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A wide variety of approaches for set-valued simulation, parameter identification, state estimation as well as reachability,
observability and stability analysis for nonlinear discrete-time systems involve the propagation of ellipsoids via nonlinear
functions. It is well known that the corresponding image sets usually possess a complex shape and may even be nonconvex
despite the convexity of the input data. For that reason, domain splitting procedures are often employed which help to
reduce the phenomenon of overestimation that can be traced back to the well-known dependency and wrapping effects
of interval analysis. In this paper, we propose a simple, yet efficient scheme for simultaneously determining outer and
inner ellipsoidal range enclosures of the solution for the evaluation of multi-dimensional functions if the input domains
are themselves described by ellipsoids. The Hausdorff distance between the computed enclosure and the exact solution set
reduces at least linearly when decreasing the size of the input domains. In addition to algebraic function evaluations, the
proposed technique is—for the first time, to our knowledge—employed for quantifying worst-case errors when extended
Kalman filter-like, linearization-based techniques are used for forecasting confidence ellipsoids in a stochastic setting.
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1. Introduction

In the frame of interval analysis (Jaulin et al., 2001;
Mayer, 2017), the domains of uncertain variables
are commonly described by axis-aligned boxes in a
multi-dimensional (state) space x ∈ R

n. When applying
some nonlinear mapping

y = f(x) , f : Rn �→R
n (1)

to those domains, one typically assumes as well that
each component of the resulting image is described
independently by a corresponding interval. For that
purpose, either all elementary operators (addition,
subtraction, multiplication, and division) as well
as elementary functions (such as trigonometric,
exponential, and logarithmic) are replaced by their
interval counterparts using the so-called natural (naive)
interval extension.
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Due to the fact that this direct replacement
of all operators and functions typically leads to
conservative bounds due to multiple dependencies on
common variables that cannot be accounted for in
this kind of evaluation, techniques for a reduction
of overestimation using higher-order methods, centered
forms, or monotonicity tests are often employed. For an
overview about these procedures, the reader is referred to
the works of Mayer (2017) and Moore et al. (2009).

Using such interval-valued box representations of the
solution sets, information about the correlation between
the individual vector components yi, i ∈ {1, . . . ,n}, is
lost. This is especially critical if iterated function
evaluations are performed, for example, in the frame of
predictor–corrector approaches for state estimation (Rauh
et al., 2021b) or in a simulation-based stability analysis
of nonlinear discrete-time systems (Bourgois and Jaulin,
2021), where it is desired to show whether or not some
integer value k > 0 exists such that the image domain after
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a k-fold repeated function evaluation leads to a true subset
of the initial domain x ∈X. This initial domain X was
assumed as an axis-parallel interval box in the reference
above but could be described alternatively by other
sets such as ellipsoids, Taylor models, parallelepipeds,
zonotopes, or polytopes.

To reduce the pessimism induced by interval
wrapping (Jaulin et al., 2001), i.e., enclosing the result of
the nonlinear function evaluation by an axis-aligned box
and propagating this box further in subsequent evaluation
steps, several countermeasures were introduced in the
literature. Those include domain splitting procedures with
subsequent function evaluations for each of the resulting
boxes (Rauh et al., 2007), the description of solution
sets by enhanced shapes such as zonotopes (Kühn,
1999) or high-order Taylor models (Makino and Berz,
2004; Hoefkens, 2001), or the use of an ellipsoidal
calculus (Kurzhanskii and Vályi, 1997) employed for state
estimation purposes by Becis-Aubry (2020).

However, all of these techniques suffer to at least
some extent from an exponential growth of complexity
and a curse of dimensionality if subsequent function
evaluations are performed in high-dimensional spaces.
If domain splitting procedures are concerned, it is
often required to perform splitting operations recursively
at each evaluation of the nonlinear map f(x) in (1),
where—without merging sufficiently small and similar
interval boxes (Rauh et al., 2007; Krasnochtanova et al.,
2010)—the computational complexity inevitably grows in
an exponential manner.

Although sensitivity analysis and inner
approximations of the solution sets (Goubault et al., 2014)
may be employed to select the dimension and interval
box to be bisected, such information is often ignored
for the sake of a simple implementation. Similarly, also
for zonotopic enclosures, the complexity increases if
successive function evaluations are performed. This is
caused by the fact that the number of required vertices
typically increases if zonotopic domains are mapped
via nonlinear functions. This holds even for linear
expressions containing interval parameters. Again, order
reduction techniques are required, which are typically
only performed heuristically without quantifying the
worst-case excess width of each function evaluation.
Similar aspects are true for Taylor model arithmetic,
where the polynomial orders inevitably grow after each
function evaluation. In practice, this growth of the
polynomial degrees is countered by absorbing the errors
due to a polynomial truncation into interval remainder
terms that are often combined with a domain re-scaling.

These complexity issues restrict the successful
application to small dimensions n as well as to domains
X that are sufficiently tight. This contradicts the general
aim, where it is desired—as is often the case in control

engineering—that each evaluation step should

(i) have a closed-form representation of the solution set
and

(ii) simultaneously provide computationally cheap
information about the worst-case pessimism in terms
of the distance between inner and outer enclosures,

regardless of whether or not domain splitting approaches
are included in an algorithm.

Here, the second aspect is strongly related to the goal
to find a procedure that describes the solution sets by
tight enclosures that rapidly converge towards the exact
solution if the input domains are reduced in their volume.

In this paper, we propose a novel solution procedure
that computes both inner and outer ellipsoidal enclosures
of the evaluation of a nonlinear function (1), where
the distance between both bounds directly provides a
measure for the worst-case excess width. From an
application point of view, such (algebraic) function
evaluations arise in a large variety of settings. Just to
mention a few, these are the evaluation of homogeneous
coordinate transformations in robotics which relate
joint angles to end-effector coordinates in a Cartesian
frame, compute the stationary control effort if an
equilibrium configuration is predefined in terms of the
joint coordinates, or arise during the prediction of
deterministic and stochastic discrete-time system models
between two subsequent sampling points. Especially in
the latter setting, which to our knowledge has not yet been
considered in the literature in the frame of an ellipsoidal
calculus, the representation of both inner and outer
bounds in terms of ellipsoids provides the information
about extremal probability distributions between which a
Gaussian approximation of the result may be included.

The existing state-of-the-art approaches for using
ellipsoidal set representations, such as the ellipsoidal
toolbox developed by Kurzhanskiy and Varaiya (2006),
are partially restricted to dominantly linear or polynomial
systems. They are commonly based on the solution
of linear matrix inequalities (LMIs) in each evaluation
step and/or employ computationally expensive min-max
optimization approaches with quite a large number of
degrees of freedom. Simplifications of these techniques
can be obtained by relaxing the employed optimality
criteria (typically, replacing logarithmic cost functions by
linear ones (cf. Tarbouriech et al., 2011)) or by reducing
the number of available degrees of freedom, where only
a stretch parameter (cf. Rauh et al., 2021b) needs to be
optimized after the structure of the ellipsoid shape matrix
is predefined in advance.

In addition, Taylor model approaches (developing
the solutions of ordinary differential equations into
high-order series in initial states, parameters, and the
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time variable (cf. Bünger, 2020)) can be combined in
an efficient way with an ellipsoidal calculus if long-term
simulations of dynamic systems are of interest. This has
been shown by Villanueva et al. (2015) and Houska et al.
(2015), who employed ellipsoidal enclosures to bound
the Taylor models’ remainder terms and in such a way
replace the classically employed interval bounds for these
error terms. Typically, these ellipsoid bounds need to be
computed numerically, i.e., without simple closed-form
expressions such as those presented in this paper.

On the one hand, the methods developed by
Villanueva et al. (2015) and Houska et al. (2015) have
the advantage to be more precise than interval-based
approaches due to the use of higher-order Taylor models.
On the other hand, however, the increased computational
effort is only beneficial if evaluations of dynamic systems
over long time spans are desired. For single function
evaluations, over sufficiently tight domains, as well as
for the embedding into predictor–corrector type state
estimators, the approaches quoted above are less suited
due to two properties. First, the ellipsoidal bounds
proposed in the quoted papers are based on the solution of
some auxiliary system models, which may be prohibitive
for real-time application in state estimation for systems
with fast dynamics. Second, intersections of computed
state bounds with set-valued representations of measured
data as performed by Rauh et al. (2021b) typically
destroy the advantage of Taylor models of representing
complexly shaped solution domains for dynamic systems
with smooth dynamics.

Due to these reasons, we develop closed-form inner
and outer ellipsoidal enclosures in this paper which do not
require the solution of any auxiliary system model. Note
that, in this paper, we restrict ourselves to the evaluation
of static system models given in the explicit form (1) and
to applications in the frame of discretized system models.
The use in continuous-time settings will be the subject
of future work, where the case of temporarily varying
uncertain parameters will be of interest. This latter
aspect renders high-order series expansions inappropriate
because bounds for a finite number of time derivatives of
the uncertain parameters are typically not available if such
kinds of differential inclusions are investigated.

This paper is structured as follows. Section 2 gives
an overview of related solution ideas, before the actual
solution approach is derived in Section 3. Illustrating
examples are given in Sections 4 and 5, where the
former deals with the mapping of ellipsoidal domains via
nonlinear functions and the latter is focused on applying
the proposed technique to forecasting specific confidence
ranges for system models with stochastic uncertainty.
Finally, an outlook on further possible applications and
research concludes this paper in Section 6.

2. Problem formulation and related
solutions

Assume that the initial domain x ∈X is described by the
quadratic form

Ex :=
{

x ∈ R
n
∣∣ (x− μμμx)

T ΓΓΓ−T
x ΓΓΓ−1

x (x− μμμx)≤ 1
}

(2)

representing a nondegenerate ellipsoid with the positive
definite shape matrix ΓΓΓxΓΓΓT

x � 0 and the midpoint μμμx ∈ R
n.

The final goal is to find a computationally simple
procedure so that the range y of the function values is
included in an ellipsoid Ey.

In contrast, a straightforward evaluation of the
range of a nonlinear function according to (1) over the
ellipsoid Ex can be described either by a centered form
representation of the nonlinear map or by using a linear
Taylor model approach. In the first case, a suitable interval
extension of the Jacobian1

∂ f
∂x

(x) ∈ [Jf] (3)

is required for a tight interval box [x] ⊃ Ex. As
already stated in Introduction, the interval extension
in (3) is typically obtained by replacing all mathematical
operations included in the Jacobian ∂ f

∂x (x) by their
respective interval counterparts.2 Using the set value
membership (3), the range of y can be bounded by

{
y = f(x)
x ∈Ex

=⇒
{

y = f(μμμx)+ Jf · (x− μμμx)
Jf ∈ [Jf] .

(4)
If [Jf] only contains strictly nonsingular realizations

of the Jacobian, x = μμμx + J−1
f · (y− f(x)) can be

substituted into the ellipsoid definition (2).
The result then is the convex hull over ellipsoids

with interval-valued shape matrices and uncertain
(box-constrained) midpoints. If a simple-shape
representation of the result in terms of a single ellipsoid
with a point-valued midpoint is desired, two steps are
required that can be solved by using LMI techniques,
namely, finding a tight ellipsoidal enclosure over the
union of the continuum of ellipsoids with uncertain shape
matrices and, then, enclosing its Minkowski sum (de Berg

1As an alternative to computing the Jacobian by means of algorith-
mic or symbolic differentiation, the corresponding slope matrix could be
used (Griewank, 2000; Chapoutot, 2010).

2Since the algorithm presented in the following section only needs
the evaluation of Jacobian matrices for interval boxes and avoids the di-
rect interval evaluation of the function (1), the corresponding arguments
are defined by a tight axis-aligned box containing the ellipsoid Ex; see
also Fig. 1. Further tightening the enclosures would only be possible
by higher-order derivatives (e.g., a centered form representation of the
Jacobian which would lead to the necessity to compute the function’s
Hessian) for a description of the ranges for x in a rotated coordinate
frame which requires symbolic reformulations of the Jacobian to reduce
overestimation. Such approaches are not considered further to keep the
algorithm as simple as possible.
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et al., 2008) with a hyper-rectangle by solving a further
optimization problem. Although this approach is
computationally feasible and can be implemented by
means of the ideas from Jambawalikar and Kumar (2008),
Halder (2018), and Yildirim (2006), the solution of
LMIs generates a non-negligible computational effort
that should be avoided within this paper to obtain a
fast closed-form solution. Note that these LMI-based
approaches essentially make use of the findings by John
(1948) and Černý (2012), who showed how a tight outer
bounding ellipsoid (the so-called Löwner–John ellipsoid)
can be found which describes a convex hull over a cloud
of individual points in a multi-dimensional space.

An alternative to the enclosure (4) of the range of y
is the use of the linear Taylor model of the nonlinear map
given by

y ∈ [
b′]+A′ · (x− μμμx) with x ∈Ex, (5)

where A′ is a strictly regular, real-valued point matrix
and [b′] is an interval vector that is chosen so that
all function values of (1) over the domain of interest
are guaranteed to be included in the right-hand side
expression of (5). Although, in contrast to (4), this
approach avoids the necessity of finding the union over
ellipsoids with uncertain shape matrices, the problem of
finding an ellipsoid close to the Minkowski sum of an
ellipsoid and a hyper-rectangle still exists.

Due to the simplified nature of (5) in comparison
with (4), this formulation is used as the basis for
the derivation of a procedure for a linear change of
coordinates with which the aforementioned Minkowski
sum can be evaluated exactly as the sum of the radii of
two concentric balls.

Notation. Throughout this paper, ‖·‖ represents the
Euclidean norm of the corresponding vector-valued
argument. In the cases where the argument is an
n-dimensional interval vector [x], an interval-valued
generalization of the norm is defined as

‖[x]‖=
√

n

∑
i=1

[xi]
2, (6)

where the infima of [xi]
2 and ‖[x]‖ are nonnegative. For

more general (ellipsoidal) arguments, it is defined as the
supremum over all possible Euclidean norms that can
be overapproximated conservatively by means of suitable
interval bounds of the argument.

3. Ellipsoidal enclosures

Theorem 1. (Outer ellipsoidal enclosure) Define the non-
degenerate ellipsoid

Ex :=
{

x ∈R
n
∣∣ (x− μμμx)

T ΓΓΓ−T
x ΓΓΓ−1

x (x− μμμx)≤ 1
}
. (7)

For a differentiable function y = f(x), f : Rn �→R
n, with

A =
∂ f
∂x

(μμμx) invertible, (8)

EO
y :=

{
y ∈R

n
∣∣ (y− μμμy

)T ΓΓΓ−T
y,OΓΓΓ−1

y,O

(
y− μμμy

)≤ 1
}

(9)

is an outer enclosure of the solution set f(Ex) with

μμμy = f(μμμx) and ΓΓΓy,O = (1+ρ) ·A ·ΓΓΓx, (10)

where
ρ = max

‖x̃‖≤1

∥∥b̃ (x̃)
∥∥ , (11)

and

b̃(x̃) = ΓΓΓ−1
x ·A−1 ·

(
f(ΓΓΓxx̃+ μμμx)− f(μμμx)

)
− x̃. (12)

Proof. First, set

x̃ = ΓΓΓ−1
x · (x− μμμx) . (13)

From (7), we have

x̃ ∈Sx :=
{

x̃
∣∣ ‖x̃‖ ≤ 1

}
. (14)

Second, define
ỹ = x̃+ b̃(x̃) , (15)

which represents y after applying the linear change
of coordinates (13) with b̃ (x̃) given in (12). Hence,
according to the triangle inequality,

‖ỹ‖ ≤ ‖x̃‖+∥∥b̃(x̃)
∥∥= 1+ρ (16)

holds with

ρ = min
ρ∈R+

{
ρ ∈R

+
∣∣ ∥∥b̃(x̃)

∥∥≤ ρ , ∀x̃ ∈Sx
}
. (17)

Alternatively, (15) can be expressed as ỹ ∈ Sx ⊕Sb,
where ⊕ is the Minkowski sum of two sets (de Berg et al.,
2008) and

b̃(x̃) ∈Sb := {x̃ | ‖x̃‖ ≤ ρ} . (18)

Therefore, ỹ belongs to a ball of radius 1+ρ as illustrated
in Fig. 1. According to (12) and (15), the equality

ỹ = ΓΓΓ−1
x ·A−1 · (y− μμμy

)
(19)

holds. Substituting this equality into (16) yields the
ellipsoid EO

y according to (9)–(10), which completes the
proof. �

Remark 1. For sufficiently small domainsEx,
∥∥b̃ (x̃)

∥∥→
0 uniformly holds and implies that the ellipsoid EO

y
becomes an arbitrarily tight outer enclosure of f(Ex)
according to the following theorem. In contrast to the
Löwner–John ellipsoids (cf. John, 1948; Černý, 2012),
however, the proposed bounds are not necessarily the
tightest possible, i.e., minimal enclosures.
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⊕ =
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μy,2
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x̃2 b̃2 ỹ2

x̃1 b̃1 ỹ1

x1 y1μx,1 μy,1

[x]

Ex

y = f(x)

ỹ = x̃+ b̃(x̃)

EO
y

f(Ex)

EI
y

1 1+ρ

E
q.(19)

E
q.

(1
3) Sx

ρ
[
b̃
]

b̃(Sx)

Sb

Fig. 1. Ellipsoidal enclosure approach. As visualized above, the domain b̃(Sx) becomes close to an ellipsoid or a ball if the domain
Ex is sufficiently small.

Theorem 2. (Asymptotic convergence of the enclosure
EO

y ) The parameter ρ defined in Theorem 1 is a measure
for the maximum deviation between EO

y and the true set
f(Ex). The Hausdorff distance between f(Ex) and the el-
lipsoid y ∈EO

y is of order o(‖x− μμμx‖). Equivalently, this
also implies ρ → 0, as stated in the remark above.

Proof. The difference between the exact solution set
f(Ex) and its ellipsoidal enclosure y ∈EO

y is proportional
to b̃ (x̃). Differentiability of the map f implies the
existence of a Lipschitz constant L̃ > 0 as

‖f(Ex)− y‖ ≤ L̃ · ‖x̃‖ (20)

and, therefore, also

‖f(Ex)− y‖ ≤ L · ‖x− μμμx‖ , (21)

with L > 0. Hence, for decreasing domain sizes Ex, the
ellipsoid EO

y converges at least linearly to the true result.
�

Theorem 3. (Inner ellipsoidal enclosure) An inner ellip-
soidal approximation of the solution set f(Ex) is given by

EI
y :=

{
y ∈ R

n
∣∣ (y− μμμy

)T ΓΓΓ−T
y,I ΓΓΓ−1

y,I

(
y− μμμy

)≤ 1
}

(22)

with

μμμy = f(μμμx) and ΓΓΓy,I = (1−ρ) ·A ·ΓΓΓx, (23)

where A and ρ are defined in Theorem 1.

Proof. Following the same steps as in the proof of
Theorem 1, a domain belonging to the image set for all
possible x̃ ∈ Sx is obtained by evaluating the Minkowski
difference

SI =Sx 
Sb. (24)

For ρ ∈ [0 ; 1], the ball with a maximum volume fully
inscribed in this domain SI has the radius 1 − ρ .
According to Eqn. (19), this gives the inner ellipsoid EI

y
in (22)–(23). �

Remark 2. For ρ > 1, the inner enclosure is the empty
set.

A computationally feasible implementation of the
ellipsoidal outer and inner enclosures is summarized in
Algorithm 1. It directly implements the solution approach
proposed in Theorems 1 and 3. To solve the optimization
task given in Eqn. (11), an interval arithmetic approach is
utilized to find a tight upper bound for the parameter ρ by
determining the upper interval bound (supremum) of the
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Algorithm 1. Outer and inner ellipsoidal enclosures.

Input: f(x), {μμμx,ΓΓΓx}
Output: {μμμy,ΓΓΓy,O,ΓΓΓy,I}

1: [xi] = μx,i + ‖ΓΓΓx,i‖ · [−1 ; 1] , i ∈ {1, . . . ,n}
2: [x] = [x1]× . . .× [xn]
3: A = ∂ f

∂x (μμμx)
4: ΓΓΓy = A ·ΓΓΓx

5: [Jf] =
[

∂ f
∂x

]
([x])

6:
[
b̃
]
=
(
ΓΓΓ−1

y · [Jf] ·ΓΓΓx − I
) · [−1 ; 1]×n

7: ρ = sup
{∥∥[b̃]∥∥}

8: μμμy = f(μμμx)
9: ΓΓΓy,O = (1+ρ) ·ΓΓΓy

10: ΓΓΓy,I = (1−ρ) ·ΓΓΓy

Euclidean norm of the vector
[
b̃
]

as

ρ ≤ sup
{∥∥[b̃]∥∥} , (25)

with

b̃(x̃) ∈ [
b̃
]

:=
(
ΓΓΓ−1

x ·A−1 · [Jf] ·ΓΓΓx − I
) · [x̃] . (26)

Here, we make use of a centered form (mean value
form) representation of

[
b̃
]

according to

[
b̃
]
= b̃(x̃0)+

[
∂ b̃
∂ x̃

]
([x̃]) · ([x̃]− x̃0) , (27)

where x̃0 = 0 and b̃ (0) = 0. To reduce overestimation
due to the wrapping effect of interval analysis as far as
possible, the involved Jacobian ∂ b̃

∂ x̃ is expressed along with

∂ f
∂ x̃

(x̃) =
∂ f
∂x

(x) · ∂x
∂ x̃

(x̃) =
∂ f
∂x

(x) ·ΓΓΓx ∈ [Jf] ·ΓΓΓx, (28)

where [Jf] is an interval extension of ∂ f
∂x (cf. (3)), over the

tightest axis-aligned box [x] in original coordinates which
contains the ellipsoidEx.

This box, sketched in Fig. 1, is determined by finding
those points of the ellipsoid Ex that have an outward
directed normal vector that is parallel to the i-th unit vector
ei, ‖ei‖= 1, of Rn and is then projected onto the i-th axis.
The corresponding computation of these points x∗i is given
by the collinearity condition

∇Ex ∝ ΓΓΓ−T
x ΓΓΓ−1

x · (x∗i − μμμx) = αei (29)

for the normal vector ∇Ex, which yields

ΓΓΓ−1
x · (x∗i − μμμx) = αΓΓΓT

x ei. (30)

Choosing

α =
1∥∥ΓΓΓT
x ei

∥∥ (31)

so that the condition

∥∥ΓΓΓ−1
x · (x∗i − μμμx)

∥∥= α
∥∥ΓΓΓT

x ei
∥∥= 1 (32)

is satisfied implies that x∗i lies on the ellipsoid surface.
Hence, with ΓΓΓT

x = ΓΓΓx, line 1 of Algorithm 1 is
verified according to

x∗i − μx,i = eT
i · (x∗i − μμμx) =

∥∥ΓΓΓT
x ei

∥∥= ‖ΓΓΓxei‖= ‖ΓΓΓx,i‖ ,
(33)

where ΓΓΓx,i is the i-th column of ΓΓΓx.

Remark 3. The advantage of the centered form
representation of

[
b̃
]

in (26) over directly replacing
all function evaluations by corresponding interval
counterparts using naive interval extensions is the
reduction of overestimation which decreases at least
quadratically for a reduction of the width of the
interval [x]. This general property of the centered form
evaluation was observed and proved by Moore (1966) as
well as Cornelius and Lohner (1984). In the approach
considered, this property holds if A−1 · [Jf] in (26) is
sufficiently close to a point-valued identity matrix. If
this is not the case, a direct evaluation of (12) may be
advantageous; see also the work of Tóth and Csendes
(2005).

Remark 4. Because lines 3, 4, and 8–10 of
Algorithm 1 are evaluated in floating-point arithmetic,
possible round-off errors resulting from the use of
a finite-precision arithmetic are currently neglected in
the implementation. However, they can be captured
rigorously by evaluating the corresponding lines of
the algorithm using verified methods including outward
rounding which automatically leads to suitably increasing
the value of the parameter ρ . However, in most
engineering applications, this effect can be neglected to
reduce computing times. In state estimation tasks, such
as those presented in Rauh et al. (2021b), the major
contributions to the value of ρ are uncertain parameters,
bounded disturbances, and the size of the domainEx itself.

4. Example 1: Mapping of ellipsoidal
domains

In this section, several examples for general as well
as volume-preserving nonlinear function evaluations y =
f(x) are given. All of them stem from the area of
discretized dynamic systems, so that the notation xk+1 =
f(xk) is used in the following.

4.1. General nonlinear function evaluation. As a
first benchmark application for the proposed ellipsoidal
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enclosure approach, consider the nonlinear function

xk+1 = f(xk)

=

⎡
⎣

x1,k

x2,k

x3,k

⎤
⎦+ 0.2 ·

⎡
⎣

1+ x2
1,kx2,k − 2.5x1,k+ 0.5x2

3,k
1.5x1,k − x2

1,kx2,k

−0.5x2
3,k

⎤
⎦

(34)

inspired by a one time step explicit Euler discretization
of the two-dimensional Brusselator model according to
Goubault et al. (2014) and Bouissou et al. (2013), which
has been extended by a third state variable x3,k. The
Brusselator is a simple dynamic system representing
oscillatory dynamics in chemical reactions.3 From this
perspective, the added term x3,k describes a temporally
varying external disturbance influencing the nonlinear
dynamics.

Throughout this subsection, it is assumed that Ex,k

is given by a ball
∥∥xk − μμμx,k

∥∥ ≤ R, ΓΓΓx,k = R · I, with the

radius R > 0 and the midpoint μμμx,k =
[
1 1.5 0.5

]T
.

In Table 1, the parameter ρ and the volumes of the

inner and outer ellipsoidal enclosures (vol
{
EI

x,k+1

}
and

vol
{
EO

x,k+1

}
, resp.) are compared together with the rate

of reduction in ρ in comparison with its value ρ∗ that is
obtained for the radius R = 1. To obtain a conservative
comparison, ρ and vol

{
EO

x,k+1

}
are rounded upwards,

all other data are rounded downwards to the number of
displayed digits.

Firstly, it can be noticed that the maximum
overestimation of the ellipsoidal enclosure reduces for
decreasing sizes of the domains Ex,k . As shown in
Theorem 2, the Hausdorff distance between the true
image of the nonlinear map and the ellipsoidal enclosure
decreases at least linearly with the domain width. This is
confirmed by computing the ratio between ρ and its value
for the largest initial domain under consideration; see also
Fig. 2 for a visualization on a double logarithmic scale.
Moreover, as soon as an inner enclosure exists according
to Theorem 3, the distance between EI

x,k+1 and EO
x,k+1

reduces rapidly for a decreasing size ofEx,k.
This property is also shown graphically in Fig. 3,

where the left column contains a comparison of the
verified outer enclosure with a grid-based approximation
of the nonlinear map, while the right one shows a
comparison of the inner ellipsoid (gray shaded surface)
and the outer one (black mesh) for two values of R.

4.2. Volume-preserving maps. To perform a
fair comparison between natural interval extensions
of nonlinear functions and the proposed ellipsoidal

3A Python implementation of this example as well as a further 2-
dimensional benchmark are available for download at https://www.
ensta-bretagne.fr/jaulin/ellipse.html.

Table 1. Influence of the ball radius R on the pessimism of the
ellipsoidal enclosures with ρ∗ = ρ(R = 1).

R ρ ρ∗/ρ vol
{
EI

x,k+1

}
vol

{
EO

x,k+1

}

20 3.540 1.000 − 331.50

2−1 1.570 2.255 − 7.516

2−2 0.735 4.815 0.001 0.290

2−4 0.175 20.29 4.86 ·10−4 0.0015

2−6 0.044 82.26 1.18 ·10−5 1.54 ·10−5

2−8 0.011 330.1 2.04 ·10−7 2.19 ·10−7

Fig. 2. Reduction of ρ for a decreasing ball radius R.

evaluation approach for higher-dimensional system
models, two volume-preserving maps are considered in
this subsection.

4.2.1. Dubins car model. The first example in this
subsection is a Dubins car model (Romig et al., 2019)

xk+1 = f(xk) =

⎡
⎢⎢⎣

x1,k

x2,k

x3,k
x4,k

⎤
⎥⎥⎦+T ·

⎡
⎢⎢⎣

cos
(
x4,k

) · x3,k

sin
(
x4,k

) · x3,k

0
0

⎤
⎥⎥⎦ (35)

that is discretized with the help of an explicit Euler
method (step size T = 1). This model includes an
uncertainty in its temporally constant orientation x4,k.
This angle of orientation is included in the state equations
in terms of a discrete-time integrator disturbance model as
the fourth state variable. The other states are the positions
x1,k and x2,k as well as the absolute value of the car’s
constant, but uncertain velocity x3,k. As initial conditions
for the ellipsoidal evaluation approach, the states xk are
assumed to be included in an ellipsoidEx,k with the center

μμμx,k =
[
1 1 0.1 π

3

]T
(36)

https://www.ensta-bretagne.fr/jaulin/ellipse.html
https://www.ensta-bretagne.fr/jaulin/ellipse.html
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(a) EO
x,k+1 vs. gridding (R = 2−2). (b) EO

x,k+1 and EI
x,k+1 (R = 2−2).

(c) EO
x,k+1 vs. gridding (R = 2−6). (d) EO

x,k+1 and EI
x,k+1 (R = 2−6).

Fig. 3. Comparison of EO
x,k+1 and EI

x,k+1 for different values of R.

and the diagonal shape matrix

Cx,k =

⎡
⎢⎢⎣

0.01 0 0 0
0 0.01 0 0
0 0 R2 0
0 0 0 R2

⎤
⎥⎥⎦ . (37)

The alternative, interval-based function evaluation
makes use of a tight axis-aligned box [xk] enclosing this
ellipsoid according to Eqns. (29)–(33).

Table 2 summarizes the results for the evaluation
of this model for both alternative techniques, in terms
of the parameter ρ of the ellipsoidal enclosure, the

ratio vol
{
EO

x,k+1

}
/vol

{
EI

x,k+1

}
between outer and inner

ellipsoid volumes in the step k + 1, a comparison

of the volumes vol
{
EO

x,k+1

}
/vol

{
Ex,k

}
, and finally

the ratio vol{[xk+1]}/vol{[xk]} of the volumes of a
classical interval evaluation applied directly to the system
model (35). It can be seen that the parameter ρ reduces
rapidly for decreasing parameters R > 0. This decrease is
an indicator for the reduction of the excess width between

inner and outer ellipsoid bounds. If the last two columns
of this table are compared, it can be seen that the interval
(box-type) evaluation may produce less overestimation
for large domains, for which the inner ellipsoid bound
is empty. However, a decrease in the initial domain size
leads to a rapid improvement of the ellipsoidal enclosures,
which is mainly due to the fact that the wrapping effect
(Jaulin et al., 2001) of interval analysis becomes less
important for mappings that are close to a linear one (for
sufficiently small domains) if the regions of interest are
described by ellipsoids and not naively by boxes. It should
be pointed out that this quality improvement is indicated
directly by parameters ρ becoming sufficiently close to
zero, while such a quantification is not directly possible in
a classical interval extension of (35).

For small domains, the ellipsoidal evaluation then
directly maps an ellipsoid to an ellipsoid, while the
interval counterpart inevitably becomes more pessimistic
due to the wrapping effect. Note that the change of
coordinates indicated in Fig. 1 would allow reducing
overestimation in the interval case by implementing affine
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Table 2. Comparison of the ellipsoidal enclosure technique
with an interval-based counterpart for the Dubins car
model (35) with different domain size parameters R.

R ρ
vol

{
EO

x,k+1

}

vol
{
EI

x,k+1

} vol
{
EO

x,k+1

}

vol{Ex,k}
vol{[xk+1]}

vol{[xk]}

2−2 1.479 − 37.7316 9.3584

2−3 0.350 18.5111 3.3160 3.7770

2−4 0.085 1.9698 1.3835 2.1466

2−5 0.021 1.1808 1.0857 1.5218

2−6 5.15 ·10−3 1.0421 1.0208 1.2479

2−7 1.28 ·10−3 1.0103 1.0052 1.1207

2−8 3.20 ·10−4 1.0026 1.0013 1.0596

2−9 7.98 ·10−5 1.0007 1.0004 1.0296

2−10 2.00 ·10−5 1.0002 1.0001 1.0148

arithmetic-like enclosures (Krasnochtanova et al., 2010).

4.2.2. Restricted planar three-body problem. The
second example in this subsection is the restricted planar
three-body problem in which a body with negligible mass
m3 = 0 moves under the influence of the gravitational
fields of the two other masses m1 and m2. After
normalizing the gravitational constant to the value of
one, this system is described by a set of continuous-time
equations of motion that represent the accelerations

v̇(1) = fv,1

(
v(1),v(2),v(3)

)

=−m2
v(1)− v(2)∥∥v(2)− v(1)

∥∥3 −m3
v(1)− v(3)∥∥v(3)− v(1)

∥∥3 ,

v̇(2) = fv,2

(
v(1),v(2),v(3)

)

=−m1
v(2)− v(1)∥∥v(2)− v(1)

∥∥3 −m3
v(2)− v(3)∥∥(v(3)− v(2)

∥∥3 ,

v̇(3) = fv,3

(
v(1),v(2),v(3)

)

=−m1
v(3)− v(1)∥∥v(3)− v(1)

∥∥3 −m2
v(3)− v(2)∥∥v(3)− v(2)

∥∥3 ,

(38)

as well as the velocities

χ̇χχ (i) = v(i). (39)

Here, χχχ (i) ∈ R
2 and v(i) ∈ R

2 describe the position
and velocity vectors, respectively, of each mass i ∈
{1,2,3} according to Krishnaswami and Senapati (2019)
as well as Musielak and Quarles (2014). For the numerical
evaluation, this system model is discretized in time with
the help of a symplectic Euler method (Hairer et al., 2002)

with the step size T resulting in

v(i)k+1 = v(i)k +T fv,i

(
v(1)k ,v(2)k ,v(3)k

)
,

χχχ(i)
k+1 = χχχ (i)

k +Tv(i)k+1 , i ∈ {1,2,3},
(40)

which together represent the nonlinear function

xk+1 =
[
χχχT

k+1 vT
k+1

]T
= f(xk) , (41)

in which all positions and velocities are summarized in the
stacked vectors

χχχk =
[(

χχχ(1)
k

)T (
χχχ(2)

k

)T (
χχχ(3)

k

)T ]T
,

vk =
[(

v(1)k

)T (
v(2)k

)T (
v(3)k

)T ]T
,

(42)

with xk =
[
χχχT

k vT
k

]T ∈ R
12. For the application of

the proposed evaluation technique, the initial ellipsoid is
defined by the midpoint vector

μμμx,k =
[
−αr 0 β r 0 r

2
(m1−m2)
m1+m2

√
3

2 r μμμT
v,k

]T
,

μμμv,k =
[
0.1 −0.1 −0.1 0.1 −0.1 −0.1

]T
,

(43)

with the initial distance r = 100 between the masses
m1 = 10 and m2 = 1 with

α =
m2

m1 +m2
, β =

m1

m1 +m2
.

The point μμμx,k corresponds to one of the Lagrangian
points of the three-body system considered. Moreover,
uncertainty is accounted for by the diagonal ellipsoid
shape matrix

Cx,k = R2 ·(diag
([

μ2
x,1,k . . . μ2

x,12,k

])
+ 10−8I

)
, (44)

whose entries depend on the squared entries of the
midpoint vector with the parameter R > 0. The additive
term 10−8I ensures small uncertainty in the positions that
are zero in the midpoint vector μμμx,k. As for the Dubins car
example, the alternative interval evaluation makes use of
a tight axis-aligned box containing this ellipsoid.

The results of the evaluation are summarized in
Table 3. They do not only confirm the superiority of
the ellipsoidal enclosure technique in analogy to the
previous example, but also indicate that the naive interval
evaluation of the model (41) leads to a certain amount of
pessimism if multiple dependencies on common interval
arguments are not treated specifically, even for very
small parameters R. However, this special treatment is
not necessary for the ellipsoidal approach, because the
centered form evaluation of the parameter ρ according
to (25)–(26) possesses this property inherently.
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Table 3. Comparison of the ellipsoidal enclosure technique with
an interval-based counterpart for the three-mass sys-
tem (41) with different domain size parameters R.

R ρ
vol

{
EO

x,k+1

}

vol
{
EI

x,k+1

} vol
{
EO

x,k+1

}

vol{Ex,k}
vol{[xk+1]}

vol{[xk]}

2−2 1.519 − 6.514 ·104 1.167 ·106

2−3 0.197 117.51 8.5689 1.139 ·106

2−4 0.057 3.8836 1.9333 1.133 ·106

2−5 0.023 1.7043 1.3016 1.167 ·106

2−6 9.94 ·10−3 1.2694 1.1260 1.131 ·106

2−7 4.72 ·10−3 1.1197 1.0581 1.131 ·106

2−8 2.30 ·10−3 1.0567 1.0279 1.131 ·106

2−9 1.14 ·10−4 1.0276 1.0137 1.131 ·106

2−10 5.63 ·10−4 1.0136 1.0068 1.131 ·106

Remark 5. Both the system models (35) and (41) are
volume-preserving maps. Therefore, the ratio between
the volume of the initial and predicted domains represents
a measure for the arising overestimation in both the
ellipsoidal and interval-based function evaluations. The
preservation of the volume, regardless of the chosen step
size T , can be verified by means of symbolic formula
manipulation which proves that the determinants of the
Jacobians of both functions f in (35) and (41) with respect
to their input arguments are equal to one.

5. Application 2: Forecasting confidence
ellipsoids

If uncertain parameters and state variables are represented
in terms of stochastic probability distributions, they are
often assumed to be normally distributed. As is well
known from the design of Kalman filters (Kalman, 1960;
Stengel, 1994), the assumption of a normal distribution
of the resulting variables (both after state prediction and
measurement-based innovation) is only preserved if the
system models are linear in the variables to be estimated
and if process and measurement noises influence the
system in an additive way. If nonlinearities arise, Taylor
linearization-based system approximations are often used
to implement the so-called extended Kalman filter (EKF),
which is based on the system’s Jacobian at the latest
estimate for the expectation of the probability density.

Therefore, this section proposes to use the ellipsoidal
enclosure approach as a computationally cheap method
to verify the admissibility of the aforementioned
approximation of system models by a first-order Taylor
linearization. If this is the case, the parameter ρ computed
by means of Algorithm 1 is sufficiently close to zero
so that the outer and inner ellipsoidal enclosures get
close to the forecasted confidence bound that can be

determined with the help of an EKF-based approximation
in the prediction stage. In addition to forecasting the
covariance ellipsoid, also further ellipsoidal level sets
of the probability distribution can easily be investigated
which correspond to a specific percentage of expected
observations. For further approaches using uncertainty
modeling by means of the so-called clouds, which are
alternatively applicable to forecasting confidence bounds,
the reader is referred to the technical report by Neumaier
et al. (2007).

To make the proposed ellipsoidal enclosure approach
applicable to the task of forecasting confidence ellipsoids,
assume that the discrete-time one-step prediction of an
uncertain state vector xk follows the state equations

x′k+1 = a
(
x′k,wk

)
, (45)

where wk is a stochastically distributed noise process. For
the sake of compact notation, define further the augmented

state vectors xk =
[
x′Tk wT

k

]T
and xk+1 =

[
x′Tk+1 wT

k

]T

so that (45) turns into

xk+1 =

[
a
(
x′k,wk

)
wk

]
=: f(xk) , xk ∈ R

n. (46)

The theoretically exact solution of this state
prediction step according to Eqn. (46), where xk is
characterized by its probability density pk (xk), is given
by the evaluation of the multidimensional convolution
integral (Papoulis, 1965; Rauh et al., 2009)

pk+1 (xk+1) =

∫

Rn

pk (xk) ·δ (xk+1 − f(xk))dxk, (47)

where δ (·) is a multi-variate Dirac delta distribution.
The corresponding integration needs to be carried out
with care so that the support of the probability density
pk+1 (xk+1) is restricted to the domain on which xk+1 is
well defined.

Note that the predicted density pk+1 (xk+1) usually
cannot be represented in closed analytic form if the system
model under consideration is nonlinear. Then, starting
with a Gaussian approximation of the prior knowledge
xk ∼N (μμμk,Ck), the predicted expectation and covariance
are commonly approximated in terms of the EKF solution
with

μμμk+1 = f(μμμk) , (48)

which is identical to the mapping of the ellipsoid center in
the proposed approach, and

Ck+1 = Ak ·Ck ·AT
k , (49)

respectively. In (49), Ak = ∂ f
∂xk

(μμμk) is the Jacobian of
the model (46) evaluated at the mean μμμk of the normally
distributed approximation of the prior probability density.
If the only information of interest is the probability
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density pk+1
(
x′k+1

)
for a subspace of the augmented state

vector xk+1, a marginalization of the combined state and
disturbance density is performed by a projection onto the
space x′k+1.

5.1. Illustrating example. To visualize the
computational stages for forecasting confidence regions,
consider the system model

xk+1 =

[
xk+1
wk

]
=

[
2xk − 0.5x3

k +wk

wk

]
, (50)

where the prior knowledge of xk and wk is assumed to be
given by a Gaussian probability distribution with μμμk = 0
and Ck = R2 · I, R > 0.

Figure 4 shows the result of predicting the
corresponding covariance bounds as the 1-standard
deviation confidence region according to (45), on the
basis of 2.5 ·107 random sampling points. Obviously, the
mapping of all samples lying within the prior confidence
ellipse (Fig. 4(a)) as well as that of all random samples
(Fig. 4(b)) lead to distributions that deviate significantly
from Gaussian densities. This effect can be detected easily
if the new ellipsoidal enclosure approach is employed
to forecast the inner and outer bounds of the covariance
ellipse. Those ellipses are defined in such a way that
the inequality (for a table of the probabilities for specific
confidence levels of multi-variate normal distributions and
their efficient computation, the reader is referred to Wang
et al. (2015))

pr
(
xk+1|xk+1 ∈EI)≤ 0.3935 ≤ pr

(
xk+1|xk+1 ∈EO)

(51)
holds, where pr(·) denotes the cumulative probability over
the specified domains.

After a marginalization of the Monte-Carlo sampling
(retaining the first vector component of (50), where the
true covariance bound then results in a percentage of
68.27%), the comparison of the inner and outer ellipsoid
bounds with the EKF-based approximation clearly shows
how the proposed approach can be used to detect that the
EKF approximation is not reliable in this case (Fig. 4(c)).
Note that this approximation is even independent of the
nonlinearity in (50) due to the specific choice of the
prior mean μμμk. As a countermeasure, nonlinear filtering
techniques and probability density splitting approaches
such as those of the PDSME (cf. Hanebeck et al.,
2003; Rauh et al., 2009) could be used. From an
interpretation point of view, the comparison of inner and
outer ellipsoidal enclosures as a quality measure for the
EKF-based approximation is much more intuitive than the
Kullback–Leibler distance criterion published by Rauh
et al. (2009).

Table 4 provides an overview of the quality increase
of the EKF-based approximation for reducing ball
diameters R.

Table 4. Ellipsoidal enclosures for the 1-standard deviation con-
fidence interval of xk+1 in comparison with the EKF-
based forecast in terms of the percentages of included
sampling points.

Ellipsoidal enclosures

R EI EO EKF

20 26.96% 98.80% 86.34%

2−1 61.96% 82.02% 72.96%

2−2 66.79% 71.43% 69.16%

2−4 68.18% 68.46% 68.32%

2−6 68.28% 68.30% 68.29%

2−8 68.28% 68.28% 68.28%

5.2. Lithium-ion battery model. As a second
nonacademic scenario, consider the electric equivalent
circuit model for the dynamics of charging and
discharging of Lithium-ion batteries represented by Fig. 5.
This model can be extended according to Rauh et al.
(2013) and Reuter et al. (2016) to perform a real-time
capable estimation of aging parameters which represent
(both reversible and irreversible) capacity loss, an increase
in the internal battery resistance and changes in the
time constants with respect to calendar life, cycling, and
temperature effects.

Here, we restrict ourselves to a nominal battery
model, representing the state of charge σ(t) as well
as the voltages vTL(t) and vTS(t) across two RC
networks. Those subnetworks represent the time constants
of electrochemical double layer effects, concentration
polarization as well as electrochemical polarization.
Moreover, the terminal current iT(t) is a known control
input applied to the battery, while the terminal voltage
vT(t) is employed as the measured system output.

Assuming a normalized state of charge σ(t)∈ [0 ; 1],
where σ = 1 corresponds to the fully charged battery and
σ = 0 represents the completely discharged battery, a state
of charge balancing is described by the integral relation

σ̇(t) =− iT(t)
CBat

, (52)

where CBat denotes the nominal capacity.
As described in detail by Chen and Rincon-Mora

(2006), Erdinc et al. (2009) and Rauh et al. (2010), the
open circuit voltage

vOC(σ(t)) = v0 · ev1·σ(t) + v2 + v3σ(t)

+ v4 ·σ2(t)+ v5σ3(t).
(53)

is a function of the state of charge σ(t). In addition,
Ohmic voltage drops across the series resistance

RS(t) = RSa · eRSb·σ(t) +RSc (54)
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(a) Comparison of the inner and outer bounds of the covari-
ance ellipsoid with the sampling points from the interior of the
prior covariance ellipsoid.

(b) Comparison of the inner and outer bounds of the covari-
ance ellipsoid with all sampling points.

(c) Ellipsoidal enclosures for the 1-standard deviation confi-
dence interval of xk+1 in comparison with the true and EKF-
based probability densities.

Fig. 4. Simulation results for the example in Section 5.1.

and the aforementioned polarization effects (cf. Chen
and Rincon-Mora, 2006; Erdinc et al., 2009) lead to the
expression

vT(t) = vOC(t)− iT(t) ·RS(t)− vTS(t)− vTL(t) (55)

for the terminal voltage, which can be obtained in a
straightforward manner by means of Kirchhoff’s voltage
law.

Here, the electrochemical voltage drops over the
previously mentioned RC subnetworks account for
processes with short and large time constants (TS and
TL, respectively), which may differ over several orders of
magnitude. They are modeled by the ordinary differential
equations

v̇TS(t) =
−vTS(t)

CTS(t) ·RTS(t)
+

iT(t)
CTS(t)

(56)

and

v̇TL(t) =
−vTL(t)

CTL(t) ·RTL(t)
+

iT(t)
CTL(t)

, (57)

with the state of charge dependent parameters

RTS(t) = RTSa · eRTSb·σ(t) +RTSc, (58)

CTS(t) =CTSa · eCTSb·σ(t) +CTSc, (59)

RTL(t) = RTLa · eRTLb·σ(t) +RTLc, (60)

CTL(t) =CTLa · eCTLb·σ(t) +CTLc. (61)

For the following numerical evaluation of this model,
we make use of the experimental identification results of
these parameters for a battery with the nominal capacity
CBat = 3100mAh that were published by Reuter et al.
(2016). After the definition of the state vector

x(t) := [σ(t) vTS(t) vTL(t)]
T , (62)

the ordinary differential equation model

ẋ(t) = f(x(t), iT(t)), (63)

which comprises the individual state equations (52), (56),
and (57), is discretized by an explicit Euler method
with the step size T = 1s for the terminal current iT =
1A. In addition, this algebraic model is augmented by
the terminal voltage vT(tk+1), so that a nonlinear model
according to (46) with n= 4 is obtained. For the numerical
evaluation, we choose

μμμk =
[
σ̄ 0.15 0.15 0

]T
, (64)

with the purely diagonal prior covariance matrix

Ck =

⎡
⎢⎢⎣

1 ·10−4 0 0 0
0 4 ·10−8 0 0
0 0 4 ·10−8 0
0 0 0 1 ·10−6

⎤
⎥⎥⎦ . (65)

In (64), the variable σ̄ is introduced as a degree of
freedom with which the influence of the actual state of
charge of the battery on the system’s nonlinearity can
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�

Fig. 5. Electric equivalent circuit of a battery.

be investigated in greater detail. All evaluations of this
system model refer to 90% confidence intervals under the
assumption of the above-stated normal distribution that is
parameterized by (64) and (65).

Figures 6 and 7 provide a comparison of a
Monte-Carlo sampling-based uncertainty evaluation for
approximately 5 · 104 randomly chosen points as the
depicted point clouds. Here, Fig. 6 has been evaluated
for a relatively low state of charge σ̄ = 0.25, while Fig. 7
describes an almost fully charged battery with σ̄ = 0.95. It
can be noticed that the computed outer ellipsoidal bounds
(dark gray dashed lines) are very wide in the case of
the low state of charge. This property reflects the large
influence of nonlinearities for the corresponding operating
point confirmed by Fig. 8(a), where the EKF-based
90% confidence bound obviously does not include all
of the respective sampling points. This effect reduces
significantly for larger states of charge; see also Figs. 8(b)
and (c). Especially the latter graph highlights that not
only the nonlinear, rapid drop in the open circuit voltage
for low values of the state of charge plays a major
role, but also all nonlinear dependencies within the time
constants of both RC subnetworks need to be taken into
consideration for an accurate state estimation.

Therefore, linearized estimation schemes tend to
underestimate the true system behavior for small values
of σ , while they can be expected to work well for
a medium and sufficiently high state of charge. Due
to the fact that excessively low values of the state of
charge may lead to a rapid degradation of the battery,
they need to be avoided by the application of battery
management systems as well as by state of charge
equalization schemes in battery packs in which numerous
cells are electrically connected in series and parallel.
Therefore, enhanced estimators, ranging from unscented
Kalman filters (Julier et al., 2000) over more general
nonlinear approaches (Hanebeck et al., 2003) to neural
network implementations, should be preferred for small
values of σ̄ . The distinction of whether a linear estimator
suffices for a specific level of uncertainty (measured by
the prior covariance) can directly be deduced from the
absolute values of ρ that are computed with the help of

Algorithm 1 proposed in this paper. This also holds if
strategies for fault tolerant control or fault estimation are
of interest; see the works of Farrera et al. (2020) and
Mejdi et al. (2020) for further reading.

6. Conclusions and future work

In this paper, a computationally inexpensive ellipsoidal
enclosure technique was presented which aims at
enclosing the range of multi-dimensional functions both
from the inside and outside. As illustrated by the
presented examples, this approach not only can be
employed in the frame of a set-valued context aiming at
a verified reachability analysis and simulation, but it also
provides valuable information on the accuracy of linear
(resp. linearized) stochastic estimation schemes. For the
latter aspect, forecasting confidence bounds during the
prediction stage of a discrete-time system model was used
as a representative benchmark in comparison with the
well-known EKF solution.

Future work will employ this function evaluation
technique for the implementation of set-valued
simulation and state estimation procedures for nonlinear
discrete-time as well as continuous-time systems for
which the first developments were published by Rauh
and Jaulin (2021) as well as Rauh et al. (2021a).
Furthermore, it will be combined with the verification
of stability as well as reachability properties. Moreover,
domain splitting and merging techniques (similar to those
employed by SIVIA in the work of Jaulin et al. (2001))
for classical interval representations of uncertainty will
be incorporated for cases in which the pessimism, which
can be forecasted rigorously by the absolute value
of ρ , is unacceptably large. Finally, it is desired to
generalize this approach to other set representations such
as parallelepipeds.
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