Int. J. Appl. Math. Comput. Sci., 2021, Vol. 31, No. 4, 577-586

DOI: 10.34768/amcs-2021-0039

A MODIFIED PARTICLE SWARM OPTIMIZATION PROCEDURE FOR
TRIGGERING FUZZY FLIP-FLOP NEURAL NETWORKS

PIOTR A. KOWALSKI “?* TOMASZ SEOCZYNSKI @

“Faculty of Physics and Applied Computer Science
AGH University of Science and Technology
al. A. Mickiewicza 30, 30-059 Cracow, Poland
e-mail: jpkowal@agh.edu.pl, sloczynski.tomasz@gmail .com

’Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6, 01-447 Warsaw, Poland

e-mail: pakowal@ibspan.waw.pl

The aim of the presented study is to investigate the application of an optimization algorithm based on swarm intelligence to
the configuration of a fuzzy flip-flop neural network. Research on solving this problem consists of the following stages. The
first one is to analyze the impact of the basic internal parameters of the neural network and the particle swarm optimization
(PSO) algorithm. Subsequently, some modifications to the PSO algorithm are investigated. Approximations of trigono-
metric functions are then adopted as the main task to be performed by the neural network. As a result of the numerical
verification of the problem, a set of rules are developed that can be helpful in constructing a fuzzy flip-flop type neural
network. The obtained results of the computations significantly simplify the structure of the neural network in relation to

similar conditions known from the literature.

Keywords: fuzzy neural network, fuzzy flip-flop neuron, particle swarm optimization, training procedure, regression.

1. Introduction

Modern technologies have enabled the near-instant ability
to communicate huge amounts of data. This was possible
because of computer algorithms. These have become the
basic method of data processing and modelling. Advances
in these have resulted in what is termed “neural networks”.
Neural networks, the idea of which is to reflect
the way the human brain works, dominate the market
of machine learning solutions as applied wherever there
is a need to predict future behavior based on previous
decisions or to classify objects based on known attributes.
Thus, they have application in the military, business,
computer gaming or medicine. The effectiveness of neural
networks depends on the provided appropriate training
patterns and on a correctly conducted training process.
The subject of the research described in this article
is the implementation and analysis of selected structures
of recursive fuzzy neural networks that are built upon the

*Corresponding author

application of a metaheuristic training algorithm. The
neural networks selected for the study in this paper are
based on J-K flip-flop sequential logic. Recursion is
realized therein through the feedback between inputs J
and K. The metaheuristic method adopted for the training
process is particle swarm optimization.

Fuzzy flip-flop neural networks (FFFNNs) were first
described by Professor Hirota and his scientific team in
1989 (Hirota and Ozawa, 1989; Ozawa et al., 1996).
Beyond purely theoretical debates, for many years, these
networks were not among the most discussed issues in the
neural network community. This was largely due to the
absence of a convenient teaching algorithm, the causes of
which were the lack of fast and efficient computers and
imperfection in training algorithms.

The uniqueness and diversity of the activation
functions condition the inability to effectively apply
classical training methods. @ The main obstacle to
supervised training is the absence of an analytical
derivative operator that builds upon the information on

@

mailto:pkowal@agh.edu.pl;sloczynski.tomasz@gmail.com
mailto:pakowal@ibspan.waw.pl

amcs@

PA. Kowalski and T. Stoczyniski

the current value of the activation function—as it is
the case with the use of neural functions, i.e., linear,
sigmoid or hyperbolic tangent. In the literature there
are only two known effective learning algorithms for the
FFFNN shortly described above. One is the bacterial
memetic algorithm (Gal et al., 2008) introduced by the
group of Professor Laszlo T. Koczy (Lovassy et al.,
2008b). The other one is the training algorithm based
upon an evolutionary strategy (Kowalski, 2013). We
propose in this paper the application of a third algorithm
based on the PSO optimization procedure. On the
other hand, the well-known gradient algorithm called the
“back-propagation training procedure” (Rutkowski, 2008;
Lillicrap et al., 2016) was intended in 2009 to be used to
train FFFNNSs, but turned out to be characterized by very
poor results and weak convergence rates (Gél et al., 2009).

This article is composed as follows. Section
introduces the structures of the fuzzy flip-flop (FFF)
neuron, as well as the FFFNN. In Section 3] the PSO
procedure for the FFFNN training process is applied.
Section [sets out a description of the extensions of PSO
models. In Section 3] the dependencies and the factors
influencing the quality of FFFNN training are numerically
analyzed. In Section[6] the obtained results are discussed
and conclusions are drawn.

2. Fuzzy flip-flop neural network

The J-K flip-flop has been adapted for implementation
within a neural network by transforming the binary
version into a fuzzy flip-flop. This is achievable by using
fuzzy logic operators such as t-norm and co-norm to
replace the previously used logical AND, OR and NOT
operators (Ozawa et al., 1991). The first unified equation
of the J-K flip-flop using fuzzy operators were proposed
by Hirota and Pedrycz (1993) and has the form

Qou(t +1) = (JiK)u(JiQ)u(JuK), (1)

where J and K constitute J-K flip-flop input signals and
Qout 18 its output signal.

In the fuzzy domain, the functions ¢ and w are the
t-norm and co-norm, respectively, while the negation
operators are defined as K = 1 — K and J, K, Q € [0, 1].
Formula (I) makes the flip-flop response dependent on the
inputs J, K and the current state of (). The discrete time
variable has been omitted here for readability. This form
is used successively in the rest of the article. The proposed
model of the neuron uses the feedback between signals @
and K (see Fig.). As a result, the J-K flip-flop is able
to create a recursive neuron with the degree of recursion
r, where r is the number of recursive loops. In addition,
for the degree of recursion » = 1, an initial value of Qg
must be set. It should be mentioned that the input J must
be checked and limited to the interval [0, 1]. Thus, taking

into account the feedback, the output from the FFF neuron
can be determined as follows:

Qour = (JuQ)i(JuQ)i(Qu(l — Q)), 2)

In equation (@), signal J is the sum of the products of
bias and inputs with weight values. Next this value is
transformed by the satlin activation function

JzS(Zwi:ci—i—b), (3)

i=1

where
0 forx <0,
S(z) =49z forz€]0,1], 4)
1 forxz > 0.

Table [presents the selected t-norm and co-norm,
thanks to which the output @@ from the J-K flip-flop
(Eqn. (@) can be treated as a quasi-sigmoid neuron
activation function. The additional parameters listed in
Table[l] i.e., @, 7, s and w, belong to the interval (0, co).

Based on the FFF-type neuron described above,
an artificial neural network can be created. = For
interpolation-type problems, the FFF network structure
has the form shown in Fig. The neural network
topology consists of four layers. As in all models, there
are input and output layers. Between them, the so-called
“hidden layers” are placed. As shown, each hidden layer
has a certain fixed number of neurons. In subsequent
layers, these neurons are connected to the previous layer
in a “one-to-all” relation. This is a typical connection
structure for shallow (Chang, 2015; Bodyanskiy and
Tyshchenko, 2019) or fully connected neural networks
(Basha et al., 2020). In this type of neural network,
the hidden layer neurons are of the FFF type, while in
the output layer, classical neurons are found exclusively
and have a linear activation function. In the case under
consideration, each of the hidden and output neurons has a
number of parameters called “weights”, as shown in Fig.[1l
and Eqn. (3). However, in the case of using the FFFNN for
the classification problem (Siminski, 2021), it is advisable
to replace the linear neurons in the output layer with FFF
neurons.

X4
O\ activation
w function
e
- |
Xp O—— | i \ C Y
. h g
[] t ? _
. / s b K Q
% O e

Fig. 1. Fuzzy flip-flop neuron.

A modified particle swarm optimization procedure for triggering fuzzy flip-flop neural networks

aamcs

Table 1. Selected triangular t-norms and co-norms applied in the FFFNN.

Name norm(X,y) co-norm(X,y)
Min-max min(z,y) max(z,y)
Algebraic Ty T+y—xy
Lukasiewicz max(0,z +y—1) min(z + y,1)
Trigonometric 2 arcsin(sin(z2) sin(y 2)) 2 arccos(cos(z2) cos(y2))
Dombi 1+[(1/m—1)a41r(1/b—1)a]1/a 1+[(1/m_1)—a4(r12(1/b)_1)—a]—1/a
Hamacher 'y+(1*'v)x(gc+y*ry) IJlrg(lfl'y)Wz;y L
Frank log, (1 + (7=D6721 1—log,(1+ —=0 =)
Yager 1 —min[1, (1 —2)¥ + (1 — y)*)"/*] min[1, (z* + y*)Y/*]

Input Layer

1-st Hidden Layer

2-nd Hidden Layer

14 Y

Y=W®*a+b

Output Layer

Fig. 2. Topology of the FFFNN.

It should be noted that this type of network and
fuzzy logic operators have been implemented in the form
of hardware (Lovassy et al., 2010; Zavala et al., 2009;
Gniewek and Kluska, 2004).

3. Optimization of the FFFNN with the
particle swarm algorithm

The PSO algorithm was first proposed by Kennedy and
Eberhart (1995). PSO is a population-based metaheuristic
optimization algorithm based on swarm intelligence. The
inspiration for its development is the coordinated behavior
observed in the nature of a swarm of bees, a flock or
swarm of birds and a swarm of fish while searching for
food (Talbi, 2009). The assumption of the algorithm
is that the swarm consists of S particles searching the
N-dimensional space of solutions. Each x particle is
an NN-dimensional vector that proposes a solution to a
given problem (Lukasik and Kowalski, 2014; Tsoulos

etal.,2021).

Each swarm element has the following attributes: the
vector x defines the particle position; the vector v, referred
to as “particle velocity”, determines the direction and
value of the position change; the value of the swarmCost
adjustment function determines the quality of a given
solution; the vector xrp is the best (so far) preserved
position of a given particle and source of information
about neighbors. In this research, the global topology
(Kennedy and Eberhart, 1995) is applied, so that each
particle has information about every other particle in the
swarm. This assumption gives access to the globally best
particle of xgp. The last two points are an emanation
of the swarm’s intelligence and the social behavior of
the particles towards each other. In this approach, the
swarmCost adjustment function in terms of FFFNN
testing MSE errors is considered.

In each time step ¢, the particle in the swarm moves

amcs@

PA. Kowalski and T. Stoczyniski

in the solution space and updates its position according to
xi(t+1)=ax;(t) +v(t+ 1) (5)

fori = 1,..., N, where x;(t) is the item in the previous
step, v(t + 1) denotes the speed updated according to

vi(t+ 1) =wvi(t) + crr(t)(zep — x;)

+CQT2(t)($LB —,Ti(t)), (6)

where w is the inertia coefficient that determines
the effect of the speed in the previous step on the
current one, ¢; denotes the coefficient determining the
pursuit of the global best particle (position), cy is a
coefficient determining the pursuit of the best local
particle (position), and finally, r1 (¢) and r2(t) are vectors
of random values from the interval [0,1]. Figure 3
presents a block diagram of the basic form of the PSO
algorithm, which is the starting point for considerations in
the sequel. The figure shows that the additional variable of
the algorithm is epochs—it corresponds to the number of
the currently processed epochs—and max Epochs which
delimits the maximum number of epochs in the PSO
algorithm. Due to the necessity to adapt PSO to the
domain of an artificial neural network, the term “iteration”
has been replaced with the term “epoch”, which is
characteristically employed in a neural networks domain.

The adaptation of PSO to neural network training
consists in treating each particle as a set of all the neural
network’s weights and biases. In order to calculate
the cost (fit) of a given solution, the position vector is
substituted into the neural network as a set of weights and
biases. The training data (the period of a single epoch) are
presented in such a configured network, and then, on the
basis of the obtained results, the training error (Eiyin) 1S
calculated. The error obtained is the cost swarmCost;
of the given particle in the PSO (Rakitianskaia and
Engelbrecht, 2015) algorithm. The effect of finished
training is the xgp particle, which has a set of weights
and biases belonging to a neural network characterized by
generating the smallest training error.

To clarify the facts, it should be pointed out once
again that, within the training algorithm, S neural
networks are considered in parallel. Each one is
represented as a set of weights and biases encoded in
the position vector z; of the ¢-th particle. At each
stage, i.e., the training iteration, the particle labeled zgp
contains the set of weights and biases of the neural
network characterized by the smallest error obtained on
the training data. On the other hand, each particle
remembers its best solution, i.e., the best neural network
that a given particle represented. This solution is marked
as rrB.

In the case of using the PSO algorithm to train the
FFF type neural network, it is necessary to determine

Initialization of
parameters:
W, Cq, Co

i

Random position
initialization x;(t)

!

Fitness value evaluation
for

each particle

swarmCost(x)

IF
swarmCost(x) <
swarmCost(x)

Update speed
v(t)

Update position Xp =X
()

epochs = epochs + 1

NO IF
swarmCost(x.g) <

swarmCost(Xp)

IF
epochs < maxEpoch.

YES NO

Output: X

Fig. 3. Flowchart of the PSO procedure.

which internal parameters of both the neural network and
the training algorithm are beneficial. The first include the
initial value of the Qg flip-flop, the type of the triangular
norm and co-norm operators, the number of r recursion
loops and the network topology. In the second group of
parameters related to the PSO algorithm, w, ¢; and cy
should be considered. The above will be the subject of
the research part of this paper.

4. Extension of the basic PSO algorithm

In this section, modifications of the training algorithm
will be presented. The intent of these is to improve
the performance of the PSO procedure. As part of the
proposed modifications to the training procedure, the
PSO algorithm is enriched with regularization control
procedures, minimum speed limitations, as well as

A modified particle swarm optimization procedure for triggering fuzzy flip-flop neural networks

geometric determinations of the swarm center and
grouping of particles inside the swarm.

4.1. Regularization control. Here regularization
constitutes a method aimed at improving the network’s
problem-solving ability by modifying the cost function
and thus forcing weights to minimized it.

Mostly, it is used in the case of overfitting. In
this article, it is proposed to apply the regularization to
the PSO algorithm by modifying the method of updating
items by means of the following formula, where each
particle is endowed with a new attribute \:

zi(t+ 1) =a;t)+oE+1) = Atz (t). (D)
The coefficient A in (@) is updated as follows:

Ai(t+1)

M) +5x107?
N -5 x 1073

for EZ(t +].) < Ei(t), (8)
for EZ(t +].) > Ei(t),

where E;(t + 1) and E;(t) are the particle cost values
swarmCost at simulation times ¢ + 1 and ¢, respectively.
In this investigation the initial value A(0) = 5 x 107¢ is
applied.

4.2. Minimum speed limitation. In this subsection,
the minimum speed limitation of vy,i, is addressed thanks
to an idea taken from Pu et al. (2007). When the velocity
vector component is lower than the limiting value of
|Umin|, this component should be changed to the value T
that is derived from applying

1 S N
U= > D il)

i=1 j=1

where S is the number of particles in the swarm and N is
the number corresponding to the size of a single particle.
Here |umin | is the average velocity module calculated from
all particles in the swarm.

4.3. Geometric center of the swarm. Chen (2008)
proposed to extend the standard PSO algorithm to
converge to the geometric center of the swarm zgc. In
such a case, the velocity updating equation (6) is enriched
with an additional part determining the trust in the center
of the particle swarm

vi(t + 1) =wvi(t) + err(t)(zap (t) — x4)
+ CQT‘Q(t)(.’L'LB(t) — ,Ti(t)) (10)
+esrs(t)(wao(t) — xi(t)).

Here, c3 is the coefficient of striving for the geometric
center of the swarm, r5 € [0, 1] denotes a random value,

and the geometric center of the swarm can be calculated
as follows:

5
1
TGo =g Z!ELB(f)- (11)
i1

Due to the necessity of additional computational effort,
the procedure for determining the geometric center of a
swarm is updated every specified number of epochs 7.

4.4. Grouping of particles inside a swarm. Chen
(2010) recommended to divide the particles in the swarm
into three groups. Moreover, their positions are to be
updated differently depending on the assigned category.
The parameters in (I2)-(I4) are identical to those in
@)—-(@). The particle positions with the best cost value
are updated according to

zi(t+ 1) =wz;i(t) + car(t)(xap(t) — ;). (12)

The particle positions with an average cost are updated
according to

zi(t +1) = wr;i(t) + ar(t)(xap(t) — ;)

+ cara(t)(zL(t) — 24(1)). (13)

Finally, the positions of the particles with the worst cost
value change as

l’i(t + 1) = wxi(t) + corg (t)({ELB(t) — l’l(t)) (14)

The assignment to particular groups is carried out
as follows. Within each epoch, the values of the
worst-matched particle (swarmyy) and the average cost
in the swarm (swarmac) are determined. The mean
(avgy) between the globally best particle swarmpc and
swarmc is then derived. After this, the average (avgs)
between swarmac and swarmyy ¢ is calculated. Based
on the parameters generated in this way, the respective
ranges are defined as follows:

e the best particles are those belonging to the
compartment [swarmpc, avgy |,

e the mean particles are in the range [avg; , avgs],

e the worst particles are those in the range
[avga, swarmwc].

5. Numerical verification of the training
procedure

This section is devoted to the study of the impact on the
quality of the FFFNN operation of individual parameters
of both the neural network itself and the PSO training
algorithm. The idea behind this is to extract the attributes
and ascertain how a single change (for example, in the Qg
parameter) affects the solution of the task addressed by

aamcs

amcs@

PA. Kowalski and T. Stoczyniski

the neural network. The quality of the solution in terms
of both training and testing MSE errors is considered.
For this purpose, an FFFNN is used to approximate the
function of the form y(x) = 3sin(—2z) + 1.

The basic PSO algorithm described in Section 3]
is used to solve the given task and to determine the
comparative level. The foundation configuration of the
network and the parameters of the entire algorithm are
decided on the basis of preliminary numerical pilot tests
and settings known from the literature. The neural
network topology is in the form 1-4-1, i.e., one neuron
in the input layer, four FFF neurons in the hidden layer
and one linear neuron in the layer output. Additionally,
the vector of weights is initialized randomly from the
interval (0,1) using a pseudorandom number generator
with uniform distribution, while the velocity vector v; (¢)
is initialized with zero. In the J-K flip-flop, a pair of
trigonometric norms with the degree of recursion r = 2
is used. What is more, the initial value of Qg = 0.25 is
adopted. During training, the following parameter values
are employed: the number of epochs = 400, the size of the
swarm S = 20, the coefficient of inertia w = 0.7298,
the coefficient of striving for the best globally particle
c1 = 1.496 and the coefficient of striving for the best
position co = 1.496. The above parameters form the
so-called basic configuration of the main FFFNN training
procedure, to which the proposed changes to the algorithm
and its parameters will refer.

The parameters w, c; and cy are derived from
the work of Eberhart and Shi (2000), where the above
values are suggested as optimal for achieving correct
convergence properties. The data set consists of 100
points where 70% and 30% of all cases belong to the
training and testing subsets, respectively. All tables with
numerical verification show the results obtained for the
normalized data in the following column order: MSE
training error (Ei,i,) and testing MSE error (Eies). The
use of such a data set is caused by mass tests and a large
number of results that can be easily lost thanks to this
solution. In the case of large data sizes, it is possible to
take advantage of large supercomputers operating in cloud
structures.

In the basic version of the configuration, the
following error values are obtained for the training
sample: E,in = 0.0043 and the MSE test error Eiegt =
0.0107.

Initial value of Q¢. In this section, the influence of the
initial value of @)y on the correct operation of the neural
network is tested. This attribute is the only attribute that is
changed in relation to the basic version of the algorithm.
In the basic configuration, Qg = 0.25 and the obtained
results are summarized in Table 2]

In the case of the tested data, in the basic case,
the best values of training and testing errors and the

lowest values of saturation (described by Rakitianskaia
and Engelbrecht (2015)) are obtained. It can be seen that
for the extreme cases of the signal (), the error values
increase significantly.

Type of fuzzy logic operator. In this section, the
effect of fuzzy logic operators on approximation quality
is tested. In the basic configuration, we used the
trigonometric norm and co-norm and the obtained results
are presented in Table Bl In the case of applying the
Dombi and Yaeger norms, the value of the equation
parameter is additionally selected. In (G4l et al., 2010),
it is suggested to select & = 5 for Dombi and w = 2.13
for Yaeger.

In the case under consideration, Yager’s and
trigonometric norms proved to be the best. However, at
this point it is worth emphasizing that the Yager norm is
strongly dependent on the internal parameter w. Thus,
a kind of compromise is to use an operator without an
internal parameter, which is the trigonometric norm.

Degree of recursion. In this part of the paper, the effect
of the number of recursion loops on the FFF network
quality is tested. In the basic configuration, the degree of
recursion is 7 = 2 and the obtained results are presented
in Table[When analyzing the results listed in Table[] in
the case of training data, the parameter r turns out to be the
most favorable for even values. In contrast, for the testing
data, the best results were obtained for r = 4 and r» = 6.

Table 2. Effect of parameter Qo on the FFF-type neuron.
Etrain Etesl

Qo=0.0 0.0319 0.0346
Qo=0.25 0.0043 0.0107
Qo=0.5 0.0113 0.0124
Qo=0.75 0.0214 0.0214

Table 3. Influence of the adopted triangular norm in the FFF

neuron.

Etrain Elest
Trigonometric 0.0043 0.0107
Lukasiewicz 0.0373 0.0381
Dombi (o = 5) 0.0319 0.0276
Algebraic 0.0245 0.0267
Yaeger (w = 2.13) 0.0174 0.0180

Table 4. Degree of recursion 7 in the FFFNN.

Elrain Elest
r=2 0.0043 0.0107
r=3 0.0281 0.0384
r=4 0.006 0.0069
r=>5 0.0742 0.0741
r=6 0.008 0.0068

A modified particle swarm optimization procedure for triggering fuzzy flip-flop neural networks

The remaining cases considered here are characterized by
an error larger by an order of magnitude.

Particle velocity maximum value limitation. Intro-
ducing a speed limit vy, is one idea to stop particles
from exploring the solution space too dynamically
(Rakitianskaia and Engelbrecht, 2015). The dominant
view in most of the works is that velocities are initialized
with zero values. However, Carvalho and Ludermir
(2006) suggested to use for small interval initialization
when testing speed limits. The initial values of
[~ Umax; Umax] = [—0.1,0.1] and a smaller range of the
interval are considered to be ideal for this purpose.

In the basic case, there is no initialization and no
speed limits. The limitation is carried out according to

Umax for v; (t) > Vmax,
—Umax for Ui(t) < —Vmax, (15)
v; (¢) for — Umax < 0i(t) < Umax-

vi(t) =

Table 5] presents the results of the simulation of a
neural network operation utilizing the speed limitation
version of the PSO training algorithm that incorporates
a constraint. Based on the results, it can be stated that
limiting the maximum speed to the range [—1, 1] allows
reducing the MSE error for the content set to 0.0052. It
is worth emphasizing here that increasing the value of the
limitation is more advisable than lowering this parameter
with respect to the value of 1.

Influence of initialization and position limitation of in-
dividual particles. Limiting the range of initialization
of weights (similarly to positioning the particles by
applying the PSO algorithms) is the simplest and
arithmetically most justified move for minimizing MSE
error value. It is logical that small weight values imply
low net values and, consequently, the potential to enter
the saturation regions of the activation function in the
hidden layers is lowered. Additionally, as there is a
restriction on the solution search space, the weights will
be kept at the appropriate level. The introduction of a
position restriction is also proposed by Rakitianskaia and
Engelbrecht (2015). In this part of the research, two
scenarios are tested: the impact of initialization itself and
initialization combined with the limitation of the value of
x;(t). We enter the limitations of the X, position in the
same way as in the case of speed (13)), with one significant
difference, if the particle is outside the area designated for
the scales, its velocity is changed to the opposite and then
its position is limited.

In the base case, the weights are randomly initialized
from the range [0,1] and are not limited during the
algorithm’s operation. The impact of initialization and
the extended case with position limitation are presented
in Table[@l

For the initialization cases considered, the most
favorable ranges are |Xy.x|] = 2 and the base
configuration. In both cases, the testing error is the
smallest and amounts to 0.0127 and 0.0107, respectively.
The above conclusion is not, however, reflected in the
results of the training sample. In this case, the best results
for training the neural network are obtained for the base
example and the constraints | X,,.x| = 0.1. The last two
columns present the results of the constraint of the particle
position, which shows that again the interval | Xy,,x| = 2
and the base configuration seem to be the least convenient
configuration.

Introducing a regularization procedure to the PSO
algorithm. In the next step of our research, a
regularization component is introduced to the training
procedure. This factor is based on the optimization
algorithm. The above is to prevent the neural network
from being overfitted with the training data. During the
research, the base case was compared with the instance in
which the regularization is introduced. In the case of the
regularization algorithm considered, the neural network
recorded the following error values: Ey,i, = 0.0279 and
Eew = 0.0285. In this situation, no improvement in
the operation of the neural network is observed, but in
separate observations it is seen that the FFF neurons are
much less likely to become saturated (Rakitianskaia and
Engelbrecht, 2015).

Table 5. Influence of speed limitation and initialization on the
performance quality of the FFFNN.
Etrain Etesl

Base case 0.0043 0.0107
|Vmax| = 10 0.0236 0.0246
|Vmax| = 2 0.0226 0.0192
[Vmax| = 1 0.0054 0.0052
[Umax| = 0.5 0.0460 0.0490
[Umax| = 0.1 0.0020 0.0030
|Umax| = 0.01 0.0843 0.0821
|Umax| = 0.001 0.3033 0.3070

Table 6. Impact of position limitation initialization on the
FFFNN performance quality.

@amcs

Initialization Position limitation

Etrain Elest Etrain Elest
Base case 0.0043 0.0107 0.0043 0.0107
|Xmax| =10 0.0844 0.0859 0.0950 0.1026
|Xmax] =2 0.0139 0.0127 0.0913 0.0863
|[Xmax| =1 0.0107 0.0176 0.0815 0.7140
| Xmax| = 0.1 0.0096 0.0140 0.2545 0.1921

amcs@

PA. Kowalski and T. Stoczyniski

PSO procedure with minimum speed limitation. This
part of the article presents the effect of modifying the PSO
optimization algorithm by introducing a minimum speed
limit vy,;,. This is tested as two variants. The first (A1) is
consistent with the description of the algorithm provided
in subsection[4.2] The second (A2) consists in substituting
the minimum value when the minimum speed is exceeded.

The base case does not include such limitations. The
results of both scenarios (Al and A2) are presented in
Table[7}

The algorithm of minimum speed (A2) achieves
better results than the Al procedure in terms of training
and testing errors. Still, an acceptable impact is obtained
using the mean velocity substitution for the range |vyin| =
0.001. In this case, both indicators of the A2 algorithm
are similar to the base case. The speed lower limit can be
useful if the network is stuck at the local minimum, and
by switching to medium speed, there is a chance it will
come out of the local extreme.

PSO procedure with a geometric center of a swarm.
The next stage of the research is to propose extending
the standard PSO algorithm to the geometric center of the
swarm through convergence. In this simulation, the time
interval 7" measured in epochs is tested so as to discover
how often it is advisable to use this modification of the
PSO algorithm. In this case, the parameters (c1, c2, c3)
are set based on recommendations of Chen (2008).

On the basis of Table [l for the parameters ¢; =
c2 = c3 = 1.496, introducing this additional procedure
deteriorates the results achieved. The results obtained in
this way do not correspond in any way to those obtained
in other numerical experiments and in the base example.
Moreover, the algorithm did not converge in any case.
However, in the suggested configuration of ¢; = ¢ =
c3 = 1.333, good results are obtained, especially for the
cases ' = 1and T = 2. For T' = 2, the performance of
the neural network is better for the test data than for the
base case.

PSO procedure with grouping particles inside
a swarm. The last modification presented in this article
is a procedure for changing the position update that
is dependent upon grouping the investigated particles
within one of three categories. The results obtained
on the basis of the algorithm presented in the previous
part of the article showed no improvement compared
the base example. For the approximation example, the
neural network recorded the following error values:
FEiain = 0.0824 and FEy = 0.1083. However, it should
be emphasized that despite the poor end result, saturation
of FFF neurons was observed much less frequently during
the training process than in the base example.

6. Conclusions

The results of the analysis from the previous chapters
allow for an idea of how many factors depend on the
correct configuration of the FFF type neural network
and its training algorithm. Over all, it can be said
that there must be an appropriate balance between the
selection of the parameters of J-K neurons and the PSO
algorithm to achieve satisfactory network matching results
that incorporate the lowest possible training and testing
erTors.

The configuration of best neural network is based on
the appropriate selection of the initial value of (g, the
number 7 of recursion loops and the type of fuzzy logic
operation. A base value of)y = 0.25 seems to be a
preferred starting value for the data under consideration.
In the case of choosing a basic form, the choice should
be trigonometric, whereby very good results have been
achieved for normalized data. Determining the number
of recursive loops 7 was not so unambiguous, because
with an increase in the number of loops, training errors
decreased. But on the other hand, this was accompanied
by a significant extension of the program duration. Thus,
the number » = 2 is an effective compromise between
these factors.

The best configuration of the parameters of the
PSO algorithm is built on the appropriate selection of
parameters w c; and co as well as the initialization
and limitations of the velocity and position vectors.
Many variants of the inertia coefficient and confidence
coefficients were tested, and a convenient form of the
training algorithm was obtained for the base case. For
normalized data, the desired behavior is gained when the
constraint values were |Umax| = 0.1. Limiting the range
of weight initialization is the simplest and arithmetically
most justified move for minimizing the training error.

Table 7. PSO procedure with minimum particle velocity limita-

tion.
Variant Al Variant A2
Etrain Etesl Etrain Etesl
|Umin| = 0.1 0.9044 1.5117 0.3695 0.2541
|Umin] = 0.05 0.9001 1.1527 0.5841 0.8624
|Umin] = 0.01 0.5253 0.5507 0.1524 0.0880
[Umin| = 0.001 0.2955 0.2638 0.0621 0.0241

Table 8. Influence of extending the PSO procedure on the
swarm’s geometric center.

c; = 1.496 c; = 1.333
Etrain Elest Etrain Etesl
T=1 94571 8.7413 0.0152 0.0202
T =4 282332 29.4629 0.0134 0.0103
T=7 19.7599 26.5320 0.0473 0.0479
T =10 153353 14.4675 0.0511 0.0508

A modified particle swarm optimization procedure for triggering fuzzy flip-flop neural networks

In this case, the algorithm in which the constraint was
represented as | Xyax| = 0.1 is characterized by providing
the best solutions.

As part of this article, extending the PSO algorithm
used in the training process of the FFF network was also
examined. The addition of a regularization factor did
not improve the performance of the training algorithm.
Regarding the use of the minimum speed limit, in
this case, acceptable results are obtained using the
mean velocity substitution for the range [—0.001, 0.001].
Moreover, very satisfactory results are gained for
application of the grouping of particles inside the swarm.
For the case of ¢; = 1.333 and with the time of launching,
this modification being every 4 epochs, the results were
very good. In the case of using the grouping procedure
with respect to the geometric center of the swarm, no
significant enhancement of the training algorithm was
noticed.

In conclusion, numerical verification shows the
positive property of FFFNNs allied with PSO as a training
procedure, albeit with some modifications. It should
also be underlined that in the examples of approximation
in this study, neural networks with significantly lower
complexity (a lower number of layers and neurons) than
in the work of Lovassy e al. (2008a) were used.

This work does not deal with the issue of dynamic
changes in the architecture of the neural network.
Modifications of the number of neurons in hidden
layers during the training process may complement the
algorithms included in this paper and contribute to
increasing the efficiency of FFF networks. This issue will
be the subject of future research, as it requires either the
use of other optimization algorithms (e.g., AG, AE) or a
radical change in the structure of the PSO procedure.

In addition, it is worth emphasizing that the solution
proposed in this article can be effectively applied to real
issues, e.g., data classification. In additional research,
FFFNNs, along with a PSO-based training procedure,
performed as well as other known neural algorithms.

Acknowledgment

This article is financed with grants for statutory activity
of the Faculty of Physics and Applied Computer Science
at the AGH University of Science and Technology in
Cracow.

The authors would also like to thank the anonymous
referees for their careful reading of the paper and their
contribution of useful suggestions that helped to improve
this article.

References

Basha, S.S., Dubey, S.R., Pulabaigari, V. and Mukherjee, S.
(2020). Impact of fully connected layers on performance

of convolutional neural networks for image classification,
Neurocomputing 378: 112-119.

Bodyanskiy, Y.V. and Tyshchenko, O.K. (2019). A hybrid
cascade neuro-fuzzy network with pools of extended
neo-fuzzy neurons and its deep learning, International
Journal of Applied Mathematics and Computer Science
29(3): 477-488, DOLI: 10.2478/amcs-2019-0035.

Carvalho, M. and Ludermir, T.B. (2006). Particle swarm
optimization of feed-forward neural networks with weight
decay, 6th International Conference on Hybrid Intelligent
Systems (HIS’06), Rio de Janeiro, Brazil, pp. 5-5.

Chang, C.-H. (2015). Deep and shallow architecture of
multilayer neural networks, /IEEE Transactions on Neural
Networks and Learning Systems 26(10): 2477-2486.

Chen, G. (2010). Simplified particle swarm optimization
algorithm based on particles classification, 6th Interna-
tional Conference on Natural Computation, Yantai, China,
Vol. 5, pp. 2701-2705.

Chen, M. (2008). Second generation particle swarm
optimization, 2008 IEEE Congress on Evolutionary Com-
putation (IEEE World Congress on Computational Intelli-
gence), Hong Kong, China, pp. 90-96.

Eberhart, R.C. and Shi, Y. (2000). Comparing inertia weights
and constriction factors in particle swarm optimization,
Proceedings of the 2000 Congress on Evolutionary Com-
putation, CECO00, La Jolla, USA, Vol. 1, pp. 84-88.

Gal, L., Botzheim, J. and Koczy, L.T. (2008). Improvements to
the bacterial memetic algorithm used for fuzzy rule base
extraction, /EEE International Conference on Computa-
tional Intelligence for Measurement Systems and Applica-
tions, Istanbul, Turkey, pp. 38—43.

Gal, L., Botzheim, J., Koéczy, L.T. and Ruano, A.E.
(2009). Applying bacterial memetic algorithm for training
feedforward and fuzzy flip-flop based neural networks,
Joint 2009 International Fuzzy Systems Association World
Congress and the European Society of Fuzzy Logic and
Technology Conference, Lisbon, Portugal, pp. 1833-1838.

Gal, L., Lovassy, R. and Koéczy, L.T. (2010). Function
approximation performance of fuzzy neural networks
based on frequently used fuzzy operations and a pair of
new trigonometric norms, International Conference on
Fuzzy Systems, Barcelona, Spain, pp. 1-8.

Gniewek, L. and Kluska, J. (2004). Hardware implementation
of fuzzy Petri net as a controller, [EEE Transac-
tions on Systems, Man, and Cybernetics B: Cybernetics
34(3): 1315-1324.

Hirota, K. and Ozawa, K. (1989). The concept of fuzzy flip-flop,
IEEE Transactions on Systems, Man, and Cybernetics
19(5): 980-997.

Hirota, K. and Pedrycz, W. (1993). Neurocomputations with
fuzzy flip-flops, Proceedings of International Conference
on Neural Networks (IJCNN-93), Nagoya, Japan, Vol. 2,
pp. 1867-1870.

Kennedy, J. and Eberhart, R. (1995). Particle swarm
optimization, Proceedings of the ICNN’95 International

Conference on Neural Networks, Perth, Australia, Vol. 4,
pp. 1942-1948.

@amcs

PA. Kowalski and T. Stoczyniski

amcs@

Kowalski, P.A. (2013). Evolutionary strategy for the fuzzy
flip-flop neural networks supervised learning procedure,
International Conference on Artificial Intelligence and Soft
Computing, Zakopane, Poland, pp. 294-305.

Lillicrap, T.P,, Cownden, D., Tweed, D.B. and Akerman, C.J.
(2016). Random synaptic feedback weights support error
backpropagation for deep learning, Nature Communica-
tions 7(1): 1-10.

Lovassy, R., Kéczy, L.T. and Gdl, L. (2008a). Applicability of
fuzzy flip-flops in the implementation of neural networks,
9th International Symposium of Hungarian Researchers on
Computational Intelligence and Informatics, CINTI 2008,
Budapest, Hungary, pp. 333-344.

Lovassy, R., Koczy, L.T. and Gal, L. (2008b). Multilayer
perceptron implemented by fuzzy flip-flops, IEEE In-
ternational Conference on Fuzzy Systems (IEEE World
Congress on Computational Intelligence), Hong, Kong,
China, pp. 1683-1688.

Lovassy, R., Zavala, A.H., Gdl, L., Nieto, O.C., Kéczy, L.T. and
Batyrshin, I. (2010). Hardware implementation of fuzzy
flip-flops based on Lukasiewicz norms, 9th WSEAS In-
ternational Conference on Applied Computer and Applied
Computational Science, Genova, Italy, pp. 196-201.

Lukasik, S. and Kowalski, P.A. (2014). Fully informed swarm
optimization algorithms: Basic concepts, variants and
experimental evaluation, Federated Conference on Com-
puter Science and Information Systems, Warsaw, Poland,
pp. 155-161.

Ozawa, K., Hirota, K. and Koczy, L.T. (1996). Fuzzy flip-flop,
in M.Y. Patyra and D.M. Mlynek (Eds), Fuzzy Logic: Im-
plementation and Applications, Wiley/ BG Teunbner Publ.,
pp. 197-236.

Ozawa, K., Hirota, K., Koczy, L.T. and Omori, K. (1991).
Algebraic fuzzy flip-flop circuits, Fuzzy Sets and Systems
39(2): 215-226.

Pu, X., Fang, Z. and Liu, Y. (2007). Multilayer perceptron
networks training using particle swarm optimization with
minimum velocity constraints, in D. Liu et al. (Eds), Ad-
vances in Neural Networks, Lecture Notes in Computer
Science, Vol. 493, Springer, Berlin/Heidelberg, pp.
237-245.

Rakitianskaia, A. and Engelbrecht, A. (2015). Saturation
in PSO neural network training: Good or evil?, IEEE
Congress on Evolutionary Computation (CEC), Sendai,
Japan, pp. 125-132.

Rutkowski, L. (2008). Computational Intelligence: Methods and
Techniques, Springer, Berlin/Heidelberg.

Siminski, K. (2021). An outlier-robust neuro-fuzzy system for
classification and regression, International Journal of Ap-
plied Mathematics and Computer Science 31(2): 303-319,
DOI: 10.34768/amcs-2021-0021.

Talbi, E.-G. (2009). Metaheuristics: From Design to Implemen-
tation, Wiley, Hoboken.

Tsoulos, I.G., Tzallas, A. and Karvounis, E. (2021). Improving
the PSO method for global optimization problems, Evolv-
ing Systems 12: 1-9, DOI: 10.1007/s12530-020-09330-9.

Zavala, A.H., Nieto, O.C., Batyrshin, I. and Vargas, L.V. (2009).
VLSI implementation of a module for realization of basic
t-norms on fuzzy hardware, IEEE International Confer-
ence on Fuzzy Systems, Jeju, South Korea, pp. 655-659.

Piotr A. Kowalski is an associate professor at
the Faculty of Physics and Applied Computer
Science, AGH University of Science and Tech-
nology, Cracow, Poland, and at the Systems Re-
search Institute of the Polish Academy of Sci-
ences. He received his MSc in teleinformatics
(with honors) and automatic control (with hon-
ors) from the Cracow University of Technology
in 2003 and his PhD on data analysis from the

: Polish Academy of Sciences in 2009. In 2018,
he received his DSc degree from the Systems Research Institute of the
Polish Academy of Sciences. His research interests are in the area of
information technology and are focused on intelligent methods (neural
networks, fuzzy systems and nature-inspired algorithms) with applica-
tions to complex systems and knowledge discovery.

Tomasz Sloczynski is an IT specialist work-
ing outside academia. He earned his MSc degree
in computer science from the Faculty of Physics
and Applied Computer Science, AGH University
of Science and Technology, Cracow, Poland, in
2020. His research interests include data analysis
and computational intelligence methods.

Received: 28 April 2021
Revised: 2 September 2021
Accepted: 7 September 2021

	Introduction
	Fuzzy flip-flop neural network
	Optimization of the FFFNN with the particle swarm algorithm
	Extension of the basic PSO algorithm
	Regularization control
	Minimum speed limitation
	Geometric center of the swarm
	Grouping of particles inside a swarm

	Numerical verification of the training procedure
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

