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This research is focused on decision-making problems with redundant and incomplete information under a fuzzy environ-
ment. Firstly, we present the definition of incomplete fuzzy soft sets and analyze their data structures. Based on that, binary
relationships between each pair of objects and the “restricted/relaxed AND” operations in the incomplete fuzzy soft set are
discussed. After that, the definition of incomplete fuzzy soft decision systems is proposed. To reduce the inconsistency
caused by the redundant information in decision making, the significance of the attribute subset, the reduct attribute set, the
optimal reduct attribute set and the core attribute in incomplete fuzzy soft decision systems is also discussed. These defi-
nitions can be applied in an incomplete fuzzy soft set directly, so there is no need to convert incomplete data into complete
one in the process of reduction. Then a new decision-making algorithm based on the above definitions can be developed,
which can deal with redundant information and incomplete information simultaneously, and is independent of some unre-
liable assumptions about the data generating mechanism to forecast the incomplete information. Lastly, the algorithm is
applied in the problem of regional food safety evaluation in Chongqing, China, and the corresponding comparison analysis
demonstrates the effectiveness of the proposed method.
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1. Introduction
Uncertainties are involved in most real-life problems
in engineering, economics, medical science, and so
on. Many researchers have proposed some mathematical
theories to deal with the uncertainties (Zadeh, 1965;
Pawlak, 1984; 1985; Gau and Buehrer, 1993; Liu,
2007). However, Molodtsov (1999) pointed out that the
parametrization tools of these theories are inadequate,
and instead he presented a new mathematical theory,
named soft set theory, which is free from the limitation
of inadequacy of the parameterization tools, and can
be used to deal with uncertain problems. Potential
applications of the soft set theory include function
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smoothing, game theory, operational research, integration,
probability theory, and measurement theory (Molodtsov,
1999). It was also applied in many other domains which
contain uncertainties such as forecasting (de Andres et al.,
2012; Xu et al., 2014; 2019), decision making (Maji and
Roy, 2002; Garg and Arora, 2018; Yang and Yao, 2020),
evaluation (Li et al., 2018), and so on.

One of the most common applications of soft sets
is in decision-making problems. Based on soft set
theory, researchers have proposed many different kinds of
hybrid soft sets to deal with decision-making problems
in different information environments, such as fuzzy
environment (Yang et al., 2013; Li et al., 2015; Liu et al.,
2017; Hussain et al., 2020; Qayyum and Shaheen, 2020),
intuitionistic fuzzy environment (Zhang, 2012; Cagman
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and Karatas, 2013; Feng et al., 2020), interval-valued
fuzzy environment (Xiao et al., 2013; Peng and Yang,
2017; Ali et al., 2020), trapezoidal fuzzy environment
(Xiao et al., 2012; Zhang and Zhang, 2013), semantics
environment (Yang and Yao, 2020), rough environment
(Alcantud et al., 2020), and so on. These studies have
widened the scope of application of soft set theory in
decision making.

However, the decision-making methods based
on the soft sets mentioned above can only deal
with decision-making problems with complete and
independent information. Typically, decision making is
a ranking process about several alternatives with respect
to certain criteria. In order to get the exact order and
an optimal decision, we may tend to collect information
from as many as possible similar attributes. As a result,
the corresponding information is redundant and may be
incomplete.

Xia et al. (2021) proposed a method based on
incomplete soft sets to deal with decision-making
problems with redundant and incomplete information.
However, this method cannot be used to process
incomplete soft sets with fuzzy information. There
are plenty of cases where evaluation of each alternative
just using dichotomous variables is inappropriate. In
general, variables in the decision-making problems with
uncertainties can be more appropriately described by
fuzzy numbers. Accordingly, some effective incomplete
information processing methods for fuzzy soft sets were
developed.

Zou and Xiao (2008) initiated data analysis
approaches for both crisp soft sets and fuzzy soft sets
under incomplete information. Especially for fuzzy
soft sets, unknown values are predicted based on an
average-probability method. However, the prediction is
not accurate because all unknown values for a variable are
replaced by the same predictive value, in spite of potential
differences between objects on the same variable. Deng
and Wang (2013) proposed a new prediction method of
the incomplete information in fuzzy soft sets, which is
based on the notions of the “complete distance” between
two objects and the “average dominant degree” between
two parameters. Nevertheless, the final prediction results
of it may be not between 0 and 1, which is against
the property of fuzzy soft sets. Hence, Liu et al.
(2017) redefined the notion of the dominant degree and
provided an improvement of the method (Deng and
Wang, 2013). It predicted the unknown values through
an adjustable object-parameter approach based on the
similarity measures and standardized the predicted values
to the interval of 0 and 1 in order to satisfy the property of
fuzzy soft sets.

Except for Xia et al. (2021), all the above-mentioned
methods can be used to deal with incomplete information
in decision-making problems in a fuzzy informational

environment by filling the unknown or missing data
points with predicted values based on a certain algorithm.
However, these methods are based on some strict and
unnecessary assumptions, and more importantly, they
cannot handle redundant information which may disturb
our decision making. Therefore, this paper intends to
propose a new decision-making method which is capable
of processing both incomplete and redundant information
based on soft set in a fuzzy informational environment.

This paper is an improvement of the decision-making
method of Xia et al. (2021) from a crisp informational
environment to a fuzzy informational environment. The
core of the new method proposed by this paper is the
binary relationships between objects in an incomplete
fuzzy soft set. In order to make the binary relationships
between objects in an incomplete soft set proposed by
Xia et al. (2021) suitable for a fuzzy environment, this
paper improves it and redefines the significance of an
attribute set in an incomplete fuzzy soft set. Then the
reduct attribute set and the corresponding decision rules
can be generated to facilitate decision-making.

In our method, there are no needs to make strict
assumptions about the data generating process and to
transform the incomplete information into complete one.
On the contrary, our method can be applied to the
original incomplete data set and essential information
can be extracted from redundant information by using
the parameter reduction tools. Therefore, information
distortion in the process of data transformation can be
avoided, and efficiency and precision of decision-making
can be improved.

The rest of this paper is organized as follows:
Section 2 introduces some preliminary definitions and
notions of soft sets and fuzzy soft sets. Based on the
definition of incomplete soft sets, Section 3 presents
the concept of the incomplete fuzzy soft sets, and
analyzes some characteristics of them. In addition,
the operations on two incomplete fuzzy soft sets are
defined in this section. In Section 4, the incomplete
fuzzy soft decision system is introduced, including the
concept of the incomplete fuzzy soft decision system, the
significance of an attribute subset, reduct attribute set,
core attribute and decision rules in incomplete fuzzy soft
decision systems. In Section 5, an approach to decision
making with incomplete information based on incomplete
fuzzy soft sets is proposed, and it is demonstrated by
an example. Moreover, some features of the method we
proposed are highlighted by a comparative analysis with
another relevant method. To illustrate the effectiveness of
the method proposed by this paper in practice, Section 6
applies it in the problem of regional food safety evaluation
in Chongqing, China. Section 7 concludes the paper.
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2. Preliminaries

For the sake of clarity, we briefly introduce basic concepts
of soft sets and fuzzy soft sets in the first place.

Suppose that U = {h1, h2, . . . , hn} is a common
universe set and A = {e1, e2, . . . , em} is a set of
parameters.

Definition 1. (Soft set (cf. Molodtsov, 1999)) A pair
(F,A) is called a soft set over U , where F is a mapping
given by F : A → P (U), and P (U) is the set of all
subsets of U .

In other words, the soft set is a parameterized family
of subsets of the set U . Every set F (e) (e ∈ A), from
this family can be considered as a set of e-approximate
elements of soft set (F,A), and it is a subset of U .

Example 1. (Soft set (adapted from Example 1 of Xia et al.
(2021))) Let U = {h1, h2, . . . , h6} be a set of houses and
suppose that A = {e1, e2, . . . , e5} is a set of parameters,
which stand for cheap, beautiful, area, location, and in the
green surroundings, respectively, each parameter being a
word or a sentence. Then

U = {h1, h2, . . . , h6}

and

A = {e1, e2, . . . , e5}
= {cheap, beautiful, area, location,

in the green surroundings}

In this case, the soft set (F,A) describes the
“attractiveness of the houses” which Mr. X is going to buy
and consists of the following five subsets of U :

(F,A) =
{
F (e1) = {cheap houses}

= {h3, h5},
F (e2) = {beautiful houses}

= {h1, h2, h4, h6},

Table 1. Tabular representation of (F,A).
U e1 e2 e3 e4 e5
h1 0 1 0 0 1
h2 0 1 0 0 0
h3 1 0 0 0 0
h4 0 1 1 1 1
h5 1 0 0 1 0
h6 0 1 1 1 1

F (e3) = {big houses}
= {h4, h6},

F (e4) = {good location houses}
= {h4, h5, h6},

F (e5) = {in the green suroundings houses}
= {h1, h4, h6}

}
.

For ease of data storage and calculation, we can
represent (F,A) in the form of Table 1, in which “1”
signifies hi ∈ F (ej) (i = 1, 2, . . . , 6 and j = 1, 2, . . . , 5)
and “0” otherwise. �
Definition 2. (Fuzzy soft set (cf. Molodtsov, 1999)) A
pair (F̃ , A) is called a fuzzy soft set over U , where F̃ is a
mapping given by F̃ : A → P̃ (U), and P̃ (U) denotes the
set of all fuzzy subsets of U .

Example 2. (Fuzzy soft set) Consider Example 1,
‘Attractiveness of the houses’, under fuzzy information
can be described by fuzzy soft set (F̃ , A). It is a set of
five fuzzy subsets of houses on U and

(F̃ , A) =
{
F̃ (e1) = {h1/0.2, h2/0.3, h3/0.8,

h4/0.1, h5/0.8, h6/0.2},
F̃ (e2) = {h1/0.8, h2/0.8, h3/0.2,

h4/0.7, h5/0.2, h6/0.7},
F̃ (e3) = {h1/0.4, h2/0.4, h3/0.4,

h4/0.5, h5/0.2, h6/0.7},
F̃ (e4) = {h1/0.2, h2/0.3, h3/0.1,

h4/0.6, h5/0.8, h6/0.8},
F̃ (e5) = {h1/0.9, h2/0.4, h3/0.4,

h4/1.0, h5/0.1, h6/0.8}
}
.

In the same way, a fuzzy soft set can be represented
in the form of Table 2. The crisp number 0 or 1 is
replaced by the value of a membership function μÃ(x)
which associates each element with a real number in the
interval [0, 1]. �

3. Incomplete soft set
3.1. Concept of incomplete soft sets. Incomplete
information and uncertainties in decision-making

Table 2. Tabular representation of (F̃ , A).
U e1 e2 e3 e4 e5
h1 0.2 0.8 0.4 0.2 0.9
h2 0.3 0.8 0.4 0.3 0.4
h3 0.8 0.2 0.4 0.1 0.4
h4 0.1 0.7 0.5 0.6 1.0
h5 0.8 0.2 0.2 0.8 0.1
h6 0.2 0.7 0.7 0.8 0.8
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problems can be described effectively by the frame of
incomplete soft sets. The following is the definition of
incomplete soft sets and incomplete fuzzy soft sets.

Definition 3. (Incomplete soft set (cf. Xia et al., 2021)) A
soft set (F,A) is called a complete soft set if and only if
F (e) (e ∈ A) does not contain objects with unknown or
missing values; otherwise, it is called an incomplete soft
set

(F ′, A) =
{
F ′(e) = {hi} ∪ {hj}

}
, (1)

where e ∈ A, hi, hj ∈ U , {hi} denotes a set of objects
with known information on attribute e, which belong to
F ′(e) explicitly; and {hj} denotes a set of objects with
incomplete information on attribute e, which may or may
not belong to F ′(e).

Example 3. (Incomplete soft set (adapted from Exam-
ple 2 of Xia et al. (2021))) Reconsider Example 1 for
demonstration. Suppose that information is lost for object
h2 on attribute e2, h3 on e1 and e4, h5 on e4, and h6 on
e3. Then the incomplete soft set (F ′, A) can be defined by

(F ′, A) = {F ′(e1) = {cheap houses}
= {h5} ∪ {h3},

F ′(e2) = {beautiful houses}
= {h1, h4, h6} ∪ {h2},

F ′(e3) = {big houses}
= {h4} ∪ {h6},

F ′(e4) = {good location houses}
= {h4, h6} ∪ {h3, h5},

F ′(e5) = {in the green suroundings houses}
= {h1, h4, h6} ∪ ∅}.

Its tabular representation is shown in Table 3,
in which “*” is used to indicate that information is
incomplete for specific attributes. It should be noted that,
in an incomplete soft set, an unknown value does not mean
it is useless; instead, it has increased the uncertainty and
difficulty in decision making. �

According to the definition of incomplete soft sets,
we can get the definition of incomplete fuzzy soft sets in
the same way.

Table 3. Tabular representation of (F ′, A).
U e1 e2 e3 e4 e5
h1 0 1 0 0 1
h2 0 * 0 0 0
h3 * 0 0 * 0
h4 0 1 1 1 1
h5 1 0 0 * 0
h6 0 1 * 1 1
Note: * means incomplete information.

Definition 4. (Incomplete fuzzy soft set) A fuzzy soft
set (F̃ , A) is called a complete fuzzy soft set if, and only
if, F̃ (e)(e ∈ A) does not contain objects with uncertain
or unknown features; otherwise, it is an incomplete fuzzy
soft set denoted by (F̃ ′, A).

Similar to (F ′, A), each set F̃ ′(e) in (F̃ ′, A)
can also be considered as e-approximate elements of
the incomplete fuzzy soft set. It consists of a
known-information part and an unknown-information
part, and is given by

(F̃ ′, A) =
{
F̃ ′(e) = {hi/μi} ∪ {hj}

}
, (2)

where e ∈ A, hi, hj ∈ U , {hi/μi} is a fuzzy subset of
U , μi is the value of the membership function of object
hi on attribute e; {hj} denotes the set of objects whose
membership function values on attribute e are unknown.

Example 4. (Incomplete fuzzy soft set) After applying
the same data missing structure of Example 3 to (F̃ ′, A)
in Example 2, information of houses can be denoted by
(F̃ ′, A), and

(F̃ ′, A) =
{
F̃ ′(e1) = {h1/0.2, h2/0.3, h4/0.1,

h5/0.8, h6/0.2} ∪ {h3},
F̃ ′(e2) = {h1/0.8, h3/0.2, h4/0.7,

h5/0.2, h6/0.7} ∪ {h2},
F̃ ′(e3) = {h1/0.4, h2/0.4, h3/0.4,

h4/0.5, h5/0.2} ∪ {h6},
F̃ ′(e4) = {h1/0.2, h2/0.3,

h4/0.6, h6/0.8} ∪ {h3, h5},
F̃ ′(e5) = {h1/0.9, h2/0.4, h3/0.4,

h4/1.0, h5/0.1, h6/0.8} ∪ ∅}.

Likewise, in (F̃ ′, A), the subset F̃ ′(e1) =
{h1/0.2, h2/0.3, h4/0.1, h5/0.8, h6/0.2} ∪ {h3}, for
example, has identified the ranking of price of the five
houses h1, h2, h4, h5, h6 for certainty according to their
membership degrees on attribute e1, while it is unable to
rank house h3 properly due to its incomplete information
on attribute e1. Its tabular representation is shown in
Table 4. �

Definition 5. (Incomplete fuzzy soft subset) Let (F̃ ′, A)
and (G̃′, B) be two incomplete fuzzy soft sets. (F̃ ′, A) is
said to be an incomplete fuzzy soft subset of (G̃′, B) and
denoted by (F̃ ′, A)⊆̃(G̃′, B) if and only if A ⊆ B and
∀e ∈ A,F ′(e)⊆̃G′(e).

Correspondingly, (G̃′, B) is said to be an incomplete
fuzzy soft superset of (F̃ ′, A) if (F̃ ′, A) is an
incomplete fuzzy soft subset of (G̃′, B) and denoted by
(G′, B)⊇̃(F ′, A).
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Example 5. (Incomplete fuzzy soft subset) Given two
incomplete fuzzy soft sets (F̃ ′, A) and (G̃′, B), suppose
that

U = {h1, h2, h3, h4, h5, h6} is a set of houses,
A = {e1, e2} = {cheap, beautiful},
B = {e1, e2, e3} = {cheap, beautiful, size}.

Here, A and B are two sets of parameters, and the
incomplete fuzzy soft sets (F̃ ′, A) and (G̃′, B) can be
defined respectively by

(F̃ ′, A) =
{
F̃ ′(e1) = {h1/0.2, h2/0.3, h4/0.1,

h5/0.8, h6/0.2} ∪ {h3},
F̃ ′(e2) = {h1/0.8, h3/0.2, h4/0.7,

h5/0.2, h6/0.7} ∪ {h2}
}

(G̃′, B) =
{
G̃′(e1)

= {h1/0.2, h2/0.3, h4/0.1,

h5/0.8, h6/0.2} ∪ {h3},
G̃′(e2) = {h1/0.8, h3/0.2, h4/0.7,

h5/0.2, h6/0.7} ∪ {h2},
G̃′(e3) = {h1/0.9, h2/0.4, h3/0.4, h4/1.0,

h5/0.1, h6/0.8} ∪ ∅}

Therefore, we have (F̃ ′, A)⊆̃(G̃′, B). �

Definition 6. (Equality of incomplete fuzzy soft sets)
(F̃ ′, A) and (G̃′, B) are two equal incomplete fuzzy
soft sets, denoted by (F̃ ′, A)=̃(G̃′, B), if and only if
(F̃ ′, A)⊆̃(G̃′, B) and (F̃ ′, A)⊇̃(G̃′, B).

3.2. Operations on incomplete soft sets.

3.2.1. Binary relationships. In a fuzzy soft set (F̃ , A),
the value domain of the mapping function F̃ is a set
of all fuzzy subsets of U , which is a class of objects
with a continuous membership grade between 0 and 1.
Therefore, the binary relationships of incomplete soft
sets defined by Xia et al. (2021) cannot be used in

Table 4. Tabular representation of (F̃ ′, A).
U e1 e2 e3 e4 e5
h1 0.2 0.8 0.4 0.2 0.9
h2 0.3 * 0.4 0.3 0.4
h3 * 0.2 0.4 * 0.4
h4 0.1 0.7 0.5 0.6 1.0
h5 0.8 0.2 0.2 * 0.1
h6 0.2 0.7 * 0.8 0.8

Note: * means incomplete information.

incomplete fuzzy soft sets, which can only process the
incomplete information in a crisp soft set with an extreme
membership value of 0 or 1. This section will discuss
the binary relationships between two objects in both fuzzy
soft sets and incomplete fuzzy soft sets.

The binary relationship between two objects in a
fuzzy soft set is discussed first.

Definition 7. (Indiscernibility relationship) Let (F̃ , A) be
a fuzzy soft set on universe U , and B ⊆ A. A binary
indiscernibility relationship ĨND(B) on U can be defined
as follows:

ĨND(B) =
{
(hi, hj) ∈ U × U

|F̃ (e)/hi − F̃ (e)/hj | ≤ δ, ∀e ∈ B
}
, (3)

where δ is an arbitrary small nonnegative number and
|F̃ (e)/hi − F̃ (e)/hj| is the absolute difference between
the membership values of xi and xj on e in (F̃ , A); thus

(i) |F̃ (e)/hi − F̃ (e)/hj| ≥ 0;

(ii) |F̃ (e)/hi − F̃ (e)/hj| = |F̃ (e)/hj − F̃ (e)/hi|;

(iii) |F̃ (e)/hi − F̃ (e)/hj | = 0 if and only if xi and xj

are the same on the attribute e;

(iv) |F̃ (e)/hi − F̃ (e)/hj | ≤ |F̃ (e)/hi − F̃ (e)/hk| +
|F̃ (e)/hk − F̃ (e)/hj |.

From Definition 7, it is clear that a pair (hi, hj)
of objects from U × U is indiscernible if and only if
the difference between their membership values on each
attribute e(e ∈ B) is less than the nonnegative number
δ. That is to say, two objects can be considered as
having the same properties with respect to B in reality,
if the difference between their membership values on
each attribute e(e ∈ B) is small enough. Thus, the
binary indiscernibility relationship ĨND(B) can be used
to identify the objects which are in the same class with hi.
Then we can define an indiscernibility class ĨB(hi) from
ĨND(B) of the fuzzy soft set (F̃ , A) to describe those
objects on U which might be indiscernible to hi:

ĨB(hi) = {hj ∈ U |(hi, hj) ∈ ĨND(B)}. (4)

Example 6. (Indiscernibility relation) In Example 2,
conditions of houses are described by the fuzzy soft set
(F̃ , A).

For illustration purposes only, we arbitrarily set δ =
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0.2. Then

ĨND(A) = {(h1, h1), (h2, h2), (h3, h3), (h4, h4),

(h5, h5), (h6, h6), (h4, h6), (h6, h4)}
ĨA(h1) = {h1},
ĨA(h2) = {h2},
ĨA(h3) = {h3},
ĨA(h4) = {h4, h6},
ĨA(h5) = {h5},
ĨA(h6) = {h4, h6}.

Because of incomplete information, however, the distance
between two objects according to Eqn. (3) cannot be
evaluated precisely if any of the two contains incomplete
information. As a consequence, the indiscernibility
relations ĨND(B) of Definition 7 cannot be applied to
incomplete fuzzy soft sets. Instead, a similarity relation
S̃IM(B), B ⊆ A on U can be defined to describe the
objects which may have similar properties with respect
to the parameters in B in the incomplete fuzzy soft set
(F̃ ′, A). �
Definition 8. (Similarity relationship) Let (F̃ ′, A) be an
incomplete fuzzy soft set over a common universe U and
B ⊆ A. A binary similarity relation S̃IM(B) on U can be
defined as follows:

S̃IM(B) = {(hi, hj) ∈ U × U :

|F̃ ′(e)/hi − F̃ ′(e)/hj | ≤ δ, or

F̃ ′(e)/hi = ∗ or F̃ ′(e)/hj = ∗, ∀e ∈ B},
where * denotes unknown values in incomplete fuzzy soft
sets.

Then the similarity class S̃B(hi) of incomplete fuzzy
soft set (F̃ ′, A) defined from S̃IM(B) is given by

S̃B(hi) = {hj ∈ U | (hi, hj) ∈ S̃IM(B)}. (5)

Example 7. (Similarity relationship) Reconsider the
incomplete fuzzy soft set (F̃ ′, A) in Example 4. Set
the arbitrarily small nonnegative number δ = 0.2 again.
According to Definition 8, we have the following similar
relationship with respect to the parameter set A in (F̃ ′, A):

S̃IM(A) = {(h1, h1), (h2, h2), (h3, h3), (h4, h4),

(h5, h5), (h6, h6), (h2, h3),

(h3, h2), (h4, h6), (h6, h4)},
S̃A(h1) = {h1},
S̃A(h2) = {h2, h3},
S̃A(h3) = {h2, h3},
S̃A(h4) = {h4, h6},

S̃A(h5) = {h5},
S̃A(h6) = {h4, h6}.

�

3.2.2. Restricted/relaxed AND operation. Based on
the definitions of incomplete fuzzy soft set and its binary
relationships, the operations of the incomplete fuzzy soft
sets can be discussed.

Definition 9. (Restricted AND operation) Assume that
(F̃ ′, A) is an incomplete fuzzy soft set and X ⊆ U .
The operation of “(F̃ ′, A) restricted AND X”, denoted
by (F̃ ′, A)∧

�
X , is defined as

(F̃ ′, A)∧
�
X = {hi ∈ U | S̃A(hi) ⊆ X}. (6)

Definition 10. (Relaxed AND operation) Assume that
(F̃ ′, A) is an incomplete fuzzy soft set and X ⊆ U .
The operation of “(F̃ ′, A) relaxed AND X”, denoted by
(F̃ ′, A)∧̃X , is defined as

(F̃ ′, A)∧̃X = {hi ∈ U | S̃A(hi) ∩X �= ∅}. (7)

Example 8. (Restricted/relaxed AND operation)
Reconsider Example 4 and suppose X = {h3, h5} is a
subset of the universe U . Then according to Definition 9
and Definition 10, we can have

(F̃ ′, A)∧
�
X = {h5}, (F̃ ′, A)∧̃X = {h2, h3, h5}.

�
It can be concluded that the result of the restricted

AND operation is a set of objects whose similarity class
belongs to X with certainty, while the result of the relaxed
AND operation is a set of objects whose similarity class
possibly belongs to X .

Theorem 1. Let U be a common universe set and (F̃ ′, A)
be an incomplete soft set. (F̃ ′, B1) and (F̃ ′, B2) are
two incomplete soft subsets of (F ′, A), and (F̃ ′, B1) ⊆
(F̃ ′, B2) ⊆ (F ′, A). For X ⊆ U , we have

(F̃ ′, B1)∧�X ⊆ (F̃ ′, B2)∧�X, (8)

(F̃ ′, B1)∧̃X ⊇ (F̃ ′, B2)∧̃X. (9)

Proof. For any hi ∈ U , if (F̃ ′, B1) ⊆ (F̃ ′, B2), then
S̃B1(hi) ⊇ S̃B2(hi). Assume that S̃B1(hi) ⊆ X , where
X ⊆ U , and then S̃B2(hi) ⊆ X . At the same time,
there may be hj ∈ U , S̃B1(hj) �⊆ X and S̃B2(hj) ⊆ X .
Therefore, (F̃ ′, B1)∧�X ⊆ (F̃ ′, B2)∧�X .

Similarly, ∀hi ∈ U , if S̃B2(hi) ∩ X �= ∅, then
S̃B1(hi)∩X �= ∅. At the same time, there may be hj ∈ U ,
S̃B2(hj) ∩ X = ∅ and S̃B1(hj) ∩ X �= ∅. Therefore,
(F̃ ′, B1)∧̃X ⊇ (F̃ ′, B2)∧̃X . �
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4. Incomplete soft decision system
To develop a decision-making method based on
incomplete fuzzy soft sets, it is necessary to introduce
incomplete fuzzy soft decision systems and analyze some
important characters of them.

4.1. Concept of an incomplete fuzzy soft decision sys-
tem. Based on the definition of soft decision systems,
the definition of incomplete fuzzy soft decision systems
can be deduced.

Definition 11. (Soft decision system) Suppose that (F,A)
and (G,B) are two soft sets over a common universe U
and A ∩ B = ∅. Then the triple ((F,A), (G,B), U)
is defined as a soft decision system over the common
universe U , where (F,A) is the condition soft set and
(G,B) is the decision soft set.

Definition 12. (Incomplete fuzzy soft decision system)
A system ((F,A), (G,B), U), in which both condition
and decision soft sets are crisp soft sets, is called an
incomplete crisp soft decision system. If the condition
soft set is an incomplete fuzzy soft set, then it is called
an incomplete fuzzy soft decision system and denoted by
((F̃ ′, A), (G,B), U).

Example 9. (Incomplete fuzzy soft decision system)
Consider again Example 4. Let (F̃ ′, A) be the condition
soft set, a complete soft set (G,B) be the decision soft set,
and

(G,B) = {G(ε1) = {h3, h5},
G(ε2) = {h1, h2, h4, h6}},

where ε1 and ε2 are two attributes in the attribute set
B, which denote unattractive house and attractive house
respectively. Then the triple ((F̃ ′, A), (G,B), U) is an
incomplete fuzzy soft decision system. �

4.2. Significance of an attribute subset. Owing
to redundant information, parameter reduction is an
important step in decision making. This section presents
the definition of the significance of an attribute subset in a
fuzzy incomplete soft set, which is an important indicator
for parameter reduction.

Definition 13. (Significance of an attribute set) Let
((F̃ ′, A), (G,B), U) be an incomplete fuzzy soft decision
system andC ⊆ A be an attribute subset. The significance
of C can be defined as

SIG(C) =
∣∣
∣
⋃

εi∈B

(F̃ ′, C)∧
�
G(εi)

∣∣
∣, (10)

where | · | means the cardinal number of a set.

Example 10. (Significance of an attribute set) In
Example 9, according to Definition 13, the significance
of A in (F̃ ′, A) can be computed by

SIG(C) =
∣
∣∣
⋃

εi∈B

(F̃ ′, A)∧
�
G(εi)

∣
∣∣

= |(F̃ ′, A)∧
�
G(ε1) ∪ (F̃ ′, A)∧

�
G(ε2)|

= |{h5} ∪ {h1, h4, h6}|
= 4.

�
Theorem 2. Let ((F̃ ′, A), (G,B), U) be an incomplete
soft decision system and C1 ⊆ C2 ⊆ A. Then we have

SIG(C1) ≤ SIG(C2). (11)

Proof. We have

SIG(C1) =
∣
∣
∣
⋃

εi∈B

(F̃ ′, C1)∧�G(εi)
∣
∣
∣

SIG(C2) =
∣
∣∣
⋃

εi∈B

(F̃ ′, C2)∧�G(εi)
∣
∣∣.

From Theorem 1, for each εi ∈ B,

(F̃ ′, C1)∧�G(εi) ⊆ (F̃ ′, C2)∧�G(εi),

∣
∣
∣
⋃

εi∈B

(F̃ ′, C1)∧�G(εi)
∣
∣
∣ ≤

∣
∣
∣
⋃

εi∈B

(F̃ ′, C2)∧�G(εi)
∣
∣
∣,

i.e., SIG(C1) ≤ SIG(C2). �

Theorem 2 shows that the significance of an attribute
subset monotonically increases with the number of
attributes, which means that adding a new attribute in an
attribute subset at least does not decrease the significance
of the attribute subset in any incomplete fuzzy soft
decision system. This property is very important for
parameter reduction.

4.3. Parameter reduction. Based on the definition of
the significance of the attribute subset, the reduct attribute
set, optimal reduct attribute set, core attribute, and core
attribute set can be defined.

Definition 14. (Reduct attribute set) Assume that
((F̃ ′, A), (G,B), U) is a fuzzy incomplete soft decision
system and C ⊆ A. Then C is a reduct attribute set of
((F̃ ′, A), (G,B), U) if

SIG(C) = SIG(A). (12)

Definition 15. (Optimal reduct attribute set) If for any
subset of C, D ⊂ C ⊆ A, SIG(D) < SIG(C) =
SIG(A), then C is an optimal reduct attribute set of
((F̃ ′, A), (G,B), U).
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Definitions 14 and 15 offer a good tool to find
an (optimal) reduct attribute set. It is based on the
definition of the significance of an attribute set, which
can help us identify the necessary attributes and the
unnecessary attributes through comparing similarities
between the soft subset (F̃ ′, C) and the decision soft set
(G,B). This process can be conducted in an incomplete
fuzzy soft set directly according to the definitions of
the similarity relationship between objects in incomplete
fuzzy soft sets and the restricted AND operation. This
does not need to transfer incomplete information into
complete one. Therefore, parameter reduction can be
realized in decision-making problems with incomplete
information under a fuzzy environment directly without
any information loss or distortion.

Example 11. (Reduct attribute set) Reconsider
Example 9. For ((F̃ ′, A), (G,B), U), according to
Definition 13, the significance of attribute subset C =
{e2, e3, e4, e5} ⊂ A in ((F̃ ′, A), (G,B), U) can be
computed as follows:

(F̃ ′, C) = {F̃ ′(e2) = {h1/0.8, h3/0.2, h4/0.7,

h5/0.2, h6/0.7} ∪ {h2},
F̃ ′(e3) = {h1/0.4, h2/0.4, h3/0.4,

h4/0.5, h5/0.2} ∪ {h6},
F̃ ′(e4) = {h1/0.2, h2/0.3, h4/0.6,

h6/0.8} ∪ {h3, h5},
F̃ ′(e5) = {h1/0.9, h2/0.4, h3/0.4,

h4/1, h5/0.1, h6/0.8} ∪ ∅}.
Then

S̃IM(C) = {(h1, h1), (h2, h2), (h3, h3),

(h4, h4), (h5, h5), (h6, h6),

(h2, h3), (h3, h2), (h4, h6), (h6, h4)},
S̃C(h1) = {h1},
S̃C(h2) = {h2, h3},
S̃C(h3) = {h2, h3},
S̃C(h4) = {h4, h6},
S̃C(h5) = {h5},
S̃C(h6) = {h4, h6}.
S̃IG(C) =

∣
∣∣
⋃

εi∈B

(F̃ ′, C)∧
�
G(εi)

∣
∣∣

= |(F̃ ′, C)∧
�
G(ε1) ∪ (F̃ ′, C)∧

�
G(ε2)|

= |{h5} ∪ {h1, h4, h6}|
= 4 = S̃IG(A).

According to Definition 14, C is a reduct attribute subset
of((F̃ ′, A), (G,B), U), but it may be not an optimal

reduct attribute set. This is because there may be an
attribute subset D ⊂ C and S̃IG(D) = S̃IG(A). �

Based on the definition of the reduction in the
incomplete soft decision system, we give the definitions
of a core attribute and a core attribute set.

Definition 16. (Core attribute) Attribute e is a
core attribute of an incomplete fuzzy soft decision
system if it belongs to every reduct attribute set of
((F̃ ′, A), (G,B), U).

Definition 17. (Core attribute set) An attribute set
C (C ⊆ A) is a core attribute set of ((F̃ ′, A), (G,B), U)
if all the elements in C are core attributes of
((F̃ ′, A), (G,B), U).

4.4. Decision rules. Decision rules of the soft decision
system ((F,A), (G,B), U) can be established according
to the attributes set A as follows:

∧(ei, v) → ∨(εi, w), (13)

where ei ∈ A, εi ∈ B, v = F (ei)/hi, w = G(εi)/hi;
∧ means “and”; ∨ means “or”; ∧(ei, v) signifies the
condition part of the rule and ∨(εi, w) stands for the
decision part of the rule.

Accordingly, we can get the decision rules from the
attributes set on an incomplete fuzzy soft decision system.

Example 12. (Decision rules of incomplete fuzzy soft
decision systems) In Example 9 , the decision rules of
((F̃ ′, A), (G,B), U) from A are as follows:

r1 : (e1, 0.2) ∧ (e2, 0.8) ∧ (e3, 0.4) ∧ (e4, 0.2) ∧ (e5, 0.9)

→ (ε2, 1) (attractive house);
r2 : (e1, 0.3) ∧ (e2, ∗) ∧ (e3, 0.4) ∧ (e4, 0.3) ∧ (e5, 0.4)

→ (ε2, 1) (attractive house);
r3 : (e1, ∗) ∧ (e2, 0.2) ∧ (e3, 0.4) ∧ (e4, ∗) ∧ (e5, 0.4)

→ (ε1, 1) (unattractive house);
r4 : (e1, 0.1) ∧ (e2, 0.7) ∧ (e3, 0.5) ∧ (e4, 0.6) ∧ (e5, 1)

→ (ε2, 1) (attractive house);
r5 : (e1, 0.8) ∧ (e2, 0.2) ∧ (e3, 0.2) ∧ (e4, ∗) ∧ (e5, 0.1)

→ (ε1, 1) (unattractive house);
r6 : (e1, 0.2) ∧ (e2, 0.7) ∧ (e3, ∗) ∧ (e4, 0.8) ∧ (e5, 0.8)

→ (ε2, 1) (attractive house),

where * denotes incomplete information in
((F̃ ′, A), (G,B), U).

Obviously, the above rules generated by the attributes
set A contain too much redundant information. Decisions
cannot be made effectively based on them, and these
are not optimal decision rules. But on the upside,
optimal decision rules can be derived by an optimal reduct
attribute set of a soft information system, because it
contains less redundant information. �
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5. Method based on incomplete soft sets

5.1. Algorithm. This section attempts to apply
the incomplete fuzzy soft set developed above to
decision-making problems with redundant information
and incomplete information, and illustrate it with an
example of the house choice. Firstly, we formulate
Algorithm 1 for dealing with decision-making problems
based on incomplete fuzzy soft sets.

5.2. Numerical example. Then we can apply
Algorithm 1 to complete the demonstration of Example 4.

In Step 1, an incomplete fuzzy soft decision system
((F̃ ′, A), (G,B), U)) is established on the initial data set.

In Step 2, the significance of the attribute set A in
((F̃ ′, A), (G,B), U)) is given by

SIG(A) =
∣∣
∣
⋃

εi∈B

(F̃ ′, A)∧
�
G(εi)

∣∣
∣

= |(F̃ ′, A)∧
�
G(ε1) ∪ (F̃ ′, A)∧

�
G(ε2)|

= |{h5} ∪ {h1, h4, h6}|
= 4.

In Step 3, the significance of each attribute subset in
((F̃ ′, A), (G,B), U)) can be calculated by the same way.
We get

C = A = {e1, e2, e3, e4, e5},
C1 = C − e1 = {e2, e3, e4, e5},

S̃IG(C1) = | ∪ε∈B (F̃ ′, C1)∧�G(ε)|
= |{h5} ∪ {h1, h4, h6}|
= 4,

S̃IG(C1) = S̃IG(A),

C = C1 = {e2, e3, e4, e5},
C2 = C − e2 = {e3, e4, e5},

Algorithm 1. Algorithm to solve decision-making
problems with redundant and incomplete information
under fuzzy environment.
Step 1. Construct an incomplete fuzzy soft decision
system ((F̃ ′, A), (G,B), U).

Step 2. Calculate S̃IG(A) according to Definition 13.

Step 3. Calculate S̃IG(Ai), where Ai ⊆ A.
Step 4. Find an optimal reduct attribute set of
((F̃ ′, A), (G,B), U)) according to Definition 15.
Step 5. Obtain optimal decision rules and make a
decision.

S̃IG(C2) = | ∪ε∈B (F̃ ′, C2)∧�G(ε)|
= |{h5} ∪ {h1, h4, h6}|
= 4,

S̃IG(C2) = S̃IG(A),

C = C2 = {e3, e4, e5},
C3 = C − e3 = {e4, e5},

S̃IG(C3) = | ∪ε∈B (F̃ ′, C3)∧�G(ε)|
= |{h5} ∪ {h1, h4, h6}|
= 4,

S̃IG(C3) = S̃IG(A),

C = C3 = {e4, e5},
C4 = C − e4 = {e5},

S̃IG(C4) = | ∪ε∈B (F̃ ′, C4)∧�G(ε)|
= |{h5} ∪ {h1, h4, h6}|
= 4,

S̃IG(C4) = S̃IG(A),

C = C4 = {e5},
C5 = C − e5 = ∅.

In Step 4, according to Definitions 14 and 15, we can
conclude that the attribute subset C = C4 = {e5} is
the optimal reduct attribute set of ((F̃ ′, A), (G,B), U)),
because S̃IG(C4) = S̃IG(A), and C4 is the minimum
subset of A.

In Step 5, we can derive the optimal decision rules as
follows:

r1 : (e5, 0.9) → (ε2, 1) (attractive house);
r2 : (e5, 0.4) → (ε2, 1) (attractive house);
r3 : (e5, 0.4) → (ε1, 1) (unattractive house);
r4 : e5, 1.0) → (ε2, 1) (attractive house);
r5 : (e5, 0.1) → (ε1, 1) (unattractive house);
r6 : (e5, 0.8) → (ε2, 1) (attractive house).

In other words, if the house is in a good green
surrounding (the membership value at e5 is close to 1),
then the house is attractive, like h1, h4 and h6. If the
house is not in a good green surrounding (the membership
value at e5 is close to 0), then the house is unattractive,
like h5. If the house is in a normal green surrounding (the
membership value at e5 is close to 0.5), then the house
may be attractive or not, like h2 and h3.

5.3. Comparative analysis. Zou and Xiao (2008)
developed the average-probability approach to process
incomplete information by using fuzzy soft sets (FSSs).
This section compares the FSS method with our
method based on incomplete fuzzy soft sets (IFSSs) to
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demonstrate the advantages of the IFSS method to solve
decision-making problems with redundant and incomplete
information under a fuzzy environment.

5.3.1. Results from FSSs. Let pe denote the
average-probability that an object belongs to F ′(e), and

p̃e =
1

b

∑

hie �=∗∧1≤i≤m

hie, (14)

where the hie’s are the entries in the fuzzy soft set, m is
the number of objects in universe U and b is the number
of objects that belong to F (e) with complete information.
Then the cells with incomplete data in the fuzzy soft set
can be replaced with pe.

In Example 4, according to Eqn. (14), it is easy to
see that pe1 = 0.3, pe2 = 0.5, pe3 = 0.4, pe4 = 0.5, and
we can get the choice value of each object. Let ci(avg) be
the choice value of an object generated by the method of
average probability. For comparison, let ci(0.5), ci(0) and
ci(1) stand for the choice values of an object by setting all
cells with incomplete data to 0.5, 0 and 1, respectively.
As is shown in Table 5, the outcomes based on ci(0) and
ci(1) are considerably different from ci(avg), but the results
based on ci(0.5) are almost the same as those for ci(avg),
except for h6. That is because all membership values of
known objects under e3 are less than 0.5 and close to 0,
which can result in an error if the incomplete data of h6 on
e3 are replaced by 0.5. From Table 5, we can conclude that
h4 and h6 are two optimal choices because their choice
values are the highest based on the average-probability
approach. Here h1 is an ordinary house, and h2, h3,
h5 might be poor choices. These results are different
from the classification results of this paper. The method
proposed by this paper can classify objects into three
classes according to the optimal decision rules: h1, h4

and h6 are attractive houses, h5 is an unattractive house,
and h2 and h3 are two uncertain houses, based on their
performance in the green surrounding.

5.3.2. Comparison. The differences between the FSS
method and the IFSS method can be summarized as
follows. First, the approaches to handle incomplete
information are different. In the FSS method, the missing

Table 5. Choice values of the incomplete fuzzy soft set (F̃ ′, A).
U ci(avg) ci(0.5) ci(0) ci(1)
h1 2.5 2.5 2.5 2.5
h2 1.9 1.9 1.4 2.4
h3 1.8 2.0 1.0 3.0
h4 2.9 2.9 2.9 2.9
h5 1.8 1.8 1.3 2.3
h6 2.9 3.0 2.5 3.5

membership value of an object is replaced by the average
probabilities of all objects with complete information
on the attribute, the replacement is made possible by
assuming that the membership values of each object
follow a normal distribution. On the contrary, in the
IFSS method of this paper, the decisions rules are derived
based on binary indiscernibility and similarity relations
which can be directly applied to attributes with incomplete
information. Thus, no unreliable assumptions about the
distribution of the membership values to fill the missing
data points need to be made. Second, the FSS method
does not make full use of the decision values in the process
of decision making, and there is no connection between
the conditional attributes and the decision attributes.
The IFSS proposed by this paper can generate decision
rules by making a connection between the conditional
parameters and decision values straightforwardly. Third,
in the FSS method, the objects can be ranked according
to their decision values but cannot be grouped as several
classes, because no grouping rules were provided, while
this is not a problem in the IFSS method in our study as
the grouping rules can be clearly defined.

6. Application to evaluation of regional food
safety

This section describes the application of the proposed
decision-making method to evaluate the regional food
safety situation of Chongqing, China. We obtained
the inspection results of 40 districts (see Section A1 in
Appendix for a list of these 40 districts) of Chongqing
on 12 attributes (a description of these 12 attributes can
be found in Section A2 of Appendix) regarding food
safety in 2018. Our research question was how to predict
the regional satisfaction level (SL) of local people about
food safety issues when we had data about food safety
inspection.

All the twelve attributes had values in the interval
from 0 to 1. Because there were no missing values in the
original data, we randomly set 30% of the observations
with one or at most four missing variables to create an
incomplete fuzzy data set based on the raw data. 30
districts were randomly selected as the training set and
the remaining 10 districts as the testing set. Both sets
had 30% observations with missing values. With the
corresponding satisfaction of food safety, we built an
incomplete fuzzy soft decision system. Then, by using the
DM algorithm proposed in this paper, the significance of
each attribute subset and the optimal parameter reduction

Table 6. Prediction accuracy of FSS and IFSS.
FSS IFSS

Prediction accuracy (%) 60 100
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could be obtained.
Our algorithm was programmed and implemented

in R, and the FSS method was also applied in the same
problem. Table 6 shows the forecasting accuracy of the
two methods (an explanation of the forecasting process
can be found in Section A3 of Appendix). Although
the small testing sample leads to a significant difference
between the accuracies of the two methods, and the 100%
predictive accuracy of the IFSS method is not convincible,
the results can also show that our method outperformed
the FSS.

7. Conclusion
Based on the research of Molodtsov, this paper proposed
a method to solve decision-making problems which
contain incomplete and redundant information based
on incomplete fuzzy soft sets. Before investigating
the decision method, we presented the concepts of
incomplete fuzzy soft sets and incomplete fuzzy soft
decision systems. Then incomplete fuzzy soft subsets,
incomplete fuzzy soft supersets, and the equality of
incomplete fuzzy soft sets were defined. Based on these
basic definitions about the incomplete fuzzy soft set,
binary relationships (a binary indiscernibility relation and
a binary similarity relation) of incomplete fuzzy soft
sets were discussed, and some operations such as the
restricted/relaxed AND operation on an incomplete fuzzy
soft set and a subset of the universe were defined. After
that, the definition of the significance of an attribute
subset in an incomplete fuzzy soft decision system was
proposed. Following this definition, we got the definitions
of a reduct attribute set, an optimal reduct attribute set and
core attributes of an incomplete fuzzy soft decision system(
(F̃ ′, A), (G,B), U)

)
. According to the optimal reduct

attribute set, an optimal decision rules can be derived.
Finally, the incomplete fuzzy soft set based method of
MCDM with incomplete information was proposed and
illustrated with an example.

The results have demonstrated the capability of the
incomplete fuzzy soft set to integrate data, and avoid
an information loss or a distortion caused by incomplete
and redundant information. A corresponding comparative
analysis with Zou and Xiao’s research about a data
analysis approach to fuzzy soft sets under incomplete
information was performed, and the effectiveness of the
method proposed by this study was emphasized. The
approach proposed by this paper can be applied to a wide
range of areas such as feature selection, decision making
and forecasting problems.
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Appendix

A1. Districts of Chongqing

There were a total of 40 districts in Chongqing as of 2018
which include Ba’nan, Beibei, Changshou, Dadukou,
Dazu, Dianjiang, Fengdu, Fengjie, Fuling, Hechuan,
Jiangbei, Jiangjin, Jiulongpo, Kaizhou, Liangping,
Liangjiang, Nan’an, Nanchuan, Pengshui, Qianjiang,
Rongchang, Shapingba, Shizhu, Tongliang, Wansheng,
Wanzhou, Wushan, Wuxi, Wulong, Xiushan, Yongchuan,
Youyang, Yubei, Yuzhong, Yunyang, Zhongxian,
Tongnan, Bishan, and Qijiang.

A2. Attributes to assess food safety

It should be noted that we did not access to the raw data
of food safety inspection at the firm levels in each district
of Chongqing, but only a summary of levels of consumer
satisfaction on food safety and the inspection results on
the twelve attributes at a district level. All these attributes
were used in the application analysis in Section 6. A full
list of these twelve attributes can be found in Table A1.

The data were provided by the Chongqing
Administration for Market Regulation according to
the data disclosure agreement between the Administration
and the authors and could not be revealed to the public.
Therefore, we did not show the data in Appendix.
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Table A1. Description of food safety attributes
Attribute name Description

e1 Residues of agricultural chemicals
and veterinary drugs

e2 Non-edible substance
e3 Misuse or overuse of food additives
e4 Contamination of foods by heavy

metals
e5 Other pollutants
e6 Microbial contamination
e7 Biotoxins in food
e8 Other biological substance
e9 Food quality index
e10 Functional component in health care

products
e11 Labeling
e12 Others

A3. Forecasting satisfactory level of food
safety

First, according to the incomplete fuzzy soft decision
system, we can derive an optimal reduct attribute. In the
case of food safety inspection, the optimal reduct attribute
is attribute 6, microbial contamination.

Second, according to the incomplete fuzzy soft
decision system, we can use the optimal reduct attribute
to classify the training observations into 8 groups. We
name these 8 groups as condition groups.

Third, we use the satisfactory level of consumers to
local food safety (with values from 0 to 1) as the decision
attribute. We set to 0.8 as the threshold. If the consumer’s
satisfactory level is larger than or equal to 0.8, then the
district is classified as satisfied, otherwise, it is classified
as unsatisfied. We name these two groups as decision
groups.

Fourth, according to the similarity between the
condition group and the decision group, we can form
8 decision rules. For example, suppose that condition
group A and the satisfied group contain common districts.
Furthermore, suppose that district D from the testing set
belongs to the domain defined by condition group A. Then
according to the decision rules, we can predict that district
D would be in the satisfied group.
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