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An integrated approach to the fault-tolerant control (FTC) of a quadcopter unmanned aerial vehicle (UAV) with incipient
actuator faults is presented. The framework is comprised of a radial basis function neural network (RBFNN) fault detection
and diagnosis (FDD) module and a reconfigurable flight controller (RFC) based on the extremum seeking control approach.
The dynamics of a quadcopter subject to incipient actuator faults are estimated using a nonlinear identification method
comprising a continuous forward algorithm (CFA) and a modified golden section search (GSS) one. A time-difference-of-
arrival (TDOA) method and the post-fault system estimates are used within the FDD module to compute the fault location
and fault magnitude. The impact of bi-directional uncertainty and FDD detection time on the overall FTC performance and
system recovery is assessed by simulating a quadcopter UAV during a trajectory tracking mission and is found to be robust
against incipient actuator faults during straight and level flight and tight turns.

Keywords: fault-tolerant control, quadrocopter, incipient actuator fault, radial basis function neural network.

1. Introduction
The development of reliable control systems, also known
as fault-tolerant control systems (FTCSs), comprises the
design and implementation of three separate components:
the controller module, the fault detection and diagnosis
(FDD) module and the controller reconfiguration module.
Over the last two decades, the search for a design
methodology to ensure that the synthesis of an FTCS
achieves the desired performance, has been an important
research area (Nett et al., 1988; Stoustrup et al., 1997; Fan
et al., 2013; Liu et al., 2015; Liu and Yang, 2019; Salazar
et al., 2020). The choice of the FDD method in relation
to the fault type, the design of the RFC mechanism in
relation to fault detection uncertainties and system rate
of degradation, are some of the integration issues to be
considered in order for an FTCS to be successful in a
real-time environment.

*Corresponding author

A two-stage Kalman filter was used for simultaneous
state and fault parameter estimation by Zhang and Jiang
(1999; 2001). A multi-stage reconfiguration process
was adopted to ensure that the estimation uncertainty of
the actuator effectiveness did not degrade the controller
reconfiguration process. The approach also reduced
fault-induced transients and improves the post-fault
system recovery. An eigenstructure assignment controller
was used for the reconfiguration once faulty actuators
were detected and diagnosed by quantifying control
effectiveness factors. A nominal proportional-integral
(PI) controller for a longitudinal vertical takeoff and
landing (VTOL) aircraft model was augmented with
a reconfigurable gain matrix computed such that the
closed-loop eigenvalues of the estimated system resulted
in a short transient response and small steady-state error.
The effect of convergence rate and estimation accuracy
was investigated by Wu et al. (2015). A fault detection
and diagnosis scheme for an unmanned helicopter was
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developed based on an extended set-membership filter.
This method enabled simultaneous state and parameter
estimation, which can further be used for controller
reconfiguration.

The four-parameter problem solution was used to
design an H∞-based robust integrated controller by
Marcos and Balas (2005). For feedback control and the
diagnosis of faulty actuators and sensors, weight functions
were specified. The optimisation routine, based on linear
time-invariant (LTI) models obtained at various flight
conditions, was used for a trade-off between controller
robustness and fault diagnosis performance within a single
problem formulation. A similar approach for the synthesis
of an H∞ output feedback controller using an unknown
input observer was also investigated by Liu et al. (2012).
An adaptive control law was implemented in an H∞
sense without requiring the convergence of the fault
parameters. This integrated approach was tested for a
helicopter dynamic model with a random loss of the
actuator effectiveness.

An approach using reinforcement learning and
sliding mode control to synthesise a fault-tolerant
controller was investigated by Li and Yang (2018).
A specified integral-type sliding manifold was used to
determine the sliding dynamics in the presence of actuator
faults and disturbances. An optimal problem with a cost
function reconstructed from a neural network was used
to compute the control input within closed-loop bounds
without a-priori knowledge of the system nonlinearities
in the presence of the faults and disturbances. In a
similar approach, the application of the sliding-mode
fault-tolerant controller for a medium-scale unmanned
autonomous helicopter with rotor flapping dynamics was
studied by Yan et al. (2019). The disturbances in this
case included wind gusts and the fault parameters were
estimated using a combination of the extended state
observer technique and an RBFNN. The closed-loop
stability was proved through Lyapunov stability analysis.

The issue of control hardware degradation after the
occurrence of an actuator fault combined with a sensor
fault is investigated by Li et al. (2017). An integrated
design of fault estimation and fault-tolerant control
against simultaneous external disturbances, actuator and
sensor faults was developed based on the Takagi–Sugeno
fuzzy logic approach. Robustness against controller
gain perturbations is achieved through a combination of
an adaptive observer design and a non-fragile output
feedback FTC design. This offline method was tested
with a robotic manipulator without real-time environment
applications. A similar adaptive fuzzy fault-tolerant
controller under simultaneous actuator and sensor faults
subject to a fixed-time stability of the closed-loop
system was also investigated by Yang et al. (2020).
The accommodation of additive and multiplicative faults
for a slow-varying closed-loop system was achieved

through a modified backstepping technique, resulting
in the convergence time of the post-fault system being
independent of the initial states.

A fault-tolerant scheme using RBFNNs was
proposed by Shen et al. (2014). The integration of a
fault detection threshold was used within a switching
logic to select an active FTC scheme without an FDD
component. Although fault location and classification
was not investigated, the impact of FDD time delays on
the selection of the appropriate RBFNN-based adaptive
controller was analysed by Shen et al. (2017). The
issue of fault detection time and the completion of the
reconfiguration scheme was discussed by Yu and Jiang
(2015). The implication of the computationally-expensive
robust controller synthesis was highlighted as a weakness
within an integrated FTCS context and a forgetting
factor was suggested to increase the speed of the FDD
scheme and improve the RFC performance by reducing
the transient behaviour, even with an imprecise post-fault
model.

Actuator saturation and rate limiting after a failure
was investigated in the design of an FCTS using
adaptive sliding mode control (ASMC) (Yu et al.,
2017). Provided the remaining actuators were healthy,
a fuzzy logic reconfiguration algorithm was combined
with a zero-delay FDD system to synthesise an H∞ and
μ− controller. This resulted in an improved tracking
performance of the post-fault system within the actuator
constraints. The synthesis of a system reliability model,
as a means of restoring the degraded performance of
a faulty octocopter UAV, was investigated by Salazar
et al. (2020). A control allocation scheme was developed
which considers the load applied on each actuator over
its mission life and the remaining actuators effectiveness
based on possible load redistribution paths. This ensures a
compromise between system reliability and controllability
is achieved for a system subject to multiple actuator faults.

Similarly, such an integrated approach enabled the
augmentation of a linear quadratic regulator controller
to achieve system recovery without a-priori knowledge
of the faulty system dynamics. This facilitated the
implementation of such FTCS for real-world application,
where the plant dynamics are often unknown or poorly
described (Almutairi, 2016). The integrated approach to
fault detection by considering the requirement to minimise
false alarm rates through selecting an optimised false
detection rate value was investigated by Chen et al.
(2011).

The impact of bi-directional interactions between
FDD and RFC within a real-time environment was
investigated by Lan and Patton (2016) or Lan et al.
(2017). It was shown that FTCS instability may occur
if the system uncertainty, which causes the remaining
healthy actuators to saturate, is ignored. Using a nonlinear
3-DOF helicopter system with saturated actuators, it was
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demonstrated that the lack of an integrated FTCS results
in a sustained transient response combined with large
overshoots due to poor estimation performance. The
mitigation of such a problem was discussed by Prochazka
et al. (2018). The use of an over-actuated system
combined with a quadratic optimisation to minimise the
control gain on the remaining actuators, proved to be
an effective approach in compensating for the system
dynamic response during the controller reconstruction
process.

The impact of FDD uncertainties on the synthesis
of an integrated FTCS was investigated by Rudin et al.
(2020). Uncertainties in the form of (i) detection time
delays (between a fault occurrence and its detection), (ii)
undetected fault occurrences and (iii) detected non-faults
were considered. An H∞/μ synthesis is used to develop a
set of the controllers with the reconfiguration switching
mechanism designed such that the closed-loop system
transient response is minimised through an optimisation
algorithm of the objective cost function.

On the basis of the above literature and extending our
previous works (Kantue and Pedro, 2018b; 2019; 2020),
an integrated fault-tolerant control framework is proposed
with considerations for a real-time environment and
robustness against actuator fault estimation uncertainties.
The development roadmap for such an integrated
framework is shown in Fig. 1.

The fault diagnosis of incipient faults, while aiming
to keep the time series information intact, has been
investigated (Yang and Delpha, 2022). The local
Mahalanobis distance method was used to develop
a sensitive fault detection methodology applicable to
non-Gaussian distributed data conditions. The real-time
detection of incipient faults, irrespective of which
system has been affected, is recognised for its practical
importance in order to guarantee safe and optimal
operating conditions and avoid the escalation of serious
failures (Ji, 2021).

An incipient-type actuator fault for quadcopter UAV
is considered and its online detection is achieved without
a-priori knowledge of the system dynamics. Major
contributions of this paper, in the context of the current
literature, are as follows:

• The development of a nonlinear FDD framework
by combining a multilateration approach and
the real-time identification of a quadcopter
incipient-type actuator fault using an RBFNN.

• The online computation of actuator fault
uncertainties based on RBFNN prediction
performance as part of an integrated FDD.

• The online computation of a controller
reconfiguration cost function without a-priori

Fig. 1. Technology roadmap for the proposed integrated fault-
tolerant control framework.

Fig. 2. Uav4africa research platform: H-1 quadcopter.

knowledge of the post-fault dynamics as part of an
integrated RFC.

• The development and real-time testing of a controller
reconfiguration framework based on the extremum
seeking algorithm under the presence of faults
uncertainties.

The rest of the paper is organised as follows.
Section 2 describes the quadcopter system hardware
and the dynamic model with incipient fault dynamics.
The integrated FTCS is introduced in Section 3 and
describes the integrated framework consisting of FDD and
RFC modules. Section 4 discusses the results obtained,
followed by conclusions and recommendations for future
work in Section 5.

2. Quadcopter system
2.1. Airframe. The quadcopter system to test the
real-time implementation of an integrated FTCS is the H-1
frame configuration developed by Uav4africa (Pty) Ltd
(Kantue and Pedro, 2018a). The design was chosen for
its stability in forward flight and a large fuselage area for
the required sensors and auxiliary electronics. To enable
non-destructive landing in the event of an unrecoverable
system failure, a 3D-printed retractable landing gear has
been installed (see Fig. 2). The actuation system is
comprised of four RCTimer 510-620KV motors and inch
propellers measuring 10 inches by 4.7 inches. A 4-cell
14.8V LiPo battery powers the flight controller and the
powertrain.
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2.2. Quadcopter dynamic model. By considering a
coordinate system located at the quadcopter centre of
gravity and aligned with the quadcopter body axes (shown
in Fig. 3), the following equations of motion can be
described (Gavrilets et al., 2004; Mettler and Kanade,
2000; Kantue and Pedro, 2018b).

The equations of motion of a quadcopter can be
expressed with respect to the body-fixed reference frame
(Mettler and Kanade, 2000):

mv̇ +m(ω̄ × v) = F, (1)
I ˙̄ω + (ω̄ × Iω̄) = M, (2)

where the body-fixed linear and angular velocities are
given by v = [u v w]T and ω̄ = [p q r]T , respectively.
External forces, such as gravity, aerodynamics and
propulsion, are assumed to act at the quadcopter centre of
gravity with a measured mass of m, and are defined as F
= [X Y Z]T . Based on geometric level arms and the mass
moment of inertia defined as I = [Ixx Iyy Izz ], external
moments can be defined as M = [L M N ]T .

For a given rotor speed Ω and ambient density ρ, the
generated propulsive force of the quadcopter rotor system
is given as (Gavrilets et al., 2004)

Tpi = CTiρ(ωpiRi)
2πR2

r , (3)

where the number of rotors is represented by i = [1 − 4].
The thrust coefficient of the i-th rotor can be expressed as

CTi =
arσr

2

(
θ0

(
1

3
+

μ2
ri

2

)
+

μzri − λ0i

2

)
, (4)

where the definition of the i-th rotor inflow velocity λ0i

can be expressed as

λ0i =
CTi

2ηw
√
μ2
ri + (λ0i − μzri)

2
, (5)

μri =

√
(ui − uwind)2 + (vi − vwind)2

ωpiRr
, (6)

μzri =
wi − wwind

ωpiRr
, (7)

σr =
2cr
πRr

, (8)

where the propeller lift-curve slope is ar, cr is the
propeller blade root chord (this is approximated as a
constant value), Rr and θ0 are the propeller blade length
and the approximated pitch angle, respectively (blade
twist is assumed to be negligible). Here μzri and μri

represent the inflow velocities to be solved based on

Fig. 3. Quadcopter propeller forces and moments.

aerodynamic angles between the quadcopter body-axis
and resulting velocity vector (Gavrilets, 2003).

Velocity components based on a local reference
frame at the i-th rotor are denoted by ui, vi and wi. These
components can be computed as

ui = u+ SuiLfrr sin θfr, (9)
vi = v + SviLfrr cos θfr, (10)
wi = w +Rxiq +Ryip, (11)

where Lfr and θfr are the linear and angular distances
from the quadcopter centre of gravity to the frame rotor
hub, respectively. S̄u = [Su1 , . . . , Su4 ] is the distance
scale factor for the i-th rotor. R̄x and R̄y are level arms
resulting from the quadcopter angular motion along the
body x-axis and y-axis, respectively.

The i-th rotor torque Qr is computed as

Qpi = CQρ(ωpiRr)
2πR3

r , (12)

where the torque coefficient is

CQ = CT (λ0i − μz) +
CD0σr

8

(
1 +

7

3
μ2
ri

)
. (13)

For the purpose of developing an FTCS for a
quadcopter with incipient actuator faults, the numerical
computation of the H-1 quadcopter propeller dynamics
was avoided by using wind tunnel data for a propeller
measuring 25 cm long and 11.4 cm across (Brandt and
Selig, 2011). Such wind tunnel data are plotted in
Fig. 4. As expected, the propeller thrust CT and torque
CQ coefficients are inversely proportional to the advance
ratio (defined as the ratio between the forward speed and
the propeller speed). This correlation between control
effectiveness and forward flight is often not considered
for most flight control laws integrated in commercially
available flight controllers. By combining each rotor
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Fig. 4. Propeller thrust/torque coefficients for wind tunnel data.

flapping dynamics into a simplified tip-path-plane (TPP)
model (excluding the dynamics of a feathering hinge
motion), the following can be obtained (Gavrilets, 2003;
Pedro and Kantue, 2011):

ḃ1i = −p− b1i
τe

− 1

τe

δb1i
δμv

vi − vwind

ωpiRr
, (14)

ȧ1i = −q − a1i
τe

− 1

τe

(
δa1i
δμ

ui − uwind

ωpiRr

+
δa1i
δμz

wi − wwind

ωpiRr

)
, (15)

the effective rotor time constant being τe. The impact of
the TPP dihedral on the longitudinal dynamics is given as

δa1i
δμ

= 2Kμ

(
4θ0
3

− λ0i

)
(16)

Kμ is a constant coefficient that introduces a restoring
moment. The dihedral coefficients are defined as

δb1i
δμv

= −δa1i
δμ

, (17)

δa1i/δμz and δb1i/δμv are the dihedral derivatives in the
longitudinal and lateral axes, respectively. For model
simplification, they are of equal magnitudes and have a
destabilising effect.

The advancing blade produces more thrust during a
heave movement resulting in a rotor hub moment. This
effect can be described as

δa1i
δμz

= Kμ
16μ2

ri

(1 − μ2
ri/2)(8 |μri|+ arσr)

. (18)

By considering the rotor flapping motion as the
salient factor in the generation of rotor moments,
aerodynamic moments generated by the quadcopter rotors

can be represented by a linear model with a constant
torsional stiffness value, Kβ . This is shown in Fig. 5 and
defined as

Mk,lon = Kβa1i, (19)
Lk,lat = Kβb1i, (20)

where Mk,lon and Lk,lat are the restoring moments due to
the rotor flapping motion in the longitudinal and lateral
axes, respectively. Additional moments are generated
through the tilting of the i-th rotor due to the rotor flapping
motion. Assuming that the rotor flapping angles are small,
a linear approximation of the total moments about the
quadcopter centre of gravity can be defined (N is the
number of rotors):

Lp =
N∑
i=1

(Kβ + Tpihr) b1i, (21)

Mp =

N∑
i=1

(Kβ + Tpihr) a1i, (22)

Np =

N∑
i=1

Qpi , (23)

where the distance along the z-axis between the
quadcopter centre of gravity and the rotor head is defined
as hr. Similarly, the rotor forces can be described as

Xp = −
N∑
i=1

Tpi sin(a1i), (24)

Yp =
N∑
i=1

Tpi sin(b1i), (25)

Zp = −
N∑
i=1

Tpi cos(a1i) cos(b1i). (26)

Given the above equations of motion, the additional
dynamics of the incipient fault condition is defined
through the model estimation of propeller angular speed
Ωi for the i-th affected rotor as a function of the faulty
motor angular speed. The system identification of the
propeller slippage faulty condition is described in Section
2.3.

2.3. Incipient fault model. The most important part
of a quadcopter is power electronics. Besides the power
distribution board, the high-Watt battery and the electronic
speed controller (ESC), the rotor system comprises a
propeller tightened to the shaft of a three-phase brushless
DC (BLDC) motor. This is shown in Fig. 6. Even though
some rotors have a self-locking system, the presence of
dust, grease, uneven mating surface and wear-and-tear can
decrease the friction joint effectiveness causing a faulty
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Fig. 5. Propeller flapping approximation.

dynamic friction μk
Clamp force (nut) FN

propeller ωp

motor ωm

Fig. 6. Configuration of a quadcopter powertrain with an incip-
ient fault condition.

quadcopter behaviour. If such a fault has a dynamic
component or its amplitude increases with time, this is
known as an incipient fault condition.

Given a motor torque on the i-th rotor defined as Tmi ,
a fault condition can become incipient if the following
conditions are true:

ωmi − ωpi > 0, (27)

Tmi ≥ μk(ξi)dh(FNi − Tpi), (28)

where ωmi , ωpi are the motor and propeller rotational
speeds for the i-th rotor, respectively. Here dh and FNi are
the friction joint diameter and the friction joint clamping
force, respectively. The propeller thrust is defined as Tpi .
μk(ξi) and ξi are the parameters defining the dynamic
friction model for a Stribeck friction coefficient (Åström,
1998). Without access to the motor electrical parameters,
such an incipient dynamic model can be identified through
experimental methods as described by Kantue and Pedro
(2019).

3. Integrated fault-tolerant control
3.1. Continuous forward algorithm. The continuous
forward algorithm (CFA) was introduced by Peng et al.
(2007), as a framework with analytical capabilities
for both parameter optimisation and neural network
construction. The CFA, unlike feedforward selection
algorithms, has the ability to optimise the nonlinear
parameters as the network architecture is adapted (Kantue
and Pedro, 2018b; 2020). The main advantage of such a
method includes an improved method for neural network
modelling while achieving a low memory footprint per

each network learning iteration. An input-output data set
for a nonlinear RBFNN system is defined as

ŷ =

m∑
i=1

wiφi(x,σσσi, ci) (29)

where m is the number of hidden nodes, ŷ and x are
the RBFNN output and the input vector, respectively.
φi(x,σσσi, ci) is the activation function of the i-th node of
the hidden layer; ci, σσσi and wi denote the node centre,
width and linear output weight, respectively.

The optimal parameter values are obtained by
minimising the sum squared error (SSE) defined as

J(w,σσσ, c) = (y − ŷ)T (y − ŷ). (30)

The output vector is denoted as y. A subset of k basis
vectors exists from amongM candidates such that the cost
function can be minimised by computing network weights
as

w = (ΦΦΦT
kΦΦΦk)

−1ΦΦΦT
k y, (31)

where ΦΦΦk = [φ1, . . . , φk] is a regressor subset to ensure
the minimisation of the cost function defined in (30) can
be expressed as a function of the regressor vector,

J(ΦΦΦk) = yT
[
I −ΦΦΦk

(
ΦΦΦT

kΦΦΦk

)−1
ΦΦΦT

k

]
y. (32)

Further minimisation of the cost function can
be achieved by specifying a basis vector ∀φ ∈
(φk+1, . . . , φM ) as part of the regression matrix resulting
inΦΦΦk+1 = [ΦΦΦk, φ]. This cost function net reduction based
on the updated regression matrix is defined as

ΔJk+1(φ) = J(ΦΦΦk)− J([ΦΦΦk, φ]) (33)

Based on the above cost function net reduction, a residual
matrix exists such that (Li et al., 2005)

Rk =

{
I −ΦΦΦk

(
ΦΦΦT

kΦΦΦk

)−1
ΦΦΦT

k , 0 < k < M,

I, k = 0,
(34)

such that

φ(k) Δ
= Rkφ, y(k) Δ

= Rky, (35)

where φ and y are a column vector and the output vector
respectively such that φ(0) = φ and y(0) = y. A recursive
update of such vectors can be achieved as follows:

φ(k) = φ(k−1) − (φ
(k−1)
k )T (φ(k−1))

(φ
(k−1)
k )T (φ

(k−1)
k )

φ
(k−1)
k (36)

Without a detailed analysis of the residual matrix
properties defined by Li et al. (2005), the recursive
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computation of the node regressors can be applied for the
k-th basis vector, which yields

y(k) = y(k−1) − (φ
(k−1)
k )T (y(k−1))

(φ
(k−1)
k )T (φ

(k−1)
k )

φ
(k−1)
k . (37)

Similarly, the cost function net contribution is defined as

ΔJk+1(φ) =
[(y(k))Tφ(k)]2

(φ(k))Tφ(k)
. (38)

The implementation of (36) and (37) can be
simplified by introducing an upper triangular matrix A of
size k×M which consists of k cost function basis vectors.
Such a matrix is defined as

A Δ
= [ai,j ]k×M , (39)

ai,j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, j < i,

φT
i Ri−1φi

= (φ
(i−1)
i )T (φ

(i−1)
i ), j = i,

φT
i Ri−1φj

= (φ
(i−1)
i )T (φ

(i−1)
j ), i < j < M,

(40)

shown here in matrix form

A =

⎡
⎢⎢⎢⎢⎢⎣

a1,1 a1,2 a1,3 · · · a1,M
0 a2,2 a2,3 · · · a2,M
...

...
. . .

...
...

0 · · · 0 ak−1,M−k ak−1,M

0 · · · 0 0 ak,M

⎤
⎥⎥⎥⎥⎥⎦
,

where

ay
Δ
= [ai,y]M×1, ai,y = yT Rkφi = (y(k))Tφ

(k)
i ,

(41)

d Δ
= [di]M×1, di = φT

i Rkφi = (φ
(k)
i )Tφ

(k)
i .

(42)

The parameter set of each hidden node (width and
centre) can be expressed as

φ(x(t),σσσ, c) = Φ(x(t), ω), (43)

where

ω = [ω0, ω1, . . . , ωn] = [σσσ, c]. (44)

The cost function net contribution can be defined as

ΔJk+1(ω) =
C2(ω)

D(ω)
, (45)

where

C(ω) = (y(k))Tφ(k)(ω) (46)

=

N∑
t=1

y(k)φ(k)(x(t), ω),

D(ω) = (φ(k)(ω))Tφ(k)(ω) (47)

=

N∑
t=1

(φ(k)(x(t), ω))2,

N being the number of training samples. The optimisation
of each (k+1)-th added hidden node parameter set added
to the regression matrix ensures that the cost function
net contribution is maximised at each training iteration.
This is achieved through a conjugate gradient approach
by computing the derivative of the cost function net
contribution (Kantue and Pedro, 2018b):

∂ΔJk+1(ω)

∂ωi

= ∇ΔJk+1(ω),

=
2C(ω)

D(ω)

(
y(k) − C(ω)

D(ω)
φ(k)(ω)

)T

φ(k)
ωi

(ω),

(48)

i = 0, 1, . . . , n where φ(k)
ωi is the impact factor of the k-th

hidden node regressor based on the computed parameter
set ωi for a given i-th input vector, defined as

φ
(s)
i (ω) = φ

(s−1)
i (ω)− ∂as,k+1(ω)

∂ωi

φ
(s−1)
s

as,s
,

s = 1, . . . , k, i = 0, 1, . . . , n,

(49)

where

∂as,k+1(ω)

∂ωi
= (φ(s−1)

s (ω))Tφ
(s−1)
i (ω). (50)

The algorithm can be initialised at k = 0 such that

φ(0)
ω0

(x(t), ω) = −2ω0

n∑
i=1

(xi(t)− ωi)
2φ(x(t), ω),

φ(0)
ωi

(x(t), ω) = 2ω2
0(xi(t)− ωi)φ(x(t), ω),

(51)

i = 1, . . . , n, where the node parameter set can be
initialised as

ω
(0)
0 =

[
n∑

i=1

N∑
t=1

(xi(t)− ω
(0)
i )2/N

]−1/2

. (52)

This conjugate gradient method makes use of a
line search iterative procedure such that gradient of the
contribution of ∇ΔJk+1(ω

(p)
k+1) results in a parameter set

ω
(p)
k+1 that maximises ΔJk+1(ω

(p)
k+1) and is considered an
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optimal value; φ(ω(0)
k+1) is then computed along with the

triangular matrix A resulting in the (k+1)-th hidden node
being updated with φ(ω

(k)
k+1) as defined in (36) and its

output vector can be computed as defined in (37). This
results in the reduction in the SSE defined as

SSE(k+1) = SSE(k) −ΔJk+1(ω
(k)
k+1). (53)

The above procedure is iterated until the net
contribution of the cost function meets the condition
of being below a defined threshold η (0.1 has been
used) or the SSE is below 10−3. The evaluation of
the above-described CFA algorithm using quadcopter
flight data is discussed by Kantue and Pedro (2018b).
The following parameters can be defined for network
validation and assess the network capturing of the
underlying system dynamics:

NNbias =
( 1

N

∑
(Y ′ − Y )

)2

, (54)

NNMSE =
1

N

∑
(Y ′ − Y )2, (55)

NNVar = NNMSE −NNbias, (56)

where NNbias, NNMSE and NNVar are the network output
bias, mean square error and variance, respectively. Y and
Y ′ are the network predicted output and validation data
set output, respectively.

The determination of the input/output mapping
was achieved by selecting the RBF model structure
through computing the collinearity amongst dependent
and independent variables. The approach on data
pre-conditioning and model structure size was
investigated by Kantue and Pedro (2018b). The
training and validation data sets were then extracted
from that mapping and the RBF network was trained
and validated using the modified CFA algorithm and the
defined criteria, respectively.

3.2. Golden section search with multimodal ca-
pability. Given the construction of the CFA model
identification method, the maximisation of the cost
function net contribution, defined as ΔJk+1(ω), will be
achieved by finding the optimal value of ω

(p)
k+1 through

a line search procedure (Kantue and Pedro, 2020). If a
function f(x) is defined as unimodal, the maximum value
of such a function max f(x) exists within a specified
interval [a, b]. Such a maximisation problem can be
solved by the golden section search (GSS) algorithm by
finding a subinterval [x1, x2]. A detailed explanation of
the GSS procedure can be found the work of Kantue and
Pedro (2020). Given that the CFA algorithm introduces
nonlinearities in the computation of the cost function net

contribution such as D(ω) → 0:

ΔJk+1(ω) =

{
0, D(ω) < 10−5,

C2(ω)/D(ω), D(ω) > 10−5.
(57)

A local minimum is introduced resulting in a multimodal
function.

To mitigate the limitations of the GSS algorithm, a
meta-heuristic search was developed by Kantue and Pedro
(2020). In summary, a function peak finder algorithm
enables the computation of the GSS interval [a, b] by using
a moving window search space and monitors the line
gradient within that window interval. The GSS algorithm
is then executed within the specified interval of the highest
peak and ensures that the maximum of the cost function
net contribution ΔJk+1(ω) is achieved.

3.3. Application of the time-difference-of-arrival-
process. An incipient fault condition is based on the
observation that the dynamic behaviour of a post-fault
system is similar to the pre-fault system. This premise
only holds provided that the controlling action or the
external environment remain within certain bounds (Mien
et al., 2011). An FDD method comprised of the modified
CFA algorithm described in Sections 3.1 and 3.2 and the
concept of time-difference-of-arrival (TDOA) can be used
to identify and locate an incipient actuator fault within
the control action bounds to ensure that the performance
of the post-fault system is maximised. The inclusion of
the TDOA is complimentary to a data-driven estimation
approach, as it is based on locating a signal source without
a-priori knowledge of the system (Chen et al., 2019).

By injecting a pulse width modulated (PWM) signal
Δωmi in a sequential manner and with an associated
timestamp in each motor of a quadcopter configuration,
as shown in Fig. 7, a localisation scheme can be
developed using the TDOA method. Each motor acts as
an emitter and the receiver of each emission is the inertial
measurement unit (IMU) such that

Si = [s0, s1, . . . , sn] (58)

where n represents the number of samples collected
during the excitation of the i-th rotor with a PWM
manoeuvre Δωm. Ensuring that such a manoeuvre results
in an optimal energy content and the description of its
implementation in the Ardupilot software is described by
Kantue and Pedro (2018b).

The TDOA relies on the premise that two
emitting sources have been recorded and their respective
timestamps (time of arrival or time of departure) are
available. A TDOA square full-rank matrix Q (given
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Δωmi
=

Fig. 7. TDOA concept for a quadcopter configuration.

m = n), can be defined as

Q =

⎡
⎢⎢⎢⎣
S11 S12 . . . S1n

S21 S22 . . . S2n

...
...

. . .
...

Sm1 Sm2 . . . Smn

⎤
⎥⎥⎥⎦ , (59)

where Smn is the time difference cross-correlation
between two signals as a function of the number of
samples lagging or leading the reference signal defined as

Smn =

{
Z(Pm, En), m = n,
Z(Pm, Pn), m �= n,

(60)

where Z(Pm, En) represents the cross-correlation time
delay output between the predicted NN output of the m-th
motor Pm and the estimated NN output of the n-th motor
En. The diagonal of matrix Q represents the time delay
cross-correlation when m = n. This is defined as

Z(Pm, En) = argmax
t ∈ R

∫ T

0

Pm(t)En(t+ τ) dt. (61)

When m �= n, we can also deduce that

Z(Pm, Pn) = argmax
t ∈ R

∫ T

0

Pm(t)Pn(t+ τ) dt, (62)

where the time sample delay factor τ lies within [−T ;T ]
based on the following constraint:

Pn(t+ τ) =

{
0, τ ≤ t,

Pn(t+ τ), τ > t.
(63)

At each timestep τ and for m = n, the

cross-correlation is defined as

Pm(t)En(t+ τ)

=

T∑
t=0

(
Pm(t)− Pm(t)

)(
En(t+ τ)− En(t)

)
T∑

t=0

(
Pm(t)− Pm(t)

)2 T∑
t=0

(
En(t)− En(t)

)2
,

(64)

where Pm(t) and En(t) are the mean values. The
localisation of the fault can be achieved through the index
of column Q with the highest variance, defined as α, once
the rank of Q is at least n− 2. Such an index is written as

α = arg max
i ∈{1,...,n}

σ2
S(i), (65)

σ2
S(i) =

1

m

m∑
z=1

(
Szi − Si

)
, (66)

where the variance of the i-th column for the matrix Q
is denoted by σ2

S(i). The mean value and variance of
the i-th column is defined as Si and σ2

S(i). To ensure
that the reconfiguration time is maximised, initial FDD
information can be provided through fault localisation
without the matrix Q being full rank. In addition, a
level of uncertainty can be defined and associated with
the estimated fault location. This is described in the next
section.

3.4. Requirements from a reconfigurable controller.
The augmented control of the remaining healthy rotors of
a post-fault control system while the impact on system
stability and performance is minimised, is the primary
objective of the reconfigurable flight controller (RFC)
(Xulin and Yuying, 2018). Given the increased transient
behaviour of a post-fault model with multiple actuators,
a control allocation-based reconfiguration scheme has the
following integration requirements:

• maximise the reconfiguration time to ensure
robustness against fault location and fault magnitude
uncertainties;

• minimise the fault detection errors for optimal
post-fault system performance.

To comply with the above requirements, the
following mechanism has been developed. Consider a
faulty nonlinear system

ẋ = Hf (x,u), (67)
y = Gf (x), (68)

where x ∈ R
n is the state vector, y ∈ R

n is the
output vector, u ∈ R

n is the input vector and Gf , Hf
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are unknown nonlinear functions describing the system
faulty dynamics. A fault magnitude uncertainty factor
F associated with the fault localisation index α can be
defined as

F =

{
0, rank Q < n− 2,

1− e
−
(
η Fα

rank Q

)
, rank Q ≥ n− 2,

(69)

where

Fα = Sα, (70)

Sα is the mean value of the α-th column of Q. Provided
the minimum rank of Q matrix has been achieved, a
user-defined parameter 0 < η < 1 can be defined such
that F is close to zero when the matrix Q is close to
full rank or the maximum variance column α is close to
zero (no fault has occurred). With the correct selection
of a suitable controller reconfiguration method, the above
integration requirements can be achieved.

3.5. Extremum seeking control algorithm.
Well-known control reconfiguration techniques such
as gain scheduling, model reference adaptive control,
eigenstructure assignment or dynamic inversion compute
the required control action based on the a-priori
knowledge or estimation of the underlying system
dynamics. Such approaches are sensitive to fault
uncertainties, model uncertainties and often require high
computation resources for real-time implementation
(Zhang et al., 2013). A data-driven approach such as
extremum seeking control is well-suited to be part of the
integrated FTCS without the need for a-priori knowledge
of the post-fault model. It can also be implemented as a
control allocation mechanism under real-time constraints
and its low computing requirements which make it
well-suited for online system reconfiguration.

Consider the following state-space representation of
a nonlinear model:

ẋ = Ax+Bu, (71)
y = Cx+Du, (72)

where x ∈ R
n is the state vector, y ∈ R

q is the output
vector, u ∈ R

p is the input vector and An×n, Bn×p,
Cq×n and Dq×p are state, input, output and feedthrough
matrices, respectively. Assume that there exists a control
law, parameterised by θ = [θ1, . . . , θp], given as

uθ = −KH(θ,F)x (73)

The above state-space equation can be re-written as

ẋ = Ax+Buθ, (74)
yθ = Cx+Duθ, (75)

Fig. 8. Extremum seeking control framework.

such that the closed-loop system

(A−BKH(θ,F))x = 0 ⇐⇒ x = L(θ) (76)

where K is the compensator, H(θ,F) is a control
allocation based on a fault detection and diagnosis scheme
and the fault uncertainty F, which is unity when no fault
has been detected. L(θ) is the system state equilibrium
which is achieved through finding the extremum (in this
case a minimum) value:

θ∗ = arg min
θ∈Rp

J(yθ), (77)

where J(yθ) is the objective cost function comprising
of the output vector yθ , such that the steady-state value
of θ∗ is obtained without knowledge of system matrices
A,B, C and D. This minimisation feedback mechanism
is known as extremum seeking (Yin et al., 2018; Wang
et al., 2016). The ES control framework and its effect on
a closed-loop system is shown in Fig. 8.

The ES process is to modulate the estimate θ̃ with a
periodic signal d2 such that a periodic response is created
in J(θ). This is passed through a high-pass filter s/(s +
ωH) to remove the mean value. Another periodic signal,
d1, demodulates the signal ζ and gets passed through
a low-pass filter with integrator KaωL/(s(s + ωL)) to
update the estimate θ̃. Given that the search is for a
minimum, we have Ka < 0. It should be noted
that the parameter gradient can be defined as (Krstic and
Wang, 2000)

˙̃
θ = Ka

(
d1d2

2

)
∂J

∂θ̃
(78)

for the user-defined choice of the periodic signal vectors

d1 = [a1 sin (ω1t), . . . , an sin (ωnt)], (79)
d2 = [b1 sin (ω1t+ φ1), . . . , bn sin (ωnt+ φn)], (80)

where ωi and φi are the frequency and phase
angle, respectively the adaptation gain vector Ka =
[Ka1 , . . . ,Kan ], the low-pass filter frequency vector
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ωL = [ωL1 , . . . , ωLn] and the high-pass filter frequency
vector ωH = [ωH1 , . . . , ωHn ] determine the speed of
convergence of θ → θ∗ and stability of the closed-loop
system. Detailed analysis into the stability of the ES
control algorithm has been carried out by Krstic and
Wang (2000). Incorporating a fault emulation filter
Gf , representing the estimated incipient fault dynamics,
results in the stability criterion

(A−BGfKH(θ))x ≤ ξ ⇐⇒ x = Lf (θ), (81)

where ξ is a design parameter representing the new
equilibrium state described by Lf . Given θ ∈ R

p, a
real-time implementation of the ES control algorithm is
required for a quadcopter system. A reduction of the
optimisation parameter θ search space with dimension
p× p is introduced in the next section.

3.6. Reconfigurable controller gain computation.
The quadcopter control input vector u can be defined as

uθ = [δt, δa, δe, δr],

where [δt, δa, δe, δr] is the throttle, aileron, elevator and
rudder commands, respectively. Given a quadcopter ‘+’
configuration as shown in Fig. 7 and a weight factor based
on the ES optimisation vector P (θ,F), the mixing to each
rotor command δci can be defined using the right-hand
rule (abbreviated as P ):

⎡
⎢⎢⎣
δt
δa
δe
δr

⎤
⎥⎥⎦ =

1

4

⎡
⎢⎢⎣

P1 P2 P3 P4

−2P1 2P2 0 0
0 0 −2P3 2P4

2P1 2P2 −2P3 −2P4

⎤
⎥⎥⎦

⎡
⎢⎢⎣
δc1
δc2
δc3
δc4

⎤
⎥⎥⎦ ,

uθ = H(θ,F)uc,

where Pi(θ,F) is a weight factor of the i-th motor control
command δci and based on a FDD fault uncertainty
factor F, described in Section 3.4. The optimisation
parameter vector θ can be defined such that the ES
objective cost function J(yθ) can be based on the same
measured variables affected by the FDD mechanism
with the associated uncertainties. This was achieved by
considering the real-time implementation of the nominal
autopilot architecture.

The ArduCopter software was modified by
implementing the ES controller and interfacing it to
the AP_WPNav.cpp routine. The ES controller was
allowed to override the trajectory commands Tc with
step functions commands Sc as inputs to the routine
AP_AttitudeControl.cpp. This is shown in Fig. 9.

Given the attitude controller updating the motor
outputs through routine AP_MotorsMatrix.cpp
every k time-steps, the objective cost function is defined

WPNav

y Tc

Sc

uc

H(θ)

Attitude

Controller

Controller

ES

Matrix

Motor

Fig. 9. ES controller within the ArduCopter software.

as follows:

J(yθ)
k =

∫ k−1

k−2

εS(t) dt

︸ ︷︷ ︸
J(yθ)S

+

∫ k

k−1

εT (t) dt

︸ ︷︷ ︸
J(yθ)T

, (82)

where

εS(t) =
V0

Vk

∑
(Sc −Em)2, (83)

εT (t) =
V0

Vk

∑
(Tc −Em)2,

V0 and Vk are the flight speeds at k = 0 and k steps,
respectively. Sc is the vector of attitude step commands
in the Euler roll, pitch and yaw angles. Tc is the vector
of trajectory commands in the Euler roll, pitch and yaw
angles. Em is the vector of Euler roll, pitch and yaw
angles measurements. At every k-th step, the motor
weight factor matrix H(θ) was updated.

3.7. Hardware-in-the-loop model simulation. The
performance analysis of the FDD mechanism within a
real-time environment to quantify its suitability for the
chosen reconfiguration scheme is part of the development
of an integrated FTCS. The method used to achieve
this objective is using a hardware-in-the-loop simulation
(HILS) model. This is shown in Fig. 10.

The CFA-based FDD scheme, as described in
Section 3.1, was converted from Matlab scripts to
executable code running on a 180 MHz microprocessor
with a floating point unit known as Teensy 3.6.
An additional integrated FTCS objective of having
an FDD scheme supporting low-memory computation
was achieved by splitting the CFA algorithm training,
searching and prediction sub-routines across the CPU
stack (local variables) and heap (global variables) memory
allocations. A PC Windows running was used to pass
pre-simulated training data to the microcontroller via USB
and monitor the serial outputs.

4. Results
4.1. FDD performance. In order to avoid parameter
estimation inaccuracies and unnecessary model
complexity, the collinearity amongst dependent and
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independent variables must be quantified with an RBFNN
structure. The optimal design of such inputs is discussed
by Kantue and Pedro (2018b). The CFA algorithm
described in Section 3.1 was used for training the
RBFNN model structure. The number of neurons and
resultant SSE once ΔJk+1 had reached zero, representing
each motor, was then used for the TDOA algorithm.
The GSS combined with the meta-heuristic algorithm
was used to maximise the cost function net contribution
ΔJk+1(ω) on a data set of 352 points. This enables
us to capture the underlying system dynamics through
minimising the NN predicted output error compared with
the validation dataset. Although external disturbances are
not taken into consideration in the assessment of the CFA
algorithm within this paper, such assessment was done by
Kantue and Pedro (2018b).

The RBFNN input set was pre-selected as described
by Kantue and Pedro (2018b). Based on the input/output
signal correlation, the yaw rate r was chosen as the
RBFNN output. Given the incipient fault type, this
could be associated with the dynamic behaviour of the
faulty propeller ωp on the naturally unstable quadcopter
yaw dynamics. A detailed analysis of the impact on
the RBFNN variance and bias was made by Kantue
and Pedro (2020). In summary, the robustness of the
implemented TDOA to the RBFNN potential inability to
capture the underlying dynamics is manifested through
the computation of the TDOA matrix Q̄. For a typical
mission, the fault detection manoeuvres were activated
when the GPS speed reached 3 m/s (around 73 s). The
incipient fault model was introduced on motor 1 at the
GPS speed of 5 m/s (around 75 s). These time events
are illustrated on the PWM signals shown in Fig. 11. To
ensure adequate trajectory tracking, a recovery period was
introduced after all propellers were excited.

The TDOA matrix Q̄ and the associated column
variance used for FDD fault localisation, fault magnitude,
and fault uncertainty computation, are shown in
Figs. 12–15. Two incipient fault models were analysed.
Low and high incipient fault magnitudes equal to 50%
and 90% of motor efficiency, respectively. The FDD is
able to correctly predict the fault localization through the
column with the highest variance in the matrix Q̄, which
is shown in Figs. 12 and 14. FDD robustness to variance
changes can also be seen as it increases from 250 to 6000.
The fault uncertainty and its impact on the FDD detection
time and overall RFC performance is shown in Figs. 13
and 15. Early detection (with a low rank Q̄ threshold and
large uncertainty) is made independent of the incipient
fault magnitude. The FDD mechanism of rejecting false
positive cases, as shown with variance motor 3, also
prevents the propagation of the fault uncertainty gain F
to the RFC mechanism, ensuring the minimal transient
behaviour for the activation of the RFC mechanism.

Neural Network 

algorithm 

development

Matlab Coder 

C++ code 

generation

Micro controller

Teensy 3.6

Embeddable 

Script

Compiled
code

Simulated Manoeuvres

Script

update

ArduPilot

Simulator

Serial Port 

Monitor

Fig. 10. HILS framework for the real-time testing of FDD algo-
rithms.

Fig. 11. PWM motor output during identification manoeuvres
after the occurrence of an incipient fault.

4.2. RFC performance. The real-time imple-
mentation of the RFC mechanism was achieved through
the modification of the ArduPilot software-in-the-loop
(SITL) framework as described by Kantue and Pedro
(2019). Two functions were developed directly in C++
and were executed at 400 Hz along with the rest of
the software. Figure 16 illustrates the angle tracking
performance between two phases within the context of the
FTCS framework. The tuning of the extremum seeking
controller was assisted with the low-pass filtering of
the motor commands prior to controller reconfiguration.
The feedback loop filters were designed as follows:
high-pass filter bandwidth ωH = 2 rad/s, low-pass filter
bandwidth ωL = 4 rad/s, the adaption gain Ka = 0.01,
the demodulation and modulation signal amplitudes are
0.05 and 0.01, respectively. The performance of those
feedback filters is shown in Fig. 17. As expected, the
high-frequency content of the modulated signal is filtered
prior to the computation of the objective cost function.

The objective cost function J(yθ) and its tracking
error components J(yθ)S and J(yθ)T are shown in
Fig. 18. It can be seen that a minimum is reached with
the controller remaining stable. The reconfiguration time



Integrated fault-tolerant control of a quadcopter UAV with incipient actuator faults 613

50 60 70 80 90 100 110 120 130

Time [s]

0

20

40

60

80

100

120

140

160

V
ar

ia
nc

e 
 [-

]

Variance of Rotors from TDOA matrix

Rotor1
Rotor2
Rotor3
Rotor4

Fig. 12. Variance α of the output of the Q matrix during the
execution of the FDD algorithm after the occurrence of
a low magnitude incipient fault.
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Fig. 13. FDD algorithm outputs: fault uncertainty (a) and uncer-
tainty sensitivity (b) (a low magnitude incipient fault).

introduces a transient which coincides with the high rate
of change in the optimisation parameter θ. Based on
the FDD mechanism performance detailed in the previous
section, the impact of a varying degree of the incipient
fault magnitude on the reconfiguration time is through the
fault uncertainty gain F, but this is quickly dissipated as
the rank Q̄ increases. The optimisation of the objective
cost function and its impact on the reconfigured baseline
case is analysed by comparing a trajectory tracking
mission with or without an active FTCS. The system
without an active reconfigurable controller, shown in
Fig. 19, becomes unstable after each sharp turn due
to the incipient rotor fault degrading the performance of
the default controller. This degradation is completely
removed with an active FTC shown in Fig. 20.

5. Conclusion
The development of an integrated approach to
fault-tolerant controller design has been presented. An
FDD mechanism against a specific type of the actuator
faults, called incipient faults, has been constructed
through the use of an RBFNN and a modified CFA with
a multimodal capability. The integration requirements
imposed on the FDD to minimise the detection time
and be robust to false positives has been achieved
through the use of the time-difference-of-arrival (TDOA)
method. The secondary requirement to be fit-for-purpose
to interface with an RFC mechanism in a real-time
environment was achieved through considering an
HILS environment. The approach of integrating the
FDD fault uncertainty magnitude into an extremum
seeking controller design resulted in maximising the
reconfiguration time such that the optimisation of the
controller gains could be achieved while minimising
the transient behaviour during the reconfiguration. This
has resulted in an integrated FTCS framework that has
restored pre-fault tracking performance in a straight-level
flight and during tight turns while being robust to FDD
fault uncertainty and RFC transients.

Further investigations from this research include the
real-time flight testing of such FTCS for various types
of aircraft including fixed-wing ones and helicopters. A
reduction in the variance of the estimated RBFNN outputs
could improve the fault uncertainty factor and minimise
the transient behaviour of the RFC objective cost function,
further reducing the time span from when a fault has been
detected to when the system has completed its controller
gain reconfiguration.
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