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The shape-from-shading (SFS) technique uses the pattern of shading in images in order to obtain 3D view information. By
virtue of their ease of implementation, linearization-based SFS algorithms are frequently used in the literature. In this study,
Fourier coefficients of central differences obtained from gray-level images are employed, and two basic linearization-based
algorithms are combined. By using the functionally generated surfaces and 3D reconstruction datasets, the hybrid algorithm
is compared with linearization-based approaches. Five different evaluation metrics are applied on recovered depth maps
and the corresponding gray-level images. The results on defective sample surfaces are also included to show the effect of
the algorithm on surface reconstruction. The proposed method can prevent erroneous estimates on object boundaries and
produce satisfactory 3D reconstruction results in a low number of iterations.
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1. Introduction

Shape-from-shading (SFS) uses shading variations in
images and creates corresponding 3D surfaces. In
addition to the mathematical and algorithmic development
of the problem, the 3D depth information obtained is
used in many different fields such as surface topography
and terrain analyses (e.g., Worthington and Hancock,
2001; Wu et al., 2020), biometric studies (e.g., Cadavid
and Abdel-Mottaleb, 2008; Kemelmacher-Shlizerman and
Basri, 2010), industrial quality control (e.g., Kong, 2008;
Kotan and Öz, 2017), and medical diagnosis and treatment
(e.g., Yamany and Farag, 1998; Ciaccio et al., 2017).

In some survey studies (Zhang et al., 1999; Durou
et al., 2008), the Tsai-Shah (1994) and Pentland (1989)
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algorithms, which are the basis of this paper, were
examined under the class of linearization-based methods
that look for a solution by linearizing the image irradiance
equation. Pentland applies the Fourier transform in order
to obtain a closed-form solution for the depth at each
point. Tsai-Shah initially employs the discrete approach
of the gradient and then addresses the linear approach of
the reflection function directly in terms of depth. The
comparison of both methods, Pentland’s and Tsai-Shah’s,
is also presented as a separate heading in the study of
Tsai-Shah.

We were inspired by the Tsai-Shah instance, which
concluded that “In our case, without any prior knowledge
about the input image, the best initial estimation of
depth, Z(x, y), for each pixel is zero” (Ping-Sing and
Shah, 1994). Tsai-Shah uses Newton’s method to
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solve quadratic equations. When the initial values are
close to the exact solution, the Tsai-Shah algorithm
converges very quickly. However, the Newton method
does not always guarantee convergence. Therefore
the Tsai-Shah algorithm is more susceptible to initial
estimation compared with the Pentland one (Wilson and
Laxminarayan, 2006).

In this study, initial linear information is provided
with the use of different spatial coefficients of numerical
gradients of gray-level images. Four functionally
generated images and two basic 3D reconstruction data
sets are used to compare the Pentland and Tsai-Shah
algorithms, and the proposed method. Performing the
comparisons of synthetic images enables us to make
more quantitative and reliable comparisons, as well as
visual interpretations of the surfaces by the present
ground truth data. Five different metrics are used
to evaluate the performances of the algorithms: the
mean absolute deviation (MAD), the mean squared error
(MSE), Euclidean norm (L2), the peak signal-to-noise
ratio (PSNR), and the structural similarity (SSIM) index.
In addition, a comparison of the required time and CPU
time is also included. The results show that the hybrid
method does not need a high-value smoothing process
and provides a satisfying 3D recovery for most synthetic
images. Since defect detection is one of the most preferred
areas of SFS algorithms, sample defective images from
the NEU surface detect data set (Song and Yan, 2013)
and the corresponding 3D reconstruction results are also
included.

The rest of the paper is structured as follows. Section
2 is dedicated to a literature review of SFS methods.
Section 3 presents the description of the mathematical
and algorithmic structure of the proposed method. The
synthetic images generated, 3D reconstruction data sets
used, and the performance comparisons of the algorithms
with five evaluation metrics are given in detail in Section
4. Finally, the results are discussed in Section 5.

2. Literature review

SFS is one of the techniques under the general heading
of shape from X and it is an inverse problem from 2D
images to 3D surfaces. In the beginning, Horn (1970)
suggested calling this problem “shape-from-shading” and
then, with the advent of new methods, based on the search
for a solution, the algorithms were listed under different
classes. An extensive pool of methods that suggested
different approaches in algorithmic terms was formed. We
begin our literature review by focusing on the general
shape from shading and then discuss the most recent
studies. Finally, we cite the papers that used linearization
methods.

Zhang et al. (1999) discussed SFS algorithms under
four classes and analyzed six well-known SFS algorithms

comparatively over the mean and standard deviation errors
of surface information, surface gradient (p, q), and CPU
time parameters on synthetic and real images. Durou et
al. (2008) made some updates on the study of Zhang et
al. (1999) and divided SFS methods into three classes.
They provided a short description of the methods selected
from each class, and explained their basic assumptions
and the mathematical approach. They also applied tests on
efficiency and accuracy. For detailed information on the
early development of the algorithms and the differences,
we direct our readers to the survey papers by Zhang et al.
(1999) and Durou et al. (2008).

SFS has inspired many researchers because of the
abundance of its parameters such as the reflectivity
coefficient (e.g., Barron and Malik, 2011), surface
reflection (e.g., Wang et al., 2020), constraints in
minimization approaches (e.g., Frankot and Chellappa,
1988), solutions to partial differential equations (e.g.,
Quéau et al., 2017), the illumination position (e.g.,
Zheng and Chellappa, 1991), projection (e.g., Breuß and
Yarahmadi, 2020), and ambiguity (e.g., Abada and Aouat,
2015).

Combining the strengths of the SFS technique with
other 3D reconstruction methods has also been found
interesting. Sakarya and Erkmen (2003) proposed
a new method for improving the photometric stereo
method’s efficiency by combining it with a local SFS
method. Within each homogeneous field, SFS provided
more detailed information. Maurer et al. (2018)
combined a Lambertian SFS method with a stereo model
and supplemented a second-order smoothness term to
the resulting energy functional. They also expanded
the resulting model to estimate depth, albedo, and
illumination. Haefner et al. (2018) utilized heterogeneous
depth and color data to simultaneously tackle the ill-posed
depth super-resolution and shape-from-shading problems.
Furthermore, optimization (e.g., Chen et al., 2010)
and machine learning-based methods (e.g., Abada and
Aouat, 2016) have marked their place in the literature.
Recently, studies on 3D reconstruction with deep neural
networks have rapidly increased. Yang and Deng
(2018) addressed the SFS problem by training deep
networks with synthetic images. Unlike traditional
methods combining deep learning and synthetic imaging,
they proposed an approach that does not require any
external data set to render synthetic images. Using a
data-driven approach, Bednarik et al. (2018) developed
a framework for reconstructing the 3D shape of a
textureless, deformable surface from a single image and
performing shape-from-shading.

In addition to the aforementioned solutions, depth
maps obtained from 3D reconstruction have been used
successfully in many different fields of study such as
industry, medicine, surface inspection, biometry, and 3D
modeling (e.g., Gallen et al., 2015; Han and Zhu, 2005;
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Kazmi et al., 2016).
The Pentland and Tsai-Shah algorithms have been

present for 25 years and are still being preferred in
the studies by virtue of their simple structures and ease
of implementation. Fanany et al. (2002) presented
a neural network learning scheme called the smooth
projected polygon representation (SPPR) neural network
for facial reconstruction. They considered depth maps as
the partial face shape to be reconstructed and used the
Tsai-Shah algorithm for obtaining depth maps. Fanany
and Kumazawa (2004) proposed a new artificial neural
network with the use of a backpropagation model for
reconstructing a 3D shape, and their model relied on
the depth maps obtained from the Tsai-Shah algorithm.
Ghayourmanesh and Zahng (2007) developed an iterative
technique which was a further improvement of Pentland’s
linear shape-from-shading method. The equations and
geometric modeling were extracted for SAR imagery.

Cadavid and Abdel-Mottaleb (2008) used the
algorithm developed by Tsai-Shah for modeling ear
objects in each video frame. Kong (2008) proposed
a method based on the Tsai-Shah algorithm and
reconstructed the solder joint’s surface in printed circuit
boards. Pradhan et al. (2010) reconstructed the 3D
shape of satellite imagery with the use of Pentland and
the other two SFS methods. Barron and Malik (2011)
considered the assumption that the albedo value should
be uniform or known and introduced the problem of
shape and albedo from shading (SAfS). The “single
scale” model in their work was an improved version of
Tsai-Shah’s method. Wang et al. (2017) proposed a
hybrid method for computing and re-animating the fluid
surface, whose height field, which corresponds to each
video frame, was estimated with the use of Tsai-Shah’s
shape-from-shading method. Salary et al. (2017) studied
the online monitoring of functional electrical properties.
They tested the Horn, Pentland, and Tsai-Shah methods to
obtain the cross-sectional profiles from the online images.
Yang et al. (2018) established a novel welding detection
system for the arc welding robot and used Tsai-Shah for
reconstructing the 3D shapes of the welding seam.

Zhang et al. (2018) obtained height and surface
normals with the use of the Tsai-Shah algorithm on
four types of fruit and proposed a method for correcting
the adverse effects generated by the curvature of fruit
objects in images acquired by the cameras. Medical
imaging and processing require efficient tools such as
shape approximation (Franchini et al., 2020), and the
structures may need to be defined very precisely in 3D
space throughout the surgeries (Ciecierski, 2020). Turan
et al. (2017) suggested the use of the RGB-depth
simultaneous localization and mapping (SLAM) method,
which was developed especially for endoscopic capsule
robots, and assisted the doctors in their more intuitive
and accurate diagnoses. The Tsai-Shah method was

used to generate depth estimates of successive endoscopic
images. In addition, the Pentland or Tsai-Shah algorithms
have been used as a comparison method in some papers
(e.g., Kotan and Öz, 2017; Zhang et al., 1999; Durou
et al., 2008; Salary et al., 2017)

3. Linearization-based 3D reconstruction

Linear approaches simplify the non-linear problem by
linearizing the reflection equation. These methods usually
linearize the reflection map in terms of the gradient or
depth. The shape of the objects is obtained by solving
the linearized models. The Pentland algorithm gives a
non-iterative, closed-form solution with the use of the
Fourier transform as

FZ(wx, wy) =
FI

−jwx cos τ sinσ − jwy sin τ sinσ
, (1)

where FI is the Fourier transform of the given image
and FZ is the Fourier transform of the depth map
Z(x, y). Then, with the help of the inverse Fourier
transform, the depth Z(x, y) is calculated via (Wilson and
Laxminarayan, 2006)

Z(x, y) = F−1{FZ(wx, wy)}. (2)

The problem lies in the linear approximation of
the reflectance map, which causes difficulties when
the non-linear terms are large. “Frequency doubling”
occurs when the quadratic terms dominate, and thus
the recovered shape would not be consistent with the
illumination conditions (Zhang et al., 1999; Pentland,
1989).

In the approximation of brightness gradients p and
q, Tsai and Shah employed the finite differences method
first, and then used the surface equation Z(x, y) to
linearize the reflection diagram. Their method obtained
depth at every point with the use of the Jacobi iterative
scheme (Zhang et al., 1999; Durou et al., 2008; Ping-Sing
and Shah, 1994; Hu et al., 2019).

The Tsai-Shah method applies discrete approaches
to finite differences of p and q in order to linearize the
reflection map in Z terms. If we consider the reflection
function for a Lambert surface, Tsai-Shah linearizes the
function f = I−R = 0 with Z terms aroundZn−1 which
is the surface reconstructed in the (n−1)-th iteration. For
a Lambertian surface, the reflection function is

I(x, y) = R(p, q)

=
psp+ qqs + 1

√
p2s + q2s + 1

√
p2 + q2 + 1

.
(3)

Equation (3) can also be written as follows in terms
of slant and tilt angles of the source:

R(p, q) =
cosσ + p cos τ sinσ + q sin τ sinσ

√
1 + p2 + q2

, (4)



504 M. Kotan et al.

where p = ∂Z/∂x and q = ∂Z/∂y, τ is the tilt, σ is
the slant of the illuminant, p and q can be approximated
discretely:

p =
∂Z

∂x
= Z(x, y)− Z(x− 1, y),

q =
∂Z

∂y
= Z(x, y)− Z(x, y − 1).

(5)

The image irradiance equation can be rewritten as

0 = f [I(x, y), Z(x, y), Z(x− 1, y), Z(x, y − 1)

= I(x, y)−R(Z(x, y)− Z(x− 1, y),

Z(x, y)− Z(x, y − 1)).

(6)

If Eqn. (6) is extended by Taylor’s expansion, the
new linear system can be solved by the Jacobi iterative
method. For a given initial approximation of Z0, Z(x, y)
at the n-th iteration can be solved with the use of the
previous estimates. Therefore, the Taylor series expansion
of Eqn. (6) is simplified to the form

0 = f(Z(x, y))

≈ f(Zn−1(x, y))

+ (Z(x, y)− Zn−1(x, y))
d

dZ(x, y)
f(Zn−1(x, y)).

(7)

For more information on Jacobi expansions and
simplification of equations, see the work of Tsai-Shah
(1994). The depth map at the n-th iteration is directly
solved by

Zn(x, y) = Zn−1(x, y) +
−f(Zn−1(x, y))
d

dZ(x,y)f(Z
n−1(x, y))

, (8)

where

df(Zn−1(x, y)

dZ(x, y)
= −

( (ps + qs)√
p2 + q2 + 1

√
p2s + q2s + 1

− (p+ q)(pps + qqs + 1)
√
(p2 + q2 + 1)3

√
p2s + q2s + 1

)
.

(9)

Then, assuming Z0 = 0, the resulting depth Z(x, y)
is obtained iteratively by Eqn. (8). The Tsai-Shah’s
iterative method sometimes deviates from the solution, but
this can be avoided by interrupting the iteration after a
fixed number of steps as suggested by Durou et al. (2008)
or Ping-Sing and Shah (1994).

Inspired by Pentland’s assumption, we provided the
Fourier transform coefficients of the central differences
(calculated on the gray-level image) as initial information
for the Tsai-Shah algorithm and examined the results.

Before the implementation of the SFS method, we first
calculated the numerical gradients of the image matrix.
The numerical gradient of a function is a method of
estimating partial derivative values for each dimension
with the use of known values of the function at specific
points.

For a function F (x, y) depending on two variables,
px = ∂F/∂x characterizes differences in the horizontal
(x) direction, and qy = ∂F/∂y shows differences in
the vertical (y) direction. They form a collection of
vectors pointing the direction of the steepest ascent of
F (x, y). The following equation can be used to calculate
the directional difference matrices of px and qy for the
M ×N gray-level image:

px(x, y) =
I(x, y + 1)− I(x, y − 1)

2
,

qy(x, y) =
I(x+ 1, y)− I(x− 1, y)

2
.

(10)

The single-sided differences can be used for values
along the edges of the image. For example,

px(x, 1) =
I(x, 2)− I(x, 1)

2
,

px(x,N) =
I(x,N)− I(x,N − 1)

2
.

(11)

Then, the Fourier transforms of the numerical
gradients are calculated:

pfx = FFT(px), qfy = FFT(qy) (12)

The surface Z0 is initialized by means of Eqns. (3)
and (6). Gray-level numerical gradients and the
commenced depth are used for the calculation of Z1 as
indicated in Eqn. (8). Below, the algorithm steps of the
proposed method are presented.

4. Experimental results

Sample implementations can be found at https://
github.com/muhammedkotan/hybridSFS. Two
different implementations were carried out for analyzing
and comparing the method performances under different
conditions. Four synthetic surfaces were generated
functionally, and the depth maps and gray level images
produced by the algorithms were compared. Then,
various images were selected from two present datasets
used for 3D reconstruction in the literature, and the
gray-level images, provided by the algorithms, were
compared. The MAD, MSE, L2, PSNR, and SSIM
metrics were used to compare the errors and similarities of
the produced surfaces and images with ground truth data.
The performances of the Pentland, the Tsai-Shah and
the developed method on the synthetic surfaces and for

https://github.com/muhammedkotan/hybridSFS
https://github.com/muhammedkotan/hybridSFS
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Algorithm 1. Hybrid algorithm.

Require: I(x, y) = gray-level input image
ls = spacing coefficient
fc = filtering coefficient
maxIter =max iteration number
L(x, y, z) = illumination direction (can be estimated
if it is not known)

1: [M,N ] = size(I);
2: px(i, j) = (I(i, j + 1)− I(i, j − 1))/2
3: qy(i, j) = (I(i+ 1, j)− I(i − 1, j))/2
4: pfx = fft(px), qfy = fft(qy)
5: p0 = pfx, q

0 = qfy

6: D =
√
x2 + y2 + z2, sx = x/D, sy = y/D, sz =

z/D
7: Z0(M,N) = f(I(x, y), p0, q0, ps, qs)
8: for n = 1 : maxIter do
9: R = (1 + pps + qqs)

/
√
(p2 + q2 + 1)(p2s + q2s + 1)

10: f = I −R
11: dfz = −1.{(ps + qs)

/
√
(p2 + q2 + 1)(p2s + q2s + 1) − (p + q)(pps +

qqs + 1)/
√
(p2 + q2 + 1)3(p2s + q2s + 1)}

12: Z(i, j) = Z(i, j) +−f(Z(i, j))/dfz
13: p = Z(i, j)−Z(i−1, j), q = Z(i, j)−Z(i, j−1)
14: end for
15: Smooth Surface(Z(x, y), fc)
16: Normalize Depth(Z(x, y), Zmax, Zmin)
17: return Z(x, y)

selected images from the current datasets were examined
in detail.

The Pentland and Tsai-Shah algorithms are among
the best quantitative methods on synthetic images (Zhang
et al., 1999). In the comparison of the algorithms,
we experientially determined the number of iterations
as 25 at first. Convergence could also be achieved
in a lower number of iterations. It should be noted
that the Pentland algorithm does not have an iterative
structure. Images were given to algorithms along with
their backgrounds. No smoothing filter was applied for
the Pentland method, and the results of Fourier transforms
were directly visualized. While coding the Tsai-Shah
algorithm and the proposed method, the results were
visualized by applying a median filter to the obtained
outcomes. Each output pixel contained the average value
of the corresponding pixels in its 3 × 3 neighborhood.
Some of the results could be improved or decreased with
the use of different smoothing or filtering values, but only
a 3×3 neighborhood filtering value was used for providing
a pure comparison of the algorithms and for showing
the effect of the proposed method without any filtering.
Illumination directions directly affect the performance of
the algorithms. Different depth maps were obtained in

(a) (b) (c) (d)

Fig. 1. Generated synthetic images: Sphere (a), Tent (b), Vase
(c) and Sinc (d).

(a) (b) (c) (d)

Fig. 2. Ground-truth surfaces of the synthetic images: Sphere
(a), Tent (b), Vase (c) and Sinc (d).

different directions and the performances of algorithms
differed. Therefore, it was preferred to determine the
unknown illumination values with the use of one of the
estimation methods present in the literature studies. In
the cases where the lighting position was unknown, the
illumination directions were estimated with the use of
a method similar to the one presented by Zheng and
Chellappa (1991).The known directions provided by the
authors were used for Data Set 1. The same directions
were applied to all three methods. In the following parts of
the study, we abbreviated the Pentland algorithm as P, the
Tsai-Shah algorithm as TS, and the proposed algorithm as
PM.

4.1. Synthetic image generation and test re-
sults. First, performance tests were performed on
four synthetic images, some of which are commonly
used in SFS methods and are functionally generable.
Surface formulations and some reference studies using the
selected synthetic images are given in Table 1.

The synthetic images generated according to
formulations of Table 1 are shown in Fig. 1, and the
ground truth surface figures of these images are given in
Fig. 2.

Reconstructions, by the algorithms, of each synthetic
image in Fig. 1 are given in Fig. 3. Furthermore,
gray-scale images of these recovered depth maps are
shown in Fig. 4. For the algorithms not to affect the
performances of each other, each image was presented to
the algorithms under the same conditions.

Because it is hard to obtain a unique solution
in SFS algorithms, an algorithm that works very well
for one image may not provide the same performance
for another. We also observed that our Fourier-based
approach smoothed the fluctuations in the occluding
boundaries. These improvements are visible at the
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Fig. 3. 3D reconstructions of selected methods for the synthetic
images in Fig. 1.

Fig. 4. Regenerated gray-scale images of recovered depth maps
shown in Fig. 3.

top of the sphere and on the edges of the tent in
Fig. 3. The difference can be more clearly observed
in Fig. 4. These surfaces appear to be more uniform
with Fourier-initialized pre-processing, even with lower
smoothing parameters and iteration numbers.

Experientially, we noticed that the performance
improvement of the presented algorithm usually occurs
after several iterations. In Figs. 5 and 6, the
reconstructions of TS and PM in the 10th and 15th
iterations are shown for the sphere and tent images. Since
P was not an iterative solution, the results did not change.
It should also be noted that increasing the number of
iterations does not always improve the result. Algorithms
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may show deviations. In such cases, the number of
iterations can be fixed.

In addition to the above qualitative comparisons, the
results were evaluated quantitatively. Since ground truth
depth matrices of synthetic images were available, five
different methods were used to evaluate the recovered
depth maps and generated gray-level images. The MAD,
MSE and L2 metrics are error-based, so they were
applied to the recovered and reference depth maps. The
reference and recovered shapes are shown in Figs. 2 and
3, respectively. Here, the smaller the value, the lower
the error rate. The error-based results are presented in
Table 2. The PSNR and SSIM are considered as the
second group of performance evaluators because they
calculate the similarity on the gray-level image. The
reference and obtained gray-level images are shown in
Figs. 1 and 4, respectively. Here, the higher the value, the
higher the similarity ratio. The similarity-based results are
shown in Table 3. For each image in Tables 2 and 3, the
best approximation values obtained from the P, TS, and
PM are indicated in bold.

The summary table, created for each image
according to the above evaluations, and the performance
ratio of the presented method are shown in Table 4.

Table 4 proves the inconsistency of SFS algorithms.
For the reconstruction performances of P and TS under
different illumination directions, see the work of Zhang
et al. (1999). Better performance values may be
achieved with the use of different iterations and filtering
coefficients. However, in order to maintain the stability of
the parameters, we applied the same constant values for
all synthetic images.

Since Fourier-based approaches are time-consuming,
the required clock and CPU times are also provided in
Table 5 (system: i7-9700K CPU@3.60 GHz [8 CPUs], 32
GB DDR4-3200 MHz). In order to measure the required
time, we used the MATLAB timeit function, which
calls the specified function multiple times and returns
the median of the measurements. A handle to each SFS
method is taken, and it returns the typical execution time
in seconds. We also utilized the MATLAB cputime
function for CPU time measurement. The cputime
function measures the total CPU time, but it may be
misleading if the measured function uses the processing
cores equally. By virtue of parallel programming, the
required clock and CPU time, in Table 5, may be
shortened.

The reconstruction time of surfaces is the longest in
PM due to its large size, gradient calculations, and Fourier
transforms at the initialization. Although Zhang et al.
(1999) mentioned in their examples that TS was one of
the fastest methods, the iteration value was not indicated
clearly. When a lower iteration value is specified, the
duration of the TS and PM methods will be significantly
reduced. The purpose of Table 5 is not to make an exact

(a) (b) (c) (d)

Fig. 5. Convergence of the sphere shape: TS, 10th iteration (a),
PM, 10th iteration (b), TS, 15th iteration (c), PM, 15th
iteration (d).

(a) (b) (c) (d)

Fig. 6. Convergence of the tent shape: TS, 10th iteration (a),
PM, 10th iteration (b), TS, 15th iteration (c), PM, 15th
iteration (d).

comparison of algorithms in terms of time but to give
an idea of the execution for various surfaces of different
sizes. Therefore, the time values were obtained with the
use of 25 iterations of TS and PM.

4.2. Comparisons with the use of 3D reconstruc-
tion data sets. Many studies have been conducted in
the literature on the reconstruction of a 3D surface, and
different data sets have emerged to assist researchers in
their evaluations. These data sets include data such as
various input images, image masks, depth maps, and
illumination directions that provide ground truth data at
the evaluation stages and more reliable results during the
comparison stages. In the comparison of P, TS and PM,
two different data sets present in the literature were used:

• Data Set 1: From Shading to Local Shape (Xiong
et al., 2014).

• Data Set 2: MIT Intrinsic Images (Grosse et al.,
2009).

The 3D depth maps and estimated gray-level images,
generated by the methods for the selected gray-level
images, were compared with the intonation images
provided by the data sets, and the 3D reconstruction
performance was measured. Measuring the reconstruction
error by re-rendering the estimated normal map into
a shading image and comparing that with the actually
captured one is one of the preferred methods in 3D
reconstruction studies (Xiong et al., 2014). Information
about the selected data sets, images, and illumination
directions are given in Table 6. The images selected from
both datasets are shown in Figs. 7 and 8, respectively.
The directions known were used for Data Set 1. For
the images selected from Data Set 2, the directions were
estimated with the use of a similar method proposed
by Zheng and Chellappa (1991). In addition, the Cat
image was provided to the algorithms in two different
ways, with black and white backgrounds. Thereby, the
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Table 2. MAD, MSE and L2 results.
Synthetic image MAD MSE L2

P TS PM P TS PM P TS PM
Sphere 0.0011 0.0625 0.0101 0.0626 0.0089 0.0004 366.93 135.03 22.70

Tent 0.0457 0.0512 0.0301 0.0379 0.0091 0.0030 46.62 24.34 13.06
Vase 0.0629 0.0500 0.0158 0.0344 0.0057 0.0006 64.64 26.31 8.31
Sinc 0.0033 0.0018 0.0001 0.0106 0.0001 0.0002 7.6791 0.8218 0.6905

Table 3. PSNR and SSIM results.
Synthetic image PSNR SSIM

P TS PM P TS PM
Sphere 12.0322 20.4860 33.2230 0.5909 0.9397 0.9864

Tent 14.2093 20.3976 25.2539 0.5862 0.8933 0.9359
Vase 14.6315 22.4488 32.0632 0.7609 0.9688 0.9802
Sinc 19.7447 37.3641 35.6676 0.7689 0.9724 0.9719

Table 4. Tests summary.
Synthetic image MAD MSE L2 PSNR SSIM PM-Score

Sphere P PM PM PM PM 4/5
Tent PM PM PM PM PM 5/5
Vase PM PM PM PM PM 5/5
Sinc PM TS PM TS TS 2/5

75.0% 75.0% 100.0% 75.0% 75.0% 80.0%

Table 5. Required clock and CPU time.
Synthetic image Clock time (sec.) CPU time (sec.)

P TS(it:25) PM(it:25) P TS(it:25) PM(it:25)
Sphere

(1501×1501) 0.0723 1.7151 3.5450 0.468 10.2969 19.4375
Tent

(256×256) 0.0017 0.0351 0.0972 0.031 0.2344 0.7656
Vase

(360×360) 0.0027 0.0431 0.1983 0.015 0.1406 1.1719
Sinc

(81×81) 0.0003 0.0057 0.0104 ≈0.0001 ≈0.1 ≈0.1

performances of the algorithms were evaluated under
different backgrounds and situations.

Depth maps created by algorithms for input images
in Data Sets 1 and 2 are shown in Figs. 9. and 10,
respectively. Gray-level images corresponding to the
estimated depth maps are shown in Figs. 11 and 12.
Gray-level images showing the differences of the PM and
TS results are also presented in Fig. 13.

The MAD, MSE and L2 values, relevant to the error
rates between the images provided by the data sets and
the images produced by the algorithms, are presented in
Table 7. The PSNR and SSIM values, indicating similarity
rates, are given in Table 8. Moreover, all evaluation
results and the performance of the proposed method are
summarized in Table 9.

The similarity between the MSE and PSNR results
is due to the relationship between the MSE-PSNR
formulations and proves the consistency of the results.
Another advantage of applying PM is that the depth
information can be obtained without applying any filtering
processes. TS usually requires an appropriate smoothing
and filtering step in order to converge to the 3D shape.
The depth information of the Cat image, obtained without
the applying any filters after 25 iterations, is visualized in
Fig. 13.

4.3. 3D reconstruction on defect images. The fact
that the details on the object can be obtained from a
single image under suitable scene conditions has made
SFS algorithms one of the preferred methods in defect
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Table 6. Selected datasets and image properties.
Dataset Input Illumination Background

From Shading Cat [0,1949; 0,2419; 0.9270] Black
to Local Cat [0,1949; 0,2419; 0.9270] White
Image Turtle [0,1590; 0,2789; 0.9431] Black

Dino [0,8551; 0,4618; 0.2353] Black
MIT Intrinsic* Frog [0,8644; 0,3968; 0,3086] Black

Pear [0,8639; 0,3909; 0,3174] Black
∗Estimated values were used for the illumination directions.

Table 7. MAD, MSE and L2 results.
Image MAD MSE L2

P TS PM P TS PM P TS PM
Cat (black) 0.053 0.009 0.004 0.104 0.0003 0.0002 161.06 7.60 5.55
Cat (white) 0.041 0.021 0.034 0.104 0.325 0.004 154.38 274.62 32.09

Turtle 0.079 0.038 0.00005 0.059 0.003 0.0002 113.27 34.91 5.93
Dino 0.018 0.006 0.001 0.047 0.0001 ≈ 0.00001 86.13 3.58 1.37
Frog 0.025 0.005 0.0020 0.12106 0.0010 0.0009 121.63 2.50 2.16
Pear 0.024 0.004 0.0016 0.0594 0.0001 ≈ 0.00001 64.65 1.90 2.07

Table 8. PSNR and SSIM results.
Image PSNR SSIM

P TS PM P TS PM
Cat (black) 9.81 34.94 35.37 0.386 0.949 0.952
Cat (white) 9.801 4.871 23.062 0.661 0.535 0.886

Turtle 12.259 24.156 35.805 0.511 0.929 0.940
Dino 13.272 37.709 42.735 0.115 0.982 0.991
Frog 9.171 29.991 30.345 0.1065 0.921 0.928
Pear 12.259 38.845 40.348 0.280 0.963 0.984

Table 9. Tests summary.
Image MAD MSE L2 PSNR SSIM PM-Score

Cat (black) PM PM PM PM PM 5/5
Cat (white) TS PM PM PM PM 4/5

Turtle PM PM PM PM PM 5/5
Dino PM PM PM PM PM 5/5
Frog PM PM PM PM PM 5/5
Pear PM PM TS PM PM 4/5

83.3% 100.0% 83.3% 100.0% 100.0% 93.3%

detection studies. In addition to literature studies, some
companies are also developing their own patented SFS
algorithms. To show the effect of the developed algorithm
on the defect images, we presented the 3D examples of
the images obtained from the NEU Surface Detect Dataset
(Song and Yan, 2013) in Fig. 14.

5. Conclusion

A hybrid shape-from-shading method for linea-
rization-based 3D reconstruction of a single image

was presented. We studied whether Fourier-based
central differences of the image would improve the
performance of the reconstruction and whether there is
good preliminary information for the estimation of shape.
The presented method was compared with the Tsai-Shah
and Pentland methods, which are the basis of this study,
with the use of four functionally generated images, and
two 3D reconstruction data sets being present. Recovered
depth maps and generated gray-level images of test
images were evaluated with five commonly used metrics:
mean absolute deviation (MAD), mean squared error
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(a) (b) (c)

Fig. 7. Images selected from Data Set 1: Cat (black back-
ground) (a), Cat (white background) (b), Turtle (c).

(a) (b) (c)

Fig. 8. Images selected from Data Set 2: Dino (a), Frog (b),
Pear (c).

(MSE), Euclidean norm (L2), peak signal-to-noise ratio
(PSNR), and structural similarity index (SSIM). The first
three methods were applied to calculate the error between
recovered and ground truth data. The latter two methods
were used to calculate the similarity ratio of the obtained
gray-level images to the original images.

The response of the algorithms against different
background colors was also studied. The results are listed
in detail in the tables. In addition, the required time and
CPU time were included to guide the researchers.

The surface estimates that the developed method
can produce for six different types of defects generally
encountered on metallic surfaces were also added. After a
few iterations, our experiments showed that the proposed
hybrid SFS algorithm, which was initialized by the
Fourier coefficients of the gradient, can better converge
the 3D shape and the gray-level image, does not require
a higher filtering process, is reliable regarding sudden
changes on the surfaces, and is usable for different
backgrounds.
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