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DIVISIBILITY OF THE SECOND–ORDER MINORS OF THE NOMINATORS BY
MINIMAL DENOMINATORS OF TRANSFER MATRICES OF CYCLIC
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The divisibility of the second-order minors of the numerators of transfer matrices by their minimal denominators for cyclic
fractional linear systems is analyzed. It is shown that all nonzero second-order minors of the numerators of the transfer
matrices are divisible by their minimal denominators if and only if the system matrices of fractional standard and descriptor
linear systems are cyclic. The theorems are illustrated by examples of fractional standard and descriptor linear systems.
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1. Introduction

The first definition of the fractional derivative was
introduced by Liouville and Riemann at the end of
the 19th century (Kilbas et al., 2006; Ostalczyk,
2016; Podlubny, 1999), and another one was proposed
in the 20th century by Caputo (Kaczorek, 2011b;
Kaczorek and Rogowski, 2015). This idea has been
used by engineers for modelling various processes
(Kaczorek, 2011b; 2015; Kaczorek and Rogowski,
2015; Kilbas et al., 2006, Ostalczyk, 2016; Podlubny,
1999). Mathematical fundamentals of fractional
calculus are given in the monographs of Kilbas et
al. (2006), Ostalczyk (2016) and Podlubny (1999).
Positive fractional linear systems were investigated
by Gantmacher (1959), Kaczorek (2019; 2016; 2010;
2011a; 2012; 2011b; 2015), as well as Kaczorek and
Rogowski (2015). Positive linear systems with different
fractional orders were addressed by Kaczorek (2010;
2011a) and Sajewski (2017b). A solution of the
state equation of descriptor fractional continuous-time
linear systems with two different fractional orders was
introduced by Kaczorek (2011a), who also analyzed the
stability of nonlinear fractional systems (Kaczorek, 2019;
2016). Decentralized stabilization of descriptor fractional
positive continuous-time linear systems with delays was
investigated by Ruszewski (2019b), and stabilization of

positive descriptor fractional discrete-time linear systems
with two different fractional orders by a decentralized
controller was exposed by Sajewski (2017b).

In this paper the divisibility of the second-order
minors of the nominators by minimal denominators
of transfer matrices of cyclic fractional standard and
descriptor linear system will be investigated.

The paper is organized as follows. In Section 2
some preliminaries concerning fractional linear
continuous-time systems and their transfer matrices
are recalled. The main results of the paper are presented
for standard fractional linear systems and descriptor
fractional linear systems in Sections 3 and 4, respectively.
Concluding remarks are given in Section 5.

The following notation will be used: R is the set of
real numbers, Rn×m means the set of n×m real matrices,
AT denotes the transpose of the matrix A, Mn signifies
the set of n × n Metzler matrices (real matrices with
nonnegative off-diagonal entries), In is the n× n identity
matrix.

2. Fractional positive continuous-time
linear systems

The following Caputo definition of the fractional
derivative of α order will be used (Kaczorek, 2012;
2015; Kaczorek and Rogowski, 2015; Kilbas et al., 2006;
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Ostalczyk, 2016; Podlubny, 1999):

0D
α
t f(t) =

dαf(t)

dtα

=
1

Γ(1− α)

∫ t

0

ḟ(τ)

(t− τ)α
dτ, 0 < α < 1,

(1)

where

ḟ(τ) =
df(τ)

dτ
,

Γ(z) =

∫ ∞

0

tx−1e−t dt,

Γ(x) > 0 is the Euler gamma function.
Consider the fractional continuous-time linear

system

dαx(t)

dtα
= Ax(t) +Bu(t), (2a)

y(t) = Cx(t), (2b)

where x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
p are the state,

input and output vectors, and A ∈ R
n×n, B ∈ R

n×m,
C ∈ R

p×n.

Definition 1. (Kaczorek, 2012; 2011b; 2015) The
fractional system (2) is called (internally) positive if
x(t) ∈ R

n
+ and y(t) ∈ R

p
+, t ≥ 0 for any initial conditions

x(0) ∈ R
n
+ and all inputs u(t) ∈ R

m
+ , t ≥ 0.

Theorem 1. (Kaczorek, 2012; 2011b; 2015) The frac-
tional system (2) is positive if and only if

A ∈Mn, B ∈ R
n×m
+ , C ∈ R

p×n
+ . (3)

The fractional positive linear system (2) is called
asymptotically stable (and the matrix A Hurwitz) if

lim
t→∞ x(t) = 0, ∀x(0) ∈ R

n
+. (4)

The positive fractional system (2) is asymptotically stable
if and only if the real parts of all eigenvalues sk of the
matrix A are negative, i.e., Re sk < 0 for k = 1, . . . , n
(Kaczorek, 2011b; Kaczorek and Rogowski, 2015).

Theorem 2. (Kaczorek, 2012; 2011b; 2015) The positive
fractional system (2) is asymptotically stable if and only if
one of the following equivalent conditions is satisfied:
(i) All coefficients of the characteristic polynomial

det[Ins−A] = sn + an−1s
n−1 + · · ·+ a1s+ a0 (5)

are positive, i.e., ai > 0 for i = 0, 1, . . . , n− 1.
(ii) There exists a strictly positive vector λ =
[λ1 · · · λn], λk > 0, k = 1, . . . , n such that

Aλ < 0 or λTA < 0. (6)

The transfer matrix of the system (2) is given by

T (sα) = C[Ins
α −A]−1B. (7)

Theorem 3. For the linear positive system (2), if the
matrix A ∈ Mn is Hurwitz and B ∈ R

n×m
+ , C ∈ R

p×n
+ ,

D ∈ R
p×m
+ , then all coefficients of the transfer matrix (7)

are positive.

The proof is similar to that for standard positive
linear systems (Kaczorek, 2011b; Kaczorek and
Rogowski, 2015).

It is well known (Gantmacher, 1959) that the minimal
polynomial ψ(s) of the matrix A ∈ R

n×n is related to its
characteristic polynomial

ϕ(s) = det(Ins−A) (8)

as follows:

ψ(s) =
ϕ(s)

Dn−1(s)
, (9)

where Dn−1(s) is the greatest common divisor of all the
(n− 1)-th order minors of [Ins−A]. From (9) it follows
that ψ(s) = ϕ(s) if and only if

D1(s) = D2(s) = · · · = Dn−1(s) = 1. (10)

Definition 2. The matrix A ∈ R
n×n satisfying the

condition (10) is called the cyclic matrix.

The inverse matrix [Ins − A]−1 is a rational matrix
in the variable s and it can be written in the form

[Ins−A]−1 =
N(s)

d(s)
, (11)

whereN(s) ∈ R
n×n[s] (the set of polynomial matrices in

s) and d(s) is the least common denominator.

Theorem 4. (Gantmacher, 1959) Let A ∈ R
n×n and n ≥

2. Then every nonzero second-order minor of the polyno-
mial matrix N(s) ∈ R

n×n[s] is divisible without remain-
der by the polynomial d(s) if and only if ϕ(s) = ψ(s).

3. Main result

The transfer matrix (7) can be written in the form

T (sα) =
N̄(sα)

d(sα)
, p, m ≥ 2, sα = sα, (12)

where N̄(sα) = CN(s)B ∈ R
p×m and d(sα) is the least

common denominator.

Theorem 5. Every nonzero second-order minor of the
polynomial matrix N̄(sα) of (12) is divisible without re-
mainder by d(sα) if and only if the matrix A is cyclic.
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Proof.
(Sufficiency) If the matrix A is cyclic then ψ(s) = d(s)
and the Smith form of [Ins−A]S is given by

[Ins−A]S = diag[1, 1, . . . , 1, d(s)]. (13)

The adjoint matrix of the matrix (13) has the form

Adj[Ins−A]S = N(s)

= diag[d(s), d(s), . . . , d(s), 1]. (14)

From (14) it follows that every nonzero second-order
minor of (14) is divisible without remainder by the
polynomial d(s). According to the Binet–Cachy theorem
(Gantmacher, 1959), every second-order minor of the
matrix

N(s) = Adj [U(s)[Ins−A]V (s)]

= V (s)Adj[Ins−A]SU(s)

is the sum of the products of the second-order nonzero
minors of (14) and of unimodular matrices U(s) and
V (s). Therefore, every nonzero second-order minor of
N(s) is divisible without remainder by the polynomial
d(s).

(Necessity) From the definition of the standard form it
follows that N̄(s)/d(s) is an irreducible fraction and the
polynomial d(s) is monic. If the matrix A is not cyclic
then ψ(s) �= ϕ(s) and Dn−1(s) �= 1. In this case
N̄(s)/d(s) is not an irreducible fraction. �

Definition 3. The fractional linear system with the
transfer matrix (12) is called normal if every nonzero
second-order minor of the polynomial matrix N(s) is
divisible without remainder by the polynomial d(s).

Example 1. Consider the fractional linear system (2)
with the matrices

A =

⎡
⎣ 0 1 0

0 0 1
−a0 −a1 −a2

⎤
⎦ ,

B =

⎡
⎣ 0 b1
b2 0
0 0

⎤
⎦ ,

C =

[
c1 0 c3
0 c2 0

]
.

(15)

Note that the matrix A has Frobenius form and is
cyclic. In this case we have

d(sα) = det[I3sα −A]

=

∣∣∣∣∣∣
sα −1 0
0 sα −1
a0 a1 sα + a2

∣∣∣∣∣∣
= s3α + a2s

2
α + a1sα + a0 (sα = sα)

(16)

and

[I3sα −A]−1 =
N(sα)

d(sα)
, (17)

where

N(sα) =

⎡
⎣ s2α + a2sα + a1 sα + a2 1

−a0 s2α + a2sα sα
−a0sα −a1sα − a0 s2α

⎤
⎦ .
(18)

The second-order minor of the matrix (18) are

M11(sα) =

∣∣∣∣ s2α + a2sα sα
−a1sα − a0 s2α

∣∣∣∣
= sαd(sα),

M12(sα) =

∣∣∣∣ −a0 sα
−a0sα s2α

∣∣∣∣ = 0,

M13(sα) =

∣∣∣∣ −a0 s2α + a2sα
−a0sα −a1sα − a0

∣∣∣∣
= a0d(sα),

M21(sα) =

∣∣∣∣ sα + a2 1
−a1sα − a0 s2α

∣∣∣∣ = d(sα),

M22(sα) =

∣∣∣∣ s
2
α + a2sα + a1 1

−a0sα s2α

∣∣∣∣ = sαd(sα),

M23(sα) =

∣∣∣∣ s
2
α + a2sα + a1 sα + a2

−a0sα −a1sα − a0

∣∣∣∣
= −a1d(sα),

M31(sα) =

∣∣∣∣ sα + a2 1
s2α + a2sα sα

∣∣∣∣ = 0,

M32(sα) =

∣∣∣∣ s
2
α + a2sα + a1 1

−a0 sα

∣∣∣∣ = d(sα),

M33(sα) =

∣∣∣∣ s
2
α + a2sα + a1 sα + a2

−a0 s2α + a2sα

∣∣∣∣
= (sα + a2)d(sα).

(19)

The nonzero minors (19) are divisible by the polynomial
d(sα).

Using (15) and (17) and taking into account that
M12(sα) = 0 and M31(sα) = 0, we obtain

T (sα) = C[I3sα −A]−1B

=

[
c1 0 c3
0 c2 0

]
1

d(sα)

×
⎡
⎣ s2α + a2sα + a1 sα + a2 1

−a0 s2α + a2sα sα
−a0sα −a1sα − a0 s2α

⎤
⎦

×
⎡
⎣ 0 b1
b2 0
0 0

⎤
⎦

=
N̄(sα)

d(sα)
,

(20)
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where

N̄(sα) =

[
b2c1(sα + a2)− b2c3(a1sα + a0)

b2c2sα(a2 + sα)

b1c1(s
2
α + a2sα + a1)− b1a0c3sα)

−a0b1c2
]

and

det N̄(sα)

d(sα)
= b1b2[c2c3a0 − c1c2(sα + a2)].

This confirms Theorem 5. �

Remark 1. The cancellation in Theorem 5 depends only
on the cyclicity of the matrixA and it is independent of the
controllability of the pair (A, B) and the observability of
the pair (A, C) of the system.

Remark 2. It is well known that in the transfer
matrix (7) the cancellation occurs if the pair (A, B) is
uncontrollable and/or if the pair (A, C) is unobservable.
In this example the pair (A, B) is controllable and the
pair (A, C) is observable since

rank[ I3sα −A B ] = n = 3 (21a)

and

rank

[
I3sα −A

C

]
= n = 3. (21b)

Remark 3. The divisibility of the second-order minors
of the numerators by nominal denominators of transfer
matrices is independent of the positivity of fractional
linear systems.

4. Fractional descriptor linear systems

Consider the fractional descriptor linear system

E
dαx(t)

dtα
= Ax(t) +Bu(t), (22a)

y(t) = Cx(t), (22b)

where x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
p are the

state, input and output vectors, respectively, E ∈ R
n×n,

A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n and the fractional

derivative is defined by (1).
It is assumed that detE = 0 and the pencil is regular,

i.e.,

det[Esα −A] �= 0. (23)

textfor some s ∈ C.
By the Weierstrass–Kronecker theorem, if the

condition (23) is satisfied, then there exist nonsingular

matrices P ∈ R
n×n and Q ∈ R

n×n such that Eqns. (22)
are equivalent to the equations

dαx1(t)

dtα
= A1x1(t) +B1u(t), (24a)

N
dαx2(t)

dtα
= x2(t) +B2u(t), (24b)

y(t) = C1x1(t) + C2x2(t), (24c)

where A1 ∈ R
n1×n1 , B1 ∈ R

n1×m, B2 ∈ R
n2×m, C1 ∈

R
p×n1 , C2 ∈ R

p×n2 , N ∈ R
n2×n2 is a nilpotent matrix

with index q, N q = 0.

PEQ =

[
In1 0
0 0

]
, (25)

PAQ =

[
A1 0
0 In2

]
, (26)

PB =

[
B1

B2

]
, (27)

CQ =
[
C1 C2

]
(28)[

x1(t)
x2(t)

]
= Q−1x(t), (29)

x1(t) ∈ R
n1 , x2(t) ∈ R

n2 , (30)

n = n1 + n2. (31)

The transfer matrix of the system (24)–(31) has the form

T (sα) = P (sα) + Tp(sα), (32)

where

P (sα) = −C2[In2 +Nsα + · · ·+N q−1sq−1
α ]B2 (33)

is the polynomial part and

Tp(sα) = C1[In1sα −A1]
−1B1

=
Np(sα)

dp(sα)
,

Np(sα) = C1[In1sα −A1]adB1, dp(sα)

= det[In1sα −A1]

(34)

is the strictly proper part.
The transfer matrix (32) can be written in the form

T (sα) =
N̂(sα)

dp(sα)
, (35)

where
N̂(sα) = dp(sα)P (sα) +Np(sα). (36)

Theorem 6. Every nonzero second-order minor of the
numerator (36) of the transfer matrix (35) is divisible by
its denominator dp(sα) if and only if the matrix A1 is
cyclic.
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Proof. By Theorem 5 every nonzero second-order minor
of the matrix Np(sα) is divisible by dp(sα) if and only if
the matrix A1 is cyclic. Let

det

[
n11 + dpp11 n12 + dpp12
n21 + dpp21 n22 + dpp22

]

= n11n22 − n12n21

+ dp(n11p22 + n22p11 − n12p21 − n21p12)

+ d2p(p11p22 − p12p21)

(37)

be any nonzero second-order minor of the matrix (36).
Note that the minor (37) is divisible by the polynomial
dp = dp(sα) if and only if the matrix A1 is cyclic. �

By Definition 3 the fractional descriptor system with
cyclic matrix A1 is normal.

Example 2. Consider the fractional descriptor linear
system (22) with matrices

E =

⎡
⎢⎢⎣

0 0 0 0.5
0 0 0.25 0
0 0 0 0
1 0 0 0

⎤
⎥⎥⎦ ,

A =

⎡
⎢⎢⎣

0 0 −1 −1.5
0 0 0 0.25
0.5 0 0 0
0 0.5 0 0

⎤
⎥⎥⎦ ,

B =

⎡
⎢⎢⎣

0 2 1
0.5 0 0
0 0.5 1
2 0 0

⎤
⎥⎥⎦ 0,

C =

[
0 −2 0 1
−2 0 2 0

]
.

(38)

The matrix E is singular and the condition (23) is
satisfied since

det[Esα −A]

=

∣∣∣∣∣∣∣∣

0 0 1 0.5sα + 1.5
0 0 0.25sα −0.25

−0.5 0 0 0
sα −0.5 0 0

∣∣∣∣∣∣∣∣
�= 0.

(39)

In this case

P =

⎡
⎢⎢⎣

0 2 0 0
1 0 0 0
0 0 0 1
0 0 2 0

⎤
⎥⎥⎦ ,

Q =

⎡
⎢⎢⎣

0 0 0 1
0 0 2 0
2 0 0 0
0 2 0 0

⎤
⎥⎥⎦ (40)

and

PEQ =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ ,

PAQ =

[
A1 0
0 In2

]

=

⎡
⎢⎢⎣

0 1 0 0
−2 −3 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,

PB =

[
B1

B2

]

=

⎡
⎢⎢⎣

1 0 0
0 2 1
2 0 0
0 1 2

⎤
⎥⎥⎦ ,

CQ−1 =
[
C1 C2

]

=

[
1 0 0 −1
0 1 −1 0

]
,

n1 = n2 = 2, m = 3.

(41)

The nilpotent index of the matrix

N =

[
0 1
0 0

]

is q = 2.
The polynomial part of the transfer matrix has the

form

P (sα) = −C2[In2 +Nsα]B2

=

[
0 1
1 0

] [
1 sα
0 1

] [
2 0 0
0 1 2

]

=

[
0 1 2
2 sα 2sα

] (42)

and the strictly proper transfer matrix is given by

Tp(sα) = C1[In1sα − A1]
−1B1

=

[
1 0
0 1

] [
sα −1
2 sα + 3

]−1 [
1 0 0
0 2 1

]

=
1

s2α + 3sα + 2

[
sα + 3 2 1
−2 2sα sα

]
.

(43)

Note that the matrix

A1 =

[
0 1
−2 −3

]

is cyclic and the nonzero second-order minors
∣∣∣∣ sα + 3 2

−2 2sα

∣∣∣∣ (44)
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and ∣∣∣∣ sα + 3 1
−2 sα

∣∣∣∣
of the matrix

Np(sα) = C1[In1sα −A1]adB1

=

[
sα + 3 2 1
−2 2sα sα

]
(45)

are divisible by the polynomial

dp(sα) = det[In1sα −A1] = s2α + 3sα + 2.

Using (36), (42) and (44), we obtain

N̂(sα) = dp(sα)P (sα) +Np(sα)

= (s2α + 3sα + 2)

[
0 1 2
2 sα 2sα

]

+

[
sα + 3 2 1
−2 2sα sα

]

=

[
sα + 3 s2α + 3sα + 4

s2α + 6sα + 2 s3α + 3s2α + 4sα

2s2α + 6sα + 5
2s3α + 6s2α + 5sα

]

(46)

It is easy to check that the nonzero second-order
minors of (46) of the forms∣∣∣∣ sα + 3 s2α + 3sα + 4

2s2α + 6sα + 2 s3α + 3s2α + 4sα

∣∣∣∣ ,∣∣∣∣ sα + 3 2s2α + 6sα + 5
2s2α + 6sα + 2 2s3α + 6s2α + 5sα

∣∣∣∣
(47)

are divisible by the polynomial dp(sα) = s2α + 3sα + 2
and the minor∣∣∣∣ s2α + 3sα + 4 2s2α + 6sα + 5

s3α + 3s2α + 4sα 2s3α + 6s2α + 5sα

∣∣∣∣ = 0.

This confirms Theorem 6. �

5. Concluding remarks

The divisibility of the second-order minors of the
numerators of transfer matrices by their minimal
denominators for cyclic fractional linear systems was
investigated. It was shown that all nonzero second-order
minors of the numerators of the transfer matrices are
divisible by their minimal denominators if and only if
the system matrices of fractional standard (Theorem 5)
and descriptor (Theorem 6) linear systems are cyclic.
The theorems were illustrated with examples of fractional
standard and descriptor linear systems. The discussion
can be easily extended to discrete-time linear standard and
descriptor systems. An open problem is the extension
of these deliberations to fractional discrete-time linear
systems.
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