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In the present paper, we concentrate on basic concepts connected with the theory of queueing systems with random volume
customers and a sectorized unlimited memory buffer. In such systems, the arriving customers are additionally characterized
by a non-negative random volume vector. The vector’s indications can be understood as the sizes of portions of information
of a different type that are located in the sectors of memory space of the system during customers’ sojourn in it. This
information does not change while a customer is present in the system. After service termination, information immediately
leaves the buffer, releasing its resources. In analyzed models, the service time of a customer is assumed to be dependent on
his volume vector characteristics, which has influence on the total volume vector distribution. We investigate three types
of such queueing systems: the Erlang queueing system, the single-server queueing system with unlimited queue and the
egalitarian processor sharing system. For these models, we obtain a joint distribution function of the total volume vector
in terms of Laplace (or Laplace–Stieltjes) transforms and formulae for steady-state initial mixed moments of the analyzed
random vector, in the case when the memory buffer is composed of two sectors. We also calculate these characteristics for
some practical case in which the service time of a customer is proportional to the customer’s length (understood as the sum
of the volume vector’s indications). Moreover, we present some numerical computations illustrating theoretical results.

Keywords: queueing systems with random volume customers, sectorized memory buffer, total volume vector, Laplace and
Laplace–Stieltjes transforms, multi-variate L’Hospital rule.

1. Introduction

In the classical queueing theory, we usually assume
that arriving customers are homogeneous, which means
that they differ only in arrival times. Their basic
characteristics having influence on system behavior are
the same. For example, each customer’s service time
has the same distribution. This assumption is present
in the analysis of the classical well-known queueing
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systems: M/M/n/m, M/G/n/0, M/G/1/∞ and the
single-server queueing system with processor sharing
M/G/1/∞–EPS (Bocharov et al., 2004; Yashkov and
Yashkova, 2007). For that reason, investigating such
models is less complicated, but on the other hand they
often cannot be applied in real systems.

In many modern telecommunication or com-
puter systems, customers must be considered
non-homogeneous. They may come from different
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sources, have different service time characteristics and
different priorities, need more than one server to service
or own other random requirements, which makes analysis
more complex but lets us efficiently use introduced
models in practice. In recent years, many researchers
from different countries have analyzed analogous models.
Non-homogenity of the arriving customers appeared, e.g.,
in the works of Shun-Chen (1980), Boxma (1989), Guo
and Zipkin (2007), Kim and Ward (2013), Dudin et al.
(2013), or Fiems and De Vuyst (2018).

In some papers, authors assume that customers have
some random volume (size), which is connected with
the fact that they deliver some portion of information
that is integrally stored in a system’s memory buffer
until their service termination. These models (in which
customers can also be treated as non-homogeneous) are
called queueing systems with random volume customers.
Analysis of such queueing systems is rather a novel
direction in applied mathematics.

In real systems, a customer’s service time usually
depends on his volume (the size of the portion of
information he delivers). The purpose of research in
this case is much wider than in the classical one—we
want to obtain not only characteristics of the number of
customers present in the system at fixed time moment t
(or in steady state, if it exists), but also characteristics of
the total volume of customers (the sum of the volumes
of all customers present in the system), as well as
loss characteristics in the case of a memory buffer size
limitation (in this case, an arriving customer is accepted
for service if there are free servers or waiting positions
in the queue and his volume is not too big; otherwise, it
is lost). Analogous models were previously investigated
by the tools of classical queueing theory (Schwarz, 1977;
1987), but the results of simulations showed that the
obtained theoretical results (connected mainly with total
volume characteristics) were not correct because they did
not take into account a possible dependence between a
customer’s volume and his service time.

In the last decades of the twentieth century
first papers appeared that investigated models with
random volume customers using some extended methods
(Alexandrov and Kaz, 1973; Sengupta, 1984). In the last
years many articles have been written that analyze models
with non-homogeneous customers. Their popularity and
number of applications increase mainly because of the
headway in computer science, which is a basic discipline
of their existence. Interesting analyses are presented,
e.g., by Juneja et al. (2012), Naumov et al. (2015;
2016), Naumov and Samuilov (2018), Samouylov et
al. (2015; 2017; 2018), Lisovskaya et al. (2017;
2018), Zhernovyi and Kopytko (2016), Matalytsky and
Zając (2019), Cascone et al. (2010), Rumyantsev and
Morozov (2017), Kerobyan et al. (2018), or Nowak
et al. (2020). It is worth highlighting that, in the cited

papers, the service time of a customer is still often
treated as independent with regard to his volume so the
obtained results can be applied in real systems in a limited
range. In addition, many of the them contain only some
approximate analysis and do not deal with calculating the
total volume distribution function.

In the theory of queueing systems with random
volume customers we should take into account two
important aspects: (i) a possible limitation of the total
volume (a limited memory buffer); (ii) the character of
the dependency between the customer’s volume and his
service time (independent or dependent). Therefore, we
can investigate models with a limited or unlimited total
volume and models in which service time of a customer is
dependent or independent with regard to his volume.

It can be easily proven that models with an unlimited
total volume in which the service time is independent
of the customer’s volume can be analyzed without
extending classical methods. Analogous models, but
with a limited total volume, are usually easy to analyze
because they need just small modifications in classical
ones. Unfortunately, they have little practical importance
(e.g., in computer networks, the service time of a data
packet is dependent on its size measured in bytes, usually
proportionally).

The most interesting (but more complicated) are
models in which these random variables are dependent.
They really need introducing a new (compared with
classical queueing theory) approach and extended
methods. In the case when the total volume is unlimited,
the obtained results let us calculate some approximations
of loss characteristics in analogous practical models with a
limited total volume (Tikhonenko and Ziółkowski, 2018)
whereas models with limited total volume are difficult to
analyze (but the most practical) and exact results have
been obtained only for systems without waiting places
(Tikhonenko, 2005).

Some of investigated models can be successfully
used to calculate required sizes of memory buffers in
the nodes of telecommunication or computer networks
(packets of data are a real representation of random
volume customers). Important results from this research
area (also analyzing systems with non-identical servers
and mechanism of packet dropping) can be found, e.g.,
in the works of Tikhonenko and Kempa (2016) as well as
Tikhonenko et al. (2019).

Moreover, in last years investigations have also
been concentrated on systems in which customers are
characterized by some random vectors. This practical
assumption is connected with the fact that, in real
computer networks, packets are composed of some parts
storing data of different types (text parts, attachment parts,
info parts). We also have an analogous situation if we
analyze multimedia packets that are usually divided into
audio and video parts. The different pieces of information
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are located in different limited sectors of buffer memory
of the system. This approach can be found in technical
reports (patents) by Kim (2002) and Chen et al. (2009),
while the first papers analyzing simple models with
random volume customers and sectorized memory space
are those by Ziółkowski and Tikhonenko (2018) as well
as Tikhonenko and Ziółkowski (2019).

This paper presents an analysis of some queueing
systems with random volume customers and sectorized
unlimited memory space. The rest of the paper is
organized as follows. In Section 2, we introduce
the necessary notation and show the mathematical
background of our investigations. We also present
here some technical theorems known from the theory
of queueing systems with non-homogeneous customers
generalized to the case when customers are characterized
by some random vector. They are used in obtaining
new results in this area of research in the next sections.
In Sections 3–5, we present new results connected
with the analysis of some practical models of queueing
systems of different types working under the above
described policy. In particular, Section 3 contains analysis
of the M/G/n/0 queueing system with sectorized
memory. Section 4 analyzes the single-server queueing
system M/G/1/∞ and Section 5—the M/G/1/∞–EPS
queueing system with egalitarian processor sharing. For
all the models analyzed in these sections, we obtain
general characteristics of the total volume vector in terms
of Laplace or Laplace–Stieltjes transforms and formulae
for steady-state initial moments of analyzed random
vectors in the case when the memory buffer is divided
into two sectors. We also discuss some special practical
cases of the analyzed models and present numerical
computations. Section 6 contains conclusions and final
remarks.

2. Main notation and mathematical
background

We assume that each arriving customer is characterized
by some random vector ζ = (ζ1, . . . , ζk), where k =
= 1, 2, . . .. The components ζi (i = 1, k) are
non-negative random variables (RVs). RVs ζi, i = 1, k
can be practically understood as the sizes of portions of
information of a different type that are located in different
sectors of the memory buffer. Let σi(t) be the sum of
the i-th components of all customers present in the system
at time instant t, i = 1, k. Our purpose is to derive
characteristics of the vector σ(t) = (σ1(t), . . . , σk(t)).

The system behavior can be described in the
following way. If at some time instant t the
customer having volume vector x = (x1, . . . , xk)
is accepted by the system (there are free servers or
waiting positions in the queue), then the number of
customers present in the system at this time instant η(t)

increases by one (η(t) = η(t−) + 1) and the total
volume vector increases by the value of x (σ(t) =
= σ(t−) + x). This means that every indication xi,
i = 1, k, of the vector x is located in the proper
sector of memory buffer and stays there until a customer
ends his service. If τ is the time instant in which the
same customer finishes his service, then the number of
customers decreases by one and the customer releases
memory buffer resources. Thus, then we have that η(τ) =
= η(τ−)−1 and σ(τ) = σ(τ−)−x. The analyzed model
is schematically presented in Fig. 1.

We also assume that the customer’s service time
ξ generally depends on his indication vector ζ. This
dependence is determined by the joint distribution
function (DF):

F (x, t) = F (x1, . . . , xk, t)

= P{ζ1 < x1, . . . , ζk < xk, ξ < t}
= P{ζ < x, ξ < t},

where x = (x1, . . . , xk). Let L(x) = F (x,∞) be the
joint DF of a customer’s components, B(t) = F ( �∞, t)
be the DF of his service time (here �∞ = (∞, . . . ,∞)).
Note that we can consider a marginal DF of separate
component Li(x) = L(∞, . . . , x, . . . ,∞), or a joint DF
of some separate component and service time: Fi(x, t) =
= F (∞, . . . , x, . . . ,∞, t). Evidently, we have B(t) =
= Fi(∞, t) for all i = 1, k.

Let

α(s, q, t) =

∫ ∞

0

. . .

∫ ∞

0

∫ t

0

e−(s,x)−qu dF (x, u)

=

∫ �∞

0

∫ t

0

e−(s,x)−qu dF (x, u),

where 0 = (0, . . . , 0) is a k-dimensional vector, (s,x) =
= s1x1 + . . . + skxk. From the probability sense of the

Fig. 1. Scheme of a queueing system with random volume cus-
tomers and a sectorized unlimited memory buffer.
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DF, we can write

dF (x, u)

= P{ζ1 ∈ [x1;x1 + dx1), . . . , ζk ∈ [xk;xk + dxk),

ξ ∈ [u;u+ du)}
= P{ζ ∈ [x;x+ dx), ξ ∈ [u;u+ du)}.

Denote by α(s, q) = α(s, q,∞) the (k + 1)-th
Laplace–Stieltjes transform (LST) of the functionF (x, t);
ϕ(s) = α(s, 0) is the k-th LST of function L(x), β(q) =
= α(0, q) is the LST of function B(t). Let us introduce
the k-dimensional vector i = (i1, . . . , ik), where il =
= 1, 2, . . .; l = 1, k. Denote by Δ(i, j) the following
differential operator:

Δ(i, j) = (−1)i1+···+ik+j ∂i1+···+ik+j

∂si11 . . . ∂s
ik
k ∂q

j
,

and, analogously,

Δ(i) = (−1)i1+···+ik
∂i1+···+ik

∂si11 . . . ∂s
ik
k

.

Let αij(t) = Δ(i, j)α(s, q, t)|s=0,q=0. Then we have
evidently that aij = αij(∞) is the mixed (i1 + · · ·+ ik +
+j)-th moment of the DF F (x, t) (if exists). Denote by
ϕi the mixed (i1 + . . . + ik)-th moment of the DF L(x)
and by βi the i-th moment of the DF B(t). Introduce the
notation

β1(t) =

∫ t

0

u dB(u), β∗
1(t) =

∫ t

0

[1−B(u)] du.

It is clear that β1 = β1(∞) = β∗
1 (∞).

We assume that the process of customers’ arrivals is
a stationary Poisson process with parameter a.

Assume that the service discipline does not depend
on the indication vector ζ, and the system is empty at
the initial moment t = 0, i.e., σ(0) = 0. Introduce
the notation D(x, t) = P{σ(t) < x} = P{σ1(t) <
< x1, . . . , σk(t) < xk}. Let

δ(s, t) = Ee−(s,σ(t)) =

∫ �∞

0

e−(s,x) dxD(x, t)

be the LST of the function D(x, t) with respect to x.
In this case, t is a parameter. The probability sense of
dxD(x, t) can be written as

dxD(x, t) = P{σ1(t) ∈ [x1;x1 + dx1), . . . ,

σk(t) ∈ [xk;xk + dxk)}.
Denote by δ(s, q) =

∫∞
0 e−qtδ(s, t) dt the Laplace

transform of the function δ(s, t) with respect to t.
Let χ(t) = (χ1(t), . . . , χk(t)) be the indication

vector of a customer that is served at time instant t and
ξ∗(t) be his elapsed service time (the time from service
beginning to the moment t).

Lemma 1. Let Ey(x) = P{χ(t) < x|ξ∗(t) = y} be the
conditional DF of the random vectorχ(t) under condition
ξ∗(t) = y. Then,

dEy(x) = [1−B(y)]−1

∫ ∞

u=y

dF (x, u).

Proof. We have

dEy(x) = P{χ(t) ∈ [x;x+ dx)|ξ∗(t) = y}
= P{ζ ∈ [x;x+ dx)|ξ ≥ y}

=
P{ζ ∈ [x;x+ dx), ξ ≥ y}

P{ξ ≥ y}
= [1−B(y)]−1

∫ ∞

u=y

dF (x, u).

�
Note that function Ey(x) takes the form

Ey(x) =

∫ x

0

dEy(u) = P{ζ < x|ξ ≥ y}

=
P{ζ < x, ξ ≥ y}

P{ξ ≥ y} =
L(x)− F (x, y)

1−B(y)
,

where u = (u1, . . . , uk).

Corollary 1. The LST of the random vector χ(t) has the
form

ey(s) =

∫ �∞

x=0

e−(s,x) dEy(x)

= [1−B(y)]−1

∫ �∞

x=0

e−(s,x)

∫ ∞

u=y

dF (x, u).

3. System M/G/n/0

Consider a queueing system M/G/n/0. Let a be the
parameter of the Poisson arrival process. Denote by η(t)
the number of customers present in the system at time
instant t. Set y = aβ1. Assume that y < ∞. This
condition guarantees (in the classical approach) steady
state existence because, in this system, we have a limited
number of servers and no waiting places in the queue,
and all customers that come to the system when there are
no free servers are lost. Introducing a volume vector for
every customer does not change this situation. We shall
analyze this system in steady state (as t→ ∞). Let η be a
stationary number of customers present in it (η(t) ⇒ η in
the sense of a weak convergence).

Let

Pi(t, y1, . . . , yi) dy1 . . . dyi
= P{η(t) = i, ξ∗1 ∈ [y1; y1 + dy1),

. . . , ξ∗i (t) ∈ [yi; yi + dyi)},
where ξ∗j (t) is the elapsed service time of the j-th
customer, j = 1, 2, . . . , i. Write P0(t)= P{η(t) = 0}
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as the probability that the system is empty at time instant
t. As t→ ∞, we obtain

pi(y1, . . . , yi) = lim
t→∞Pi(t, y1, . . . , yi),

p0 = lim
t→∞P0(t).

From the classical queueing theory (Bocharov et al.,
2004), we have

pi(y1, . . . , yi) =
ai

i!
p0

i∏
j=1

[1−B(yj)], (1)

where p0 =
[∑n

i=0 y
i/i!

]−1
.

From the existence of steady state (when y < ∞) it
follows that σ(t) ⇒ σ in the sense of weak convergence,
where the distribution of σ does not depend on σ(0).

Theorem 1. For the M/G/n/0 queueing system in
steady state, the LST of the joint DF of vector σ com-
ponents has the form

δ(s) =

∑n
i=0

[−aα′
q(s, q)|q=0

]i
/i!∑n

i=0 y
i/i!

. (2)

Proof. Introduce the notation

dDi(x, y1, . . . , yi)

= P{σ ∈ [x;x+ dx)|η = i, ξ∗1 = y1, . . . , ξ
∗
i = yi}.

This is the conditional probability that the k-th component
of vector σ lies in the interval [xk;xk + dxk), k =
= 1, i, under the condition that there are i customers in the
system and their elapsed service times equal y1, . . . , yi,
respectively. Note that, for i ≥ 1, the components of the
indication vector σj = (σj

1, . . . , σ
j
k) of the j-th customer

in the system depend on ξ∗j only (j = 1, i). Then, we have
from Lemma 1 that

P{σj ∈ [x;x + dx)|ξ∗j = yj}

= [1−B(yj)]
−1

∫ ∞

u=yj

dF (x, u).

The LST of the random vector σj , under condition
ξ∗j = yj , has the form (see Corollary 1)

eyj(s) = [1−B(yj)]
−1

∫ �∞

x=0

e−(s,x)

∫ ∞

u=yj

dF (x, u).

It is clear that, for η = i, we have σm =
∑i

j=1 σ
j
m,m =

= 1, k, and random vectors σj are independent under
condition ξ∗1 = y1, . . . , ξ

∗
i = yi. Then the LST of the

function Di(x, y1, . . . , yi) has the form of a product:

δ(s, y1, . . . , yi)

=

∫ �∞

x=0

e−(s,x)dDi(x, y1, . . . , yi)

=
i∏

j=1

eyj(s)

=

i∏
j=1

[1−B(yj)]
−1

∫ �∞

x=0

e−(s,x)

∫ ∞

u=yj

dF (x, u).

Using Lemma 1 again and the relation (1), we obtain

δ(s)

= p0 +

n∑
i=1

∫ ∞

0

. . .

∫ ∞

0

δ(s, y1, . . . , yi)

× pi(y1, . . . , yi) dy1 . . . dyi

=
n∑

i=0

ai

i!
p0

i∏
j=1

∫ �∞

0

e−(s,x)

∫ ∞

0

dyj

∫ ∞

u=yj

dF (x, u),

where
∫ �∞

0

e−(s,x)

∫ ∞

z=0

dz
∫ ∞

u=z

dF (x, u)

=

∫ �∞

x=0

∫ ∞

u=0

e−(s,x) dF (x, u)
∫ u

z=0

dz

=

∫ �∞

x=0

∫ ∞

u=0

ue−(s,x) dF (x, u) = −α′
q(s, q)|q=0,

whence, taking into consideration that p0 =

=
(∑n

i=0 y
i/i!

)−1
, we obtain the statement of the

theorem. �

The formula (2) shows that the character of the
dependence between a customer’s volume vector and
his service time (which is determined by the function
F (x, t)) has substantial influence on steady-state total
volume vector characteristics (e.g., its multidimensional
LST δ(s)) in the M/G/n/0 queueing system. Indeed, in
this relation there is a multidimensional LST α(s, q) of the
function F (x, t). The same is true for queueing models of
a different type (see the formulae (8) and (14)).

Using the relation (2), we can determine mixed
moments (if they exist) of the random vector σ:

δi = Δiδ(s)|s=0, (3)

where i = (i1, . . . , ik), ij determines the order of the
moment with respect to the j-th component of the random
vector σ.

Let, e.g., n = 2. Then we have

δ(s1, s2) =

∑n
i=0

[−aα′
q(s1, s2, q)|q=0

]i
/i!∑n

i=0 y
i/i!

.
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Determine the following moments of random vector
(σ1, σ2):

δ
(1)
1 = Eσ1 = −δ′(s, 0)|s=0,

δ
(2)
1 = Eσ2 = −δ′(0, s)|s=0,

δ
(1)
2 = Eσ2

1 = δ′′(s, 0)|s=0,

δ
(2)
2 = Eσ2

2 = δ′′(0, s)|s=0,

δ11 = E(σ1σ2) =
∂2δ(s1, s2)

∂s1∂s2

∣∣
s1=0,s2=0

.

Let

αijk = E(ζi1ζ
j
2ξ

k)

=

∫ ∞

0

∫ ∞

0

∫ ∞

0

xi1x
j
2t

k dF (x1, x2, t)

be the mixed moment of the (i+j+k)-th order of random
vector (ζ1, ζ2, ξ), i, j, k = 0, 1, . . .. For example, α000 =

= 1, α001 = β1, α020 = ϕ
(2)
2 , etc. Then, we obtain, after

some calculation,

δ
(1)
1 = p0aα101

n−1∑
i=0

yi

i!
,

δ
(2)
1 = p0aα011

n−1∑
i=0

yi

i!
,

δ
(1)
2 = p0a

(
α201

n−1∑
i=0

yi

i!
+ aα2

101

n−2∑
i=0

yi

i!

)
,

δ
(2)
2 = p0a

(
α021

n−1∑
i=0

yi

i!
+ aα2

011

n−2∑
i=0

yi

i!

)
,

δ11 = p0a
[
α111

n∑
i=0

yi−1

(i− 1)!

+ aα101α011

n∑
i=2

yi

(i− 2)!

]
.

If we are interested in a mixed moment with respect
to some (not all) components of σ, we have to take value
0 for all “unnecessary” components of it. Thus, we obtain
a new function δ(s′), where vector s′ consists of the
components of our interest. Further determination of the
moment is carried out analogously using the relation (3).

Note that, if n→ ∞, we obtain from (2) the relation
for the function δ(s) characterizing a steady-state system
M/G/∞:

δ(s) = exp
[−y − aα′

q(s, q)|q=0

]
.

For this system, we obtain, if n = 2

δ(s1, s2) = exp
[−y − aα′

q(s1, s2, q)|q=0

]
,

δ
(1)
1 = aα101, δ

(2)
1 = aα011,

δ
(1)
2 −

(
δ
(1)
1

)2

= aα201, δ
(2)
2 −

(
δ
(2)
1

)2

= aα021,

δ11 = a (α111 + aα101α011) .

Example 1. Consider the system M/G/n/0, where a
is a parameter of the arrival process. Each customer
is characterized by a two-dimensional random volume
vector ζ = (ζ1, ζ2), where RVs ζ1 and ζ2 are
independent and their DFs are denoted by L1(x) and
L2(x), respectively. The RV ζ = ζ1 + ζ2 will be called
a customer’s length. Assume that the service time of the
customer is proportional to his length: ξ = c(ζ1 + ζ2),
c > 0.

Let us determine

α(s, q) = α(s1, s2, q)

=

∫ ∞

x1=0

∫ ∞

x2=0

∫ ∞

t=0

e−s1x1−s2x2−qt dF (x1, x2, t),

where F (x1, x2, t) = P{ζ1 < x1, ζ2 < x2, ξ < t}. In this
case, we can write

α(s1, s2, q) =

∫ ∞

0

∫ ∞

0

e−s1x1−s2x2 dL(x1, x2)

×
∫ ∞

0

e−qt dB(t|ζ1 = x1, ζ2 = x2),

where

B(t|ζ1 = x1, ζ2 = x2)

= P{ξ < t|ζ1 = x1, ζ2 = x2},
L(x1, x2) = P{ζ1 < x1, ζ2 < x2}

= L1(x1)L2(x2).

It is clear that

B(t|ζ1 = x1, ζ2 = x2) =

{
1, t > c(x1 + x2),

0, t ≤ c(x1 + x2).

Hence, we obtain, using the Kronecker delta function,

∫ ∞

0

e−qt dB(t|ζ1 = x1, ζ2 = x2)

=

∫ ∞

0

e−qtδ (t− c(x1 + x2)) dt = e−cq(x1+x2).
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Then we have

α(s1, s2, q) =

∫ ∞

0

e−s1x1−cqx1 dL1(x1)

×
∫ ∞

0

e−s2x2−cqx2 dL2(x2)

= ϕ(1)(s1 + cq)ϕ(2)(s2 + cq), (4)

where ϕ(1)(s), ϕ(2)(s) are the LSTs of the functions
L1(x) and L2(x), respectively. If we substitute
α(s1, s2, q) from (4) to the relation (2), we get

δ(s) = δ(s1, s2)

=
1

n∑
i=0

yi/i!

n∑
i=0

(−1)i

i!

{
ac[ϕ(1)′(s1)ϕ(2)(s2)

+ ϕ(1)(s1)ϕ
(2)′(s2)]

}i

,

where y = ac
(
ϕ
(1)
1 + ϕ

(2)
1

)
. Assume now that the buffer

memory is divided into two sectors of an infinite volume.
The initial part of a customer’s volume ζ1 is placed in
the first sector and the rest ζ2 in the second one. Let
us determine the mean total customer volumes δ(1)1 and

δ
(2)
1 present in the first and second sector, respectively. To

determine δ(1)1 , we first obtain

δ(1)(s) = δ(s, 0)

=

∑n
i=0(−1)i{ac[ϕ(1)′(s)− ϕ

(2)
1 ϕ(1)(s)]}i/i!∑n

i=0 y
i/i!

,

where ϕ(2)
1 is the first moment of DF L2(x). Finally, we

have

δ
(1)
1 = −δ(1)′(0)

=

∑n
i=1 acy

i−1(ϕ
(1)
2 + ϕ

(1)
1 ϕ

(2)
1 )/(i− 1)!∑n

i=0 y
i/i!

.

Analogously, we obtain

δ
(2)
1 = −δ(2)′(0)

=

∑n
i=1 acy

i−1(ϕ
(2)
2 + ϕ

(1)
1 ϕ

(2)
1 )/(i− 1)!∑n

i=0 y
i/i!

.

Now, let us determine the mixed moment δ11 of the
order 1 + 1: ∂2δ(s1,s2)

∂s1∂s2
|s1=0,s2=0, whence we have

δ11 = p0ac
n∑

i=1

1

(i − 1)!
yi−2[(i− 1)ac

× (ϕ
(1)
2 +A)(ϕ

(2)
2 +A) + y(B + C)],

where p0 = (
∑n

i=0 y
i/i!)−1, A = ϕ

(1)
1 ϕ

(2)
1 , B =

= ϕ
(1)
2 ϕ

(2)
1 , C = ϕ

(1)
1 ϕ

(2)
2 .

Consider now some special case of the investigated
model in which ζ1, ζ2 are exponentially distributed with
parameters f and g, respectively. We easily obtain the
following formulae:

δ
(1)
1 =

ac

2f

(
2

f
+

1

g

)(
2− y2p0

)
,

δ
(2)
1 =

ac

2g

(
2

g
+

1

f

)(
2− y2p0

)
,

δ11 =
acp0
fg

[
2(1 + y)

(
1

f
+

1

g

)

+ ac

(
2

f
+

1

g

)(
2

g
+

1

f

)]
,

where

p0 =
2

2 + y + y2
, y = ac

(
1

f
+

1

g

)
.

In Tables 1 and 2 we present results of some
numerical computations. Table 1 shows results for the
following fixed parameters: f = 1, g = 2, c = 1,
whereas the value of a is increasing from 1 to 10. In

Table 1. Total volume vector characteristics for the M/G/2/0
system, f = 1, g = 2, c = 1.

a y δ
(1)
1 δ

(2)
1 δ11

1 1.5 1.5217 0.6087 2.1739
2 3.0 1.7857 0.7143 3.1429
3 4.5 1.8224 0.7290 3.5327
4 6.0 1.8182 0.7273 3.7273
5 7.5 1.8061 0.7224 3.8403
6 9.0 1.7935 0.7174 3.9130
7 10.5 1.7821 0.7128 3.9633
8 12.0 1.7722 0.7089 4.0000
9 13.5 1.7636 0.7054 4.0278

10 15.0 1.7562 0.7025 4.0496
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Fig. 2. Total volume vector characteristics for the M/G/2/0
system, f = 1, g = 2, c = 1.
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this case we can observe the influence of system loading
on the total volume vector characteristics δ(1)1 , δ(2)1 and
δ11. In Table 2, we present results of calculations in the
case when f = 1, c = 1, a = 1 and this time the value
of g is changing. Here we can see the influence of the
mean value of second volume vector indication (1/g) on
the same characteristics. In both situations the calculated
characteristics increase together with the increasing value
of system loading y, but the system remains stable because
we have here a limited number of servers and, in the
case when the value of y becomes bigger, we have many
customer losses and the system cannot be overloaded. We
can see this fact also in Figs. 2 and 3.

�

Table 2. Total volume vector characteristics for the M/G/2/0
system, f = 1, c = 1, a = 1.

g y δ
(1)
1 δ

(2)
1 δ11

0.1 11.00 1.1642 20.3731 77.0149
0.2 6.00 1.2727 10.0000 36.5909
0.3 4.33 1.3451 6.4454 23.1268
0.4 3.50 1.3944 4.6479 16.4789
0.5 3.00 1.4286 3.5714 12.5714
0.6 2.67 1.4528 2.8616 10.0314
0.7 2.43 1.4704 2.3631 8.2665
0.8 2.25 1.4832 1.9966 6.9799
0.9 2.11 1.4928 1.7179 6.0070
1.0 2.00 1.5000 1.5000 5.2500
1.1 1.91 1.5055 1.3258 4.6469
1.2 1.83 1.5097 1.1840 4.1570
1.3 1.77 1.5129 1.0668 3.7525
1.4 1.71 1.5153 0.9684 3.4137
1.5 1.67 1.5172 0.8851 3.1264
1.6 1.62 1.5187 0.8136 2.8803
1.7 1.59 1.5198 0.7518 2.6674
1.8 1.56 1.5207 0.6979 2.4816
1.9 1.53 1.5213 0.6506 2.3184
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Fig. 3. Total volume vector characteristics for the M/G/2/0
system, f = 1, c = 1, a = 1.

Example 2. Consider the system M/G/∞ with the
same notation as in Example 1. For this system, we obtain
analogously

δ
(1)
1 = ac(ϕ

(1)
2 + ϕ

(1)
1 ϕ

(2)
1 ),

δ
(2)
1 = ac(ϕ

(2)
2 + ϕ

(1)
1 ϕ

(2)
1 ),

δ11 = ac(ϕ
(1)
2 ϕ

(2)
1 + ϕ

(1)
1 ϕ

(2)
2 )

+ a2c2(ϕ
(1)
1 ϕ

(2)
1 + ϕ

(2)
2 )(ϕ

(1)
1 ϕ

(2)
1 + ϕ

(1)
2 ).

�

4. System M/G/1/∞
Assume that customers arrive to the system with intensity
a. The functions F (x, t), L(x), B(t), D(x, t) and
their transforms α(s, q), ϕ(s), β(q), δ(s, q) have the
same meanings as presented in the earlier sections. We
additionally introduce some new notation: Π(t) is the DF
of the busy period of the system under consideration and
π(q) is its LST.

In the classical queueing theory (Matveev and
Ushakov, 1984), we have the following theorem, which
will be used in our later investigations.

Theorem 2.
(a) The function π(q) is a unique solution of the following
functional equation:

π(q) = β(q + a− aπ(q)),

which is analytical in domain Re q > 0;

(b) If ρ = aβ1 ≤ 1, then π(+0) = Π(∞) = 1, otherwise
π(+0) < 1, Π(∞) < 1;

(c) If ρ ≥ 1, then the first moment of the busy period is
π1 = ∞, otherwise the first two moments can be calcu-
lated as

π1 =
β1

1− ρ
, π2 =

β2
(1− ρ)3

.

Let η(t) be the number of customers present in the
system at time instant t, Pn(t) = P{η(t) = n}, n =
= 0, 1, . . .. Denote by ξ∗(t) the elapsed service time of
a customer. Introduce the following notation for n ≥ 1:

θn(y, t) dy = P{η(t) = n, ξ∗(t) ∈ [y; y + dy)},

ψ(z, q) =

∫ ∞

0

e−qtEzη(t) dt,

ω(z, y, q) =
∂

∂y

∫ ∞

0

e−qtE
[
zη(t)I(ξ∗(t) < y)

]
dt,

χn(q) =

∫ ∞

0

e−qtPn(t) dt,

where I(A) is the indicator function of an event A.
The following statement also takes place in the classical
queueing theory (Matveev and Ushakov, 1984).



Queueing systems with random volume customers . . . 479

Lemma 2.
(a) For the system under consideration, the function
ω(z, y, q) has the form

ω(z, y, q) = [1−B(y)] e−(q+a−az)yω(z, 0, q),

where

ω(z, 0, q)

= (q + a− aπ(q))
−1 a (z − π(q))

1− z−1β(q + a− az)
;

(b) The function χ0(q) has the form

χ0(q) = (q + a− aπ(q))
−1
.

Introduce the notation D(x, t|A) = P{σ < x|A},
whereA is an event. Similar notation will be used also for
other DFs. For the analyzed queueing system we obtain
the following result.

Theorem 3. Function δ(s, q) for the system M/G/1/∞
subject to the zero initial condition (σ(0) = 0) is deter-
mined by the following relation:

δ(s, q)

= (q + a− aπ(q))−1

{
1

+
a [ϕ(s)− π(q)] [ϕ(s)− α (s, q + a− aϕ(s))]

[q + a− aϕ(s)] [ϕ(s)− β (q + a− aϕ(s))]

}
,

where π(q) is determined by Theorem 2.

Proof. If the system is empty at time instant t, we have
σ(t) = 0. If there are customers present in the system,
we obtain, for j-th component of the total volume vector,

σj(t) = σ1
j (t) + σ2

j (t), j = 1, l,

where σ1
j (t) is the value of the j-th component of the

total volume vector of waiting customers at time instant
t and σ2

j (t) is the value of the j-th component of the
customer in service at time instant t. Let D1(x, t) =
= P{σ1(t) < x}, D2(x, t) = P{σ2(t) < x}.

Random vectors σ1(t) =
(
σ1
1(t), . . . , σ

1
l (t)

)
and

σ2(t) =
(
σ2
1(t), . . . , σ

2
l (t)

)
are generally dependent. But,

under the condition of fixed η(t) (η(t) = 1, 2, . . .) and
ξ∗(t) (ξ∗(t) = y) these random vectors are independent,
and we can write

D(x, t|η(t) = n, ξ∗(t) = y)

=

∫ x

0

D1(x− u, t|η(t) = n) duD2(u, t|ξ∗(t) = y),

because the distribution of σ1(t) does not depend on ξ∗(t)
if the number of waiting customers is known, and the

distribution of σ2(t) does not depend on η(t) if the value
of ξ∗(t) is known.

It is clear that total volume vectors of waiting
customers are independent if their number is known.
Hence, we have

D1(x, t|η(t) = n) = L
(n−1)
∗ (x).

Obviously,

D2(x, t|ξ∗(t) = y) = Ey(x),

where Ey(x) can be determined from Lemma 1. Finally,
we obtain

D(x, t|η(t) = n, ξ∗(t) = y) = Ey ∗ L
(n−1)
∗ (x).

Then, on the basis of the total probability theorem, we can
write

D(x, t) = P0(t)+

∞∑
n=1

∫ t

0

θn(y, t)
[
Ey ∗ L

(n−1)
∗ (x)

]
dy.

Passing to the LST with respect to x, we obtain

δ(s, q) = P0(t) +

∞∑
n=1

(ϕ(s))
n−1

∫ t

0

θn(y, t)ey(s) dy,

(5)
where ey(s) is determined from Corollary 1. Passing in
(5) to the Laplace transform with respect to t, we get

δ(s, q)

= χ0(q) +

∞∑
n=1

(ϕ(s))
n−1

∫ ∞

0

ey(s) dy

×
∫ ∞

y

e−qtθ(y, t) dt (6)

= χ0(q) +

∫ ∞

0

ω (ϕ(s), y, q)
ey(s)

ϕ(s)
dy.

Taking into consideration Lemma 2, we obtain

ω (ϕ(s), y, q)

= [1− B(y)] e−(q+a−aϕ(s)y

× (q + a− aπ(q))
−1 a (ϕ(s)− π(q))

1− z−1β (q + a− aϕ(s))
.

If we substitute this result to the relation (6), we get

δ(s, q) =
1

q + a− aπ(q)

+
a [ϕ(s)− π(q)]

[q + a− aπ(q)] [ϕ(s)− β(q + a− aϕ(s)]

×
∫ ∞

0

[1−B(y)] e−(q+a−aϕ(s))yey(s) dy.

(7)
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It is clear that dF (x, u) = dB(u|ζ = x) dL(x).
Then, from Corollary 1, we have

∫ ∞

0

[1−B(y)] e−(q+a−aϕ(s))yey(s)dy

=

∫ �∞

x=0

e−(s,x)dL(x)
∫ ∞

u=0

dB(u|ζ = x)

×
∫ u

y=0

e−(q+a−aϕ(s))y dy

=
ϕ(s)− α (s, q + a− aϕ(s))

q + a− aϕ(s)
.

If we substitute this result to the relation (7), we obtain the
statement of the theorem. �

Corollary 2. Let ρ = aβ1 < 1. Then, the limit
δ(s, t) → δ(s) exists as t → ∞, where

δ(s) =

∫ �∞

0

e−(s,x) dD(x);

D(x) = P{σ < x} denotes here the DF of the total ran-
dom indication vector when t → ∞ and the function δ(s)
is determined by the following relation:

δ(s) = (1− ρ)

[
1 +

ϕ(s)− α (s, a− aϕ(s))

β (a− aϕ(s))− ϕ(s)

]
. (8)

Proof. If ρ < 1, processes σ(t) and η(t) are
regenerative with points of regeneration coinciding with
moments of busy period termination. The regeneration
cycle is a sum of two independent RVs: the time to a next
customer’s arrival (this RV has an exponential distribution
with parameter a) and a busy period. It follows from the
theory of regenerative processes (Asmussen, 2003) that,
in this case, the limit σ(t) ⇒ σ exists in the sense of
weak convergence as t → ∞ and does not depend on
the initial condition (the distribution of σ(0)). From this
existence, on the basis of the connection between the LST
and the Laplace transform, the existence of the limit below
follows:

δ(s) = Ee−(s,δ) = lim
q→0

qδ(s, q).

Calculation of this limit yields (8). �

Now, we can obtain steady-state initial moments of
the total volume if l = 2, i.e., ζ = (ζ1, ζ2) and

δ(s1, s2) = (1− ρ)

[
1

+
ϕ(s1, s2)− α (s1, s2, a− aϕ(s1, s2))

β (a− aϕ(s1, s2))− ϕ(s1, s2)

]
.

Then we have

δ
(1)
1 = aα101 +

a2β2ϕ
(1)
1

2(1 − ρ)
,

δ
(2)
1 = aα011 +

a2β2ϕ
(2)
1

2(1 − ρ)
,

δ
(1)
2 = a

(
α201 + aϕ

(1)
1 α102

)

+
a3β2ϕ

(1)
1 α101

1− ρ
+
a2β2ϕ

(1)
2

2(1− ρ)

+
a3β3

(
ϕ
(1)
1

)2

3(1− ρ)
+
a4β2

2

(
ϕ
(1)
1

)2

2(1− ρ)2
,

δ
(2)
2 = a

(
α021 + aϕ

(2)
1 α012

)

+
a3β2ϕ

(2)
1 α011

1− ρ
+
a2β2ϕ

(2)
2

2(1− ρ)

+
a3β3

(
ϕ
(2)
1

)2

3(1− ρ)
+
a4β2

2

(
ϕ
(2)
1

)2

2(1− ρ)2
,

δ11 = aα111 +
a2

2

(
α012ϕ

(1)
1 + α102ϕ

(2)
1

)

+
a2β2ϕ11 + a3β2

(
α011ϕ

(1)
1 + α101ϕ

(2)
1

)

2(1− ρ)

+
a3β3ϕ

(1)
1 ϕ

(2)
1

3(1− ρ)
+
a4β2

2ϕ
(1)
1 ϕ

(2)
1

2(1− ρ)2
,

where ϕ11 = α110 is the mixed moment of the (1 + 1)-th
order of a random vector (ζ1, ζ2)

To calculate δ11, we used L’Hospital’s rule for
evaluation of indeterminate forms of the function of
many variables (Ivlev, 2002; 2003) and the Mathematica
environment.

Example 3. Consider the system M/G/1/∞,
where a is a parameter of the entrance flow. Each
customer is characterized by a two-dimensional random
volume vector ζ = (ζ1, ζ2), where RVs ζ1 and
ζ2 are independent and their DFs are denoted by
L1(x) and L2(x), respectively. The RV ζ =
= ζ1 + ζ2 will be called a customer’s length. Assume
that the service time of the customer is proportional to his
length: ξ = c(ζ1 + ζ2), c > 0. Let ϕ(1)(s), ϕ(2)(s) be
the LSTs of the RVs ζ1 and ζ2, respectively.

Then we have

α(s, q) = α(s1, s2, q) = ϕ(1)(s1 + cq)ϕ(2)(s2 + cq),

β(q) = ϕ(1)(cq)ϕ(2)(cq),

ϕ(s) = ϕ(s1, s2) = ϕ(1)(s1)ϕ
(2)(s2).
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In this case the relation (9) takes the form

δ(s) = δ(s1, s2) = (1 − ρ)
[
1

+
ϕ(1)(s1)ϕ

(2)(s2)−ϕ(1)(s1 + cq)ϕ(2)(s2 + cq)

ϕ(1)(cq)ϕ(2)(cq)−ϕ(1)(s1)ϕ(2)(s2)

]
,

where q = a
[
1− ϕ(1)(s1)ϕ

(2)(s2)
]
.

Let σ = (σ1, σ2). Let us also calculate δ
(1)
1 =

= Eσ1, δ
(2)
1 = Eσ2 and the mixed moment δ11 =

= E(σ1σ2). Evidently, we can use general formulae,
where

α101 = c
(
ϕ
(1)
2 + ϕ

(1)
1 ϕ

(2)
1

)
,

α011 = c
(
ϕ
(2)
2 + ϕ

(1)
1 ϕ

(2)
1

)
,

α201 = c
(
ϕ
(1)
3 + ϕ

(1)
2 ϕ

(2)
1

)
,

α021 = c
(
ϕ
(2)
3 + ϕ

(1)
1 ϕ

(2)
2

)
,

α111 = c
(
ϕ
(1)
2 ϕ

(2)
1 + ϕ

(1)
1 ϕ

(2)
2

)
,

α102 = c2
(
ϕ
(1)
3 + 2ϕ

(1)
2 ϕ

(2)
1 + ϕ

(1)
1 ϕ

(2)
2

)
,

α012 = c2
(
ϕ
(2)
3 + 2ϕ

(2)
2 ϕ

(1)
1 + ϕ

(2)
1 ϕ

(1)
2

)
.

Now we consider a special case of this model.
Assume that ζ1 and ζ2 are exponentially distributed with
parameters f and g, respectively. Then, we obtain

α101 =
c

f

(
2

f
+

1

g

)
, α011 =

c

g

(
2

g
+

1

f

)
,

α201 =
2c

f2

(
3

f
+

1

g

)
, α021 =

2c

g2

(
3

g
+

1

f

)
,

α111 =
2c

fg

(
1

f
+

1

g

)
,

α102 =
2c2

f

(
3

f2
+

2

fg
+

1

g2

)
,

α012 =
2c2

g

(
3

g2
+

2

fg
+

1

f2

)
.

�
In addition, in this case we can also calculate, the Pearson
correlation coefficient

R =
δ11 − δ

(1)
1 δ

(2)
1

s1s2
,

where

s1 =

√
δ
(1)
2 −

(
δ
(1)
1

)2

,

s2 =

√
δ
(2)
2 −

(
δ
(2)
1

)2

.

In Tables 3 and 4 we present numerical results of
our analyses. Table 3 shows computations for fixed
parameters f = 1, g = 2, c = 1; the value of a is
changing. In Table 4 we present results for parameters
a = 0.1, c = 1, g = 2, and a changing value of f . Results
are also presented in Figs. 4 and 5. It can be easily noticed
that increasing the values of a or 1/f has influence on
the total volume vector characteristics. If the value of
ρ is close to one, then the system becomes overloaded
and the calculated characteristics are strongly increasing.
Analyzing the values of the Pearson coefficientR, we also
see that sectors of the total volume vector are dependent,
because the customer’s service time depends on both the
volume vector indications and the mean values of the
total volume vector indications are also dependent on the
customer’s service time.

Remark 1. Theorem 3 can be generalized to the case of
bulk arrivals of customers (customers arrive to the system
in groups forming a Poisson entrance flow with parameter
a). Analogously to the proof of the theorem, calculations

Table 3. Total volume vector characteristics for the M/G/1/∞
system, f = 1, g = 2, c = 1.

a δ
(1)
1 δ

(2)
1 δ11 R

0.05 0.1297 0.0524 0.0869 0.5159
0.10 0.2706 0.1103 0.2026 0.5262
0.15 0.4258 0.1754 0.3570 0.5373
0.20 0.6000 0.2500 0.5664 0.5506
0.25 0.8000 0.3375 0.8572 0.5664
0.30 1.0364 0.4432 1.2755 0.5856
0.35 1.3263 0.5757 1.9077 0.6096
0.40 1.7000 0.7500 2.9300 0.6403
0.45 2.2154 0.9952 4.7476 0.6797
0.50 3.0000 1.3750 8.4687 0.7306
0.55 4.4000 2.0625 18.0729 0.7955
0.60 7.8000 3.7515 57.5550 0.8755
0.65 31.2000 15.4375 955.7722 0.9679

���� ���� ���� ���� ���� ���� ����

����

����

����

����

	���

�����

�����

�����

�����

�	���

�����


��
������ 
��
������ 
��
���� �

�


�

�
��
�
�
��
�
�
��
�
�

�
��
�
�
�
��
�

�
��
�

�
�
�

Fig. 4. Total volume vector characteristics for the M/G/1/∞
system, f = 1, g = 2, c = 1.
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lead to the following result:

δ(s, q) = (q + a− aπ(q))−1

×
{
1 +

a [G (ϕ(s))− π(q)]

[q + a− aG (ϕ(s))]

× [ϕ(s)− α (s, q + a− aG (ϕ(s)))]

[ϕ(s)− β (q + a− aG (ϕ(s)))]

}
,

where G(z) =
∑∞

k=0 qkz
k is the generating function of

the number of customers in the arriving group.

Table 4. Total volume vector characteristics for the M/G/1/∞
system, a = 0.1, c = 1, g = 2.

f δ
(1)
1 δ

(2)
1 δ11 R

0.15 20.5229 1.2309 55.6724 0.7619
0.25 4.7273 0.4159 5.7918 0.6412
0.35 2.1988 0.2669 2.1306 0.5999
0.45 1.2911 0.2044 1.1194 0.5762
0.55 0.8577 0.1700 0.6991 0.5602
0.65 0.6157 0.1482 0.4836 0.5487
0.75 0.4662 0.1332 0.3579 0.5401
0.85 0.3671 0.1222 0.2778 0.5334
0.95 0.2977 0.1138 0.2235 0.5284
1.05 0.2472 0.1072 0.1847 0.5240
1.15 0.2092 0.1010 0.1560 0.5208
1.25 0.1799 0.0974 0.1341 0.5181
1.35 0.1567 0.0937 0.1170 0.5163
1.45 0.1380 0.0906 0.1033 0.5147
1.55 0.1227 0.0878 0.0921 0.5131
1.65 0.1100 0.0855 0.0829 0.5121
1.75 0.0994 0.0834 0.0752 0.5116
1.85 0.0904 0.0816 0.0686 0.5105
1.95 0.0826 0.0799 0.0630 0.5102
2.05 0.0759 0.0785 0.0582 0.5102
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Fig. 5. Total volume vector characteristics for the M/G/1/∞
system, a = 0.1, c = 1, g = 2.

5. Egalitarian processor sharing system

Consider now the classical queueing model, in which all
customers present in the system are served simultaneously
but the service speed (and, in consequence, the time
remaining to service termination) depends on the
number of customers present in the system (remaining
time increases together with an increasing number of
customers present in the system and decreases otherwise).
We call such a system an egalitarian processor sharing one
and denote it by M/G/1/∞–EPS.

By a customer’s length, in the analyzed system, we
mean the amount of work required for his service, that
is, the customer’s sojourn time in the system at hand,
provided that there are no other customers in the system
during this time. By the residual length of the customer we
mean the amount of work required to complete his service
after some time instant, that is, the residual customer
sojourn time, provided that there are no other customers
in the system during this time.

We also introduce the following notation for vectors:

Yk = (y1, . . . , yk).

It is known (Yashkov and Yashkova, 2007) that the
behavior of the classical processor sharing system can be
described by the following Markov process:(

η(t), ξ∗1 (t), . . . , ξ
∗
η(t)(t)

)
, (9)

where ξ∗j (t) is the residual length of the j-th customer

present in the system at time instant t, j = 1, η(t). Note
that, in the case of η(t) = 0, the components ξ∗j (t) are
absent in (9).

We assume that the system is empty at time instant
t = 0, i.e., η(0) = 0 and σ(0) = 0 (zero initial
condition). We also introduce some needed notation:
Pk(t) = P{η(t) = k}, k = 0, 1, . . ., θk(t, Yk) =
= P{η(t) = k, ξ∗j (t) < yj , j = 1, k}. It is clear
that, for k ≥ 1, we have Pk(t) = θk(t,∞k), where
∞k = (∞, . . . ,∞) is the k-component vector. Introduce
the Laplace transform

υ̂k(q, Yk) =

∫ ∞

0

e−qt dtθk(t, Yk).

Then, for k ≥ 1, we have

p̂k(q) =

∫ ∞

0

e−qtPk(t) dt = υ̂k(q,∞k).

Tikhonenko (2015) proved that

υ̂k(q, Yk)

=
(q + a)k

q + a− aπ(q)

k∏
j=1

∫ yj

0

(
1− a

q + a
B(t)

)
dt,

k = 1, 2, . . . , (10)
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where π(q) is the LST of a busy period of the system. For
p̂k(q), we obtain

p̂k(q) = υ̂k(q,∞k) =
ak (1− π(q))

k

(q + a) (q + a− aπ(q))
k+1

.

(11)
Let F (x, t) = P{ζ < x, ξ < t}, where, in this

case, ξ is a customer’s length, L(x) = F (x,∞), B(t) =
= F ( �∞, t). Further, we shall use the notation from
Section 4.

Let χ(t) = (χ1(t), . . . , χk(t)) be the indication
vector of a customer that is served at time instant t and
ξ∗(t) be his residual length. Now, we can introduce
analogously the function Ey(x) = P{χ(t) < x|ξ∗(t) =
= y} and its LST,

ey(s) =

∫ �∞

x=0

e−(s,x) dEy(x)

= [1−B(y)]−1

∫ �∞

x=0

e−(s,x)

∫ ∞

u=y

dF (x, u).

Let

D(x, t) = P{σ(t) < x}
= P{σ1(t) < x1, . . . , σk(t) < xk},

δ(s, t) = Ee−(s,σ(t)) =

∫ �∞

0

e−(s,x) dxD(x, t),

δ(s, q) =

∫ ∞

0

e−qtδ(s, t) dt.

Theorem 4. For a zero initial condition, the function
δ(s, q) can be presented as

δ(s, q) = {[q + a− aπ(q)][1 − I(s, q)]}−1
,

where

I(s, q) = (q + a)

∫ ∞

0

(
1− a

q + a
B(y)

)
ey(s) dy.

Proof. The DF D(x, t) can be expressed in the following
form:

D(x, t) = P0(t) +

∞∑
k=1

Dk(x, t|Yk) dYk
θk(t, Yk), (12)

where Dk(x, t|Yk) = P{σ(t) < x|η(t) = k, ξ∗j (t) =

= yj , j = 1, k} and

dYk
θk(t, Yk) =

∂kθk(t, Yk)

∂y1 . . . ∂yk
dy1 . . . dyk.

It is clear that the function Dk(x, t|Yk) can be
expressed by the Stieltjes convolution Dk(x, t|Yk) =

= Ey1 ∗ . . . ∗ Eyk
(x). Then, passing to the LST with

respect to x in (12), we obtain

δ(s, t) = P0(t)

+

∞∑
k=1

∫ ∞

0

. . .

∫ ∞

0

k∏
j=1

eyj(s) dYk
θk(t, Yk).

Passing to the Laplace transform with respect to t, we have

δ(s, q) = p̂0(q)

+

∞∑
k=1

∫ ∞

0

. . .

∫ ∞

0

k∏
j=1

eyj(s)dYk
υ̂k(q, Yk).

From the last relation, using (10) and (11), we finally
obtain

δ(s, q) =
1

q + a− aπ(q)

{
1 +

∞∑
k=1

(q + a)

×
[∫ ∞

0

(
1− a

q + a
B(y)

)
ey(s) dy

]k}
.

This relation is equivalent to the statement of the theorem.
�

Corollary 3. Let ρ = aβ1 < 1. The steady state exists
for the system under consideration, and LST δ(s) of the
steady-state customer total volume has the form

δ(s) =
1− ρ

1 + α′
q(s, q)|q=0

. (13)

Proof. The existence of the limit

δ(s) = lim
q→0+

qδ(s, q)

follows from the theory of regenerative processes
(Asmussen, 2003). From this theory, we also obtain

δ(s) = lim
q→0+

qδ(s, q) = (1 − ρ) lim
q→0+

[1− I(s, q)]−1,

where

lim
q→0+

I(s, q) = a

∫ ∞

0

[1−B(y)]ey(s) dy

= a

∫ �∞

x=0

∫ ∞

u=0

ue−(s,x) dF (x, u)

= −aα′
q(s, q)|q=0,

which proves the statement of the corollary. �
From (14), we can obtain formulae for mixed

moments of the random vector σ:

δi1...il = E
(
δi11 . . . δill

)

= (−1)i1+...+il
∂i1+...+il

∂si11 . . . ∂s
il
l

δ(s)|s=0.
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Example 4. Assume that a customer is characterized
by the two-dimensional vector ζ = (ζ1, ζ2), i.e, σ =
= (σ1, σ2), and we have

δ(s1, s2) =
1− ρ

1 + α′
q(s1, s2, q)|q=0

.

Then we obtain

δ
(1)
1 = Eδ1 =

aα101

1− ρ
, δ

(2)
1 = Eδ2 =

aα011

1− ρ
,

δ
(1)
2 = Eσ2

1 =
aα201

1− ρ
+

2a(α101)
2

(1− ρ)2
,

δ
(2)
2 = Eσ2

2 =
aα021

1− ρ
+

2a(α011)
2

(1− ρ)2
,

δ11 = E(δ1δ2) =
aα111

1− ρ
+

2a2α101α011

(1− ρ)2
.

�

6. Conclusions and final remarks

In the paper, we presented basic concepts connected with
the theory of queueing systems with random volume
customers and unlimited sectorized memory space. We
analyzed three models of queueing systems important
from the practical point of view: the M/G/n/0 Erlang
queueing system, the M/G/1/∞ single-server queueing
system and the M/G/1/∞–EPS egalitarian processor
sharing one. For these models, we obtained general
formulae characterizing total volume vectors distributions
in terms of Laplace–Stieltjes transforms. We also
calculated initial steady–state moments of investigated
total volume vectors in the case when the memory buffer
contains two sectors, and analyzed special cases of the
models in which customers’ service time depends on the
sum of the customers’ volume vector indications. We
also presented some numerical examples together with
graphs, and discussed the obtained results and noted
dependencies.

Our research can be used in the process of designing
communication or computer networks to calculate the
required size of memory buffer sectors, or during studying
the efficiency of real computer or telecommunication
networks, especially in a state that is close to an
overloaded one.
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requirement, in A. Kwiecień et al. (Eds), Communications
in Computer and Information Science, Springer, Cham,
pp. 209–215, DOI: 10.1007/978-3-319-25861-4_18.

Tikhonenko, O. and Kempa, W.M. (2016). Performance
evaluation of an M/G/N -type queue with bounded
capacity and packet dropping, International Journal of Ap-
plied Mathematics and Computer Science 26(4): 841–854,
DOI: 10.1515/amcs-2016-0060.

Tikhonenko, O. and Ziółkowski, M. (2018). Single-server
queueing system with external and internal customers, Bul-
letin of the Polish Academy of Sciences: Technical Sciences
66(4): 539–551, DOI: 10.24425/124270.

Tikhonenko, O. and Ziółkowski, M. (2019). Queueing
systems with non–homogeneous customers and infinite
sectorized memory space, in A. Kwiecień et al.
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