2 : u1 =
0, |u2| ≤ 1}.

Consider a support function of the reachable set (35):

σR(t,x0)(ψ)

= sup
x∈R(t,x0)

(x, ψ)

= sup
u(·)∈U(I)

{
(ψ,Φ(t, 0)x0) +

∫ t

0

(ψ,Φ(t, τ)u(τ)) dτ

}

= (ψ,Φ(t, 0)x0) +

∫ t

0

σU (Φ
∗(t, τ)ψ) dτ

= (ψ,Φ(t, 0)x0) +

∫ t

0

|φ2(t, τ)ψ1 + φ1(t, τ)ψ2| dτ.

Then
λ(t, x0) = min

‖ψ‖=1
σR(t,x0)(ψ)

and

t∗ = T (x0) = min{t > 0 : λ(t, x0) ≥ 0}.
Suppose that

ψ̂ = arg min
‖ψ‖=1

[σR(t∗,x0)(ψ)].

The optimal control is

û(τ) =

(
0

υ(τ)

)
,

where, according to (43),

υ(τ) = arg max
|υ|≤1

(φ2(t∗, τ)ψ̂1 + φ1(t∗, τ)ψ̂2)υ.

Thus,

v(τ) =

{
−1, φ2(t∗, τ)ψ̂1 + φ1(t∗, τ)ψ̂2 < 0

1, φ2(t∗, τ)ψ̂1 + φ1(t∗, τ)ψ̂2 ≥ 0

and we have the control of a “bang-bang” type.
Let us assume that the expression φ2(t∗, τ)ψ̂1 +

φ1(t∗, τ)ψ̂2 changes its sign only once at τ = t1. Then

v(τ) =

{
−1, τ ≤ t1,

1, t1 < τ ≤ t∗

and, in view of (23), we have

x(t∗)

= Φ(t∗, 0)x0 −
∫ t1

0

Φ(t∗, τ)(0, 1)T dτ

+

∫ t∗

t1

Φ(t∗, τ)(0, 1)T dτ

=

⎛
⎜⎜⎝
x0
1t

α−1
∗

Γ(α) +
αx0

2t
2α
∗

Γ(2α+1)

+
2(t∗−t1)2α(α(t∗+t1)+t∗)−(α+1)t2α+1

∗
Γ(2(α+1))

x0
2t

α−1
∗

Γ(α) +
2(t∗−t1)α−tα∗

Γ(α+1)

⎞
⎟⎟⎠
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Fig. 1. Time-optimal phase trajectory of (46), (47) for α = 0.7,
x0
1 = 0, x0

2 = 1.

Since x(t∗) = 0, we obtain simultaneous equations:
⎧⎪⎪⎨
⎪⎪⎩

x0
1t

α−1
∗

Γ(α) +
αx0

2t
2α
∗

Γ(2α+1)

+
2(t∗−t1)2α(α(t∗+t1)+t∗)−(α+1)t2α+1

∗
Γ(2(α+1)) = 0,

x0
2t

α−1
∗

Γ(α) +
2(t∗−t1)α−tα∗

Γ(α+1) = 0,

(48)

from which t∗ and t1 can be derived.
For example, let x01 = 0, x02 = 1, and α = 0.7. Then,

from (48) we find that t1 ≈ 0.99014 and t∗ ≈ 1.08052.
Figure 1 shows the respective phase trajectory of (46),
(47). The axes correspond to the components of the
phase vector x(t). The point of non-smoothness indicates
control switching at the time instant t1.

�

4. Time optimal control of fractional linear
systems with variable coefficients
(Caputo case)

4.1. Problem statement. Consider a system of linear
FDEs with variable coefficients:

t0D
(α)
t x(t) = A(t)x(t) + u(t), t ∈ I̊ , (49)

subject to the initial condition

x(t0) = x̃0. (50)

As before, we assume the matrix A(t) to have continuous
components and u(t) to be measurable on I , taking values
from a nonempty compact set U ⊂ R

n.
Again, we fix a point m ∈ R

n and formulate the
optimal control problem: Find a control function u(·),
u : I → U , from the class U(I) of measurable functions
taking their values in a nonempty compact set U ,U ⊂ R

n,
such that the corresponding trajectory of (49), (50) hits m
in the shortest time t∗.



Time-optimal control of linear fractional systems with variable coefficients 383

4.2. Reachable set. If we fix some admissible control
function u(·) ∈ U(I), then the solution to the initial
value problem (49), (50) is given by (30). Consider the
reachable set

R̃(t, x̃0) =

{
Ψ(t, t0)x̃0 +

∫ t

t0

Φ(t, τ)u(τ) dτ :

u(·) ∈ U(I)
}

= Ψ(t, t0)x̃0 +

∫ t

t0

Φ(t, τ)U dτ.

(51)

As before, since the set U is bounded, in view of Lemma 5
and Theorem 6, the reachable set R̃(t, x̃0) is closed and
convex.

4.3. Necessary conditions for optimal control.

Theorem 9. If u∗(·) ∈ U(I) is a time optimal con-
trol with the minimum time t∗ > 0, then for any ψ ∈
NR̃(t∗,x̃0)

(x(t∗)) the following equality holds:

(Φ∗(t∗, t)ψ, u∗(t)) = max
v∈U

(Φ∗(t∗, t)ψ, v), (52)

where Φ∗(t∗, t) stands for the conjugate transpose of the
matrix Φ(t∗, t), for a.e. t ∈ [t0, t∗].

The proof of this theorem is similar to that of
Theorem 7.

4.4. Sufficient condition for optimal control.
Consider a support function of the reachable set (51):

σR̃(t,x̃0)
(ψ)

= sup
x∈R̃(t,x̃0)

(x, ψ)

= sup
u(·)∈U(I)

{
(ψ,Ψ(t, t0)x̃0) +

∫ t

t0

(ψ,Φ(t, τ)u(τ)) dτ

}

= (ψ,Ψ(t, t0)x̃0) +

∫ t

t0

σU (Φ
∗(t, τ)ψ) dτ.

(53)

Here we applied the property of the conjugate transpose
matrix with inner product and Theorem 5.

Let us introduce the function

λ̃(t, x̃0) = min
‖ψ‖=1

[σR̃(t,x̃0)
(ψ)− (m,ψ)] (54)

and write

T̃ (x̃0) = min{t > t0 : λ̃(t, x̃0) ≥ 0}. (55)

Then the following theorem holds true.

Theorem 10. The trajectory of the system (49), (50) can
be brought to the pointm at the minimal time t∗ = T̃ (x̃0),
given by the formula (55), with the help of a control func-
tion of the form

û(τ) = argmax
v∈U

(Φ∗(t∗, τ)ψ̂, v), (56)

where

ψ̂ = arg min
‖ψ‖=1

[σR̃(t∗,x̃0)
(ψ)− (ψ,m)].

Proof. Let us observe that the minimal time at which a
trajectory of (49), (50) hits the terminal point m is given
by t∗ = min{t ≥ 0 : m ∈ R̃(t, x̃0)}. Here the minimum
is attained due to the closedness of R̃(t, x̃0).

Moreover, m is a boundary point of R̃(t∗, x̃0), i.e.,
m ∈ ∂R̃(t∗, x̃0). The separation theorem (Rockafellar,
1970) implies that there exists a supporting hyperplane

H(ψ̂) = {x ∈ R
n : (ψ̂, x) = σR̃(t∗,x̃0)

(ψ̂)} (57)

passing throughm.
Hence, for some ψ̂,

(ψ̂,m) = σR̃(t∗,x̃0)
(ψ̂). (58)

Thus, the control function û(·) that ensures bringing
the trajectory of (49), (50) to the point m at time t∗ is
the function at which the maximum in (53) is attained.
Therefore it must satisfy

û(τ) = argmax
v∈U

(Φ∗(t∗, τ)ψ, v), τ ∈ [0, t∗].

According to Corollary 1, m ∈ R̃(t, x̃0) if and only
if λ̃(t, x̃0) ≥ 0, hence t∗ = T̃ (x̃0) = min{t ≥ t0 :
λ̃(t, x̃0) ≥ 0}. Since λ̃(t∗, x̃0) ≥ 0, in virtue of (58),
ψ̂ yields the minimum of the expression σR̃(t∗,x̃0)

(ψ) −
(ψ,m). �

Example 4. Let us illustrate the above theoretical results
with the following example. Consider a system with
fractional dynamics described by the equation

0D
(α)
t x(t) = A(t)x(t) + u(t), 0 < α < 1, (59)

under the initial condition

x(t0) = x̃0 =

(
x̃01
x̃02

)
, (60)

where x, u ∈ R
2,

A(t) =

(
0 t
0 0

)
.
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As shown in Examples 1 and 2, the matrices Ψ(t, τ) and
Φ(t, τ) are of the form

Ψ(t, τ) =

(
1 (t−τ)α(t+ατ)

Γ(α+2)

0 1

)
,

Φ(t, τ) =

(
(t−τ)α−1

Γ(α)
α(t−τ)2α−1(t+τ)

Γ(2α+1)

0 (t−τ)α−1

Γ(α)

)

=

(
φ1(t, τ) φ2(t, τ)

0 φ1(t, τ)

)
,

where

φ1(t, τ) =
(t− τ)α−1

Γ(α)
,

φ2(t, τ) =
α(t− τ)2α−1(t+ τ)

Γ(2α+ 1)
.

Let us assume that the terminal point is the origin:
m = 0, and U = {(u1, u2)T ∈ R

2 : u1 = 0, |u2| ≤ 1}.
Consider a support function of the reachable set (51):

σR̃(t,x̃0)
(ψ)

= sup
x∈R̃(t,x̃0)

(x, ψ)

= sup
u(·)∈U(I)

{
(ψ,Ψ(t, 0)x̃0) +

∫ t

0

(ψ,Φ(t, τ)u(τ)) dτ

}

= (ψ,Ψ(t, 0)x̃0) +

∫ t

0

σU (Φ
∗(t, τ)ψ) dτ

= (ψ,Ψ(t, 0)x̃0) +

∫ t

0

|φ2(t, τ)ψ1 + φ1(t, τ)ψ2| dτ.

Then
λ̃(t, x̃0) = min

‖ψ‖=1
σR̃(t,x̃0)

(ψ)

and

t∗ = T̃ (x̃0) = min{t > 0 : λ̃(t, x̃0) ≥ 0}.
Suppose that

ψ̂ = arg min
‖ψ‖=1

[σR̃(t∗,x̃0)
(ψ)].

The optimal control is

û(τ) =

(
0

υ(τ)

)
,

where, according to (56),

υ(τ) = arg max
|υ|≤1

(φ2(t∗, τ)ψ̂1 + φ1(t∗, τ)ψ̂2)υ.

Thus,

v(τ) =

{
−1, φ2(t∗, τ)ψ̂1 + φ1(t∗, τ)ψ̂2 < 0,

1, φ2(t∗, τ)ψ̂1 + φ1(t∗, τ)ψ̂2 ≥ 0,
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Fig. 2. Time-optimal phase trajectory of (59), (60) for α = 0.7,
x0
1 = 0, x0

2 = 1.

and we have a control of the “bang-bang” type.
Let us assume that the expression φ2(t∗, τ)ψ̂1 +

φ1(t∗, τ)ψ̂2 changes its sign only once at τ = t1. Then

v(τ) =

{
−1, τ ≤ t1,

1, t1 < τ ≤ t∗

and, in view of (30), we have

x(t∗) = Ψ(t∗, 0)x̃0 −
∫ t1

0

Φ(t∗, τ)(0, 1)T dτ

+

∫ t∗

t1

Φ(t∗, τ)(0, 1)T dτ

=

⎛
⎜⎜⎜⎜⎝

x0
1t

α−1
∗

Γ(α) +
αx0

2t
2α
∗

Γ(2α+1)

+
2(t∗−t1)2α(α(t∗+t1)+t∗)−(α+1)t2α+1

∗
Γ(2(α+1))

x0
2t

α−1
∗

Γ(α) +
2(t∗−t1)α−tα∗

Γ(α+1)

⎞
⎟⎟⎟⎟⎠

Since x(t∗) = 0, we obtain simultaneous equations:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x0
1t

α−1
∗

Γ(α) +
αx0

2t
2α
∗

Γ(2α+1)

+
2(t∗−t1)2α(α(t∗+t1)+t∗)−(α+1)t2α+1

∗
Γ(2(α+1)) = 0,

x0
2t

α−1
∗

Γ(α) +
2(t∗−t1)α−tα∗

Γ(α+1) = 0,

(61)

from which t∗ and t1 can be derived.
For example, let x̃01 = 0, x̃02 = 1, and α = 0.7. Then,

from (61) we find that t1 ≈ 0.99014 and t∗ ≈ 1.08052.
Figure 2 shows the respective phase trajectory of (59),
(60). The axes correspond to the components of the
phase vector x(t). The point of non-smoothness indicates
control switching at the time instant t1. �
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5. Conclusions

A time-optimal control problem for linear non-stationary
systems of FDEs was investigated. The cases of both
Riemann–Liouville and Caputo type derivatives were
considered. Necessary and sufficient conditions for an
optimal control were derived in terms of convex reachable
sets and their support functions. Theoretical results
were illustrated by examples, in which optimal control
functions of the “bang-bang” type were constructed and
optimal trajectories obtained. For future work, the authors
intend to extend these results to fractional linear systems
involving broader class of matrices than those considered
in the examples of the present paper and satisfying the
condition (13).
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