
Int. J. Appl. Math. Comput. Sci., 2023, Vol. 33, No. 1, 133–149
DOI: 10.34768/amcs-2023-0011

GENERATION OF SYNCHRONIZING STATE MACHINES FROM A
TRANSITION SYSTEM: A REGION–BASED APPROACH

VIKTOR TEREN a,*, JORDI CORTADELLA b, TIZIANO VILLA a

aDepartment of Computer Science
University of Verona

Strada le Grazie 15, 37134, Verona, Italy
e-mail: {viktor.teren,tiziano.villa}@univr.it

bDepartment of Computer Science
Polytechnic University of Catalonia

Jordi Girona Salgado 1–3, 08034, Barcelona, Spain
e-mail: jordi.cortadella@upc.edu

Transition systems (TSs) and Petri nets (PNs) are important models of computation ubiquitous in formal methods for
modeling systems. A crucial problem is how to extract, from a given TS, a PN whose reachability graph is equivalent
(with a suitable notion of equivalence) to the original TS. This paper addresses the decomposition of transition systems
into synchronizing state machines (SMs), which are a class of Petri nets where each transition has one incoming and one
outgoing arc. Furthermore, all reachable markings (non-negative vectors representing the number of tokens for each place)
of an SM have only one marked place with only one token. This is a significant case of the general problem of extracting
a PN from a TS. The decomposition is based on the theory of regions, and it is shown that a property of regions called
excitation-closure is a sufficient condition to guarantee the equivalence between the original TS and a decomposition into
SMs. An efficient algorithm is provided which solves the problem by reducing its critical steps to the maximal independent
set problem (to compute a minimal set of irredundant SMs) or to satisfiability (to merge the SMs). We report experimental
results that show a good trade-off between quality of results vs. computation time.

Keywords: transition system, Petri net, state machine, decomposition, theory of regions, SAT, pseudo-Boolean optimiza-
tion.

1. Introduction

The decomposition of a transition system (TS) into
a synchronous product of state machines gives an
intermediate model between a TS and a Petri net (PN).
The set of SMs may exhibit fewer distributed states and
transitions, exploiting the best of both worlds of TSs
and PNs, leading to better implementations (e.g., smaller
circuits with probably less power consumption (Benini
et al., 2001)). Furthermore, the decomposition procedure
extracts explicitly the system concurrency: a property
identified when given a marking, two or more places have
a token and are able to fire independent transitions with
an arbitrary order, a PN feature, which is convenient for
system analysis and performance improvement. One can

*Corresponding author

get an idea of the efficacy of the decomposition process
by comparing Figs. 1 and 2, where the SMs of the latter
expose the implicit parallelism of the former.

Notice that each SM is completely concurrent with
the others; therefore, any firing order is allowed, except
when there are synchronizations on shared events.

The decomposition of a transition system can be
seen from the Petri net perspective as the problem of
the coverability by S-components of a Petri net (Kemper
and Bause, 1992; Desel, 1995; Mattheakis, 2013) or
of a connected subnet system (Badouel et al., 2015,
p. 49) (called S-coverability): each S-component is a
strongly connected safe SM, i.e., an SM with only one
token, therefore it cannot contain concurrency. The only
concurrency of the system takes place in the interaction
of the S-components. Carmona et al. (2009c) investigated

mailto:{viktor.teren,tiziano.villa}@univr.it
mailto:jordi.cortadella@upc.edu

134 V. Teren et al.

s0

s16 s17

s1

s19

s2

s4

s3

s5 s6 s18 s7 s9

s10

s8

s12

s13

s11

s15 s14

b−
s+

r−

b+

r−
s+

a+

r−
b+

a+
s+

a+
b+ s− b− s+

r+
b+

r+

s+
a−

r+

b+
a−

s+

a−
b+

s−

Fig. 1. TS derived from an STG.1

r0

b−

r1 s+ r2

b+

r3

s−

r4

r−

r5 a+ r6

r+

r7

a−

r0

b− r4

r−

r5

a+

r6

a−

r7r+

s−

Fig. 2. Set of synchronizing state machines derived from the TS
in Fig. 1.

synthesis of k-bounded Petri nets, i.e., nets which contain
at most k tokens simultaneously in a place. In our
case the extension to k-bounded SMs would raise the
computational complexity of the decomposition flow.
Furthermore, the concurrency, which is only possible
between SMs, would become possible also inside single
SMs.

In this paper, following the approach of the previous
short version (Teren et al., 2021), we start from the
theory of regions (Ehrenfeucht and Rozenberg, 1990)
to design a procedure which, given a transition system,
generates a matching set of interacting SMs, without
building an equivalent Petri net, which were the original
motivation to define regions (Cortadella et al., 1995).
Our approach computes a set of minimal regions with
the excitation-closure (EC) property of a given TS, and
derives from them an irredundant synchronous product of
interacting SMs. Excitation-closure guarantees that the
regions extracted from the transition system are sufficient
to model its behaviour.

The main steps of the decomposition procedure are:
(i) computation of all minimal regions of the given TS,
(ii) generation of a set of SMs with the excitation-closure
property, (iii) removal of redundant SMs, (iv) merging of
regions while preserving the excitation-closure property.
The generation of minimal regions is well known from the
literature (Cortadella et al., 1998). The generation of SMs
with the EC property is reduced to solving instances of

1A signal transition graph (STG) G = (V, E) is an interpreted sub-
set of marked graphs wherein each transition represents either the rising
(x+) or falling (x−) of a signal x which has signal levels high and low.
V is the set of transitions and E is the set of edges corresponding to
places of the underlying marked graph.

Table 1. List of abbreviations used in this article.

Abbreviation Explanation

EC Excitation-closure
ECTS Excitation-closed transition system

ES Excitation set
HPC High performance computing
ILP Integer linear programming
MIS Maximal independent set
PN Petri net
RG Reachability graph
SAT Boolean satisfiability
SM State machine
SS Switching set
TS Transition system

UNSAT Boolean unsatisfiability

the maximal independent set (MIS)2, where each solution
of MIS yields an SM. Some of these SMs may be
completely redundant, i.e., they can be removed while
the remaining partially redundant SMs still satisfy the EC
property. We use a greedy strategy to find a minimal
irredundant set of SMs. This step represents our first and
most important trade-off, since the search stops when a
sufficient number of SMs is found without exploring all
of them, so that this set of SMs is an approximation of the
optimal result. This trade-off represents also the hardest
challenge: decomposing the transition system into the
fewest SMs, trying to reach near optimal results, but at
the same time without using exact algorithms which are
too time-consuming.

In Section 5 we also show the result of performing
the search of all possible SMs. The surviving SMs go
through a simplification step that merges adjacent regions
and removes the edges/labels captured by the merging
step. In the extreme case, one can remove all instances
of a region except for one SM. The best merging option is
selected by encoding both, the constraints of the merging
operations and the optimization objective as an ILP3,
solvable by SAT solvers and binary search (Boros and
Hammer, 2002), with the goal of keeping the minimum
number of labels needed to satisfy the EC property. At
the end, the SMs are optimized according to the selected
merging operations.

The optimization steps in which the problem
is divided may be solved exactly or with heuristics.
Experiments have been performed trying various

2Given an undirected graph G = (V, E), an independent set is a
subset of nodes U ⊆ V such that no two nodes in U are adjacent. An
independent set is maximal if no node can be added without violating
independence.

3Integer linear programming, or ILP, investigates linear program-
ming problems in which the variables are restricted to integers: the gen-
eral problem is to determine max{cx|Ax ≤ b; x integral} (Schrijver,
1998).

Generation of synchronizing state machines from a transition system . . . 135

combinations of exact and heuristic algorithms, with
the conclusion that the heuristics deliver good results in
reasonable computation time.

1.1. State of the art. Kalenkova et al. (2014)
decomposed a transition system iteratively into an
interconnection of n component transition systems with
the objective to extract a Petri net from them. This
can be seen as a special case of our problem, because
by Kalenkova et al. (2014) the decomposition allows
the extraction of a Petri net, but the decomposed set
of transition systems cannot be used as an intermediate
model. Their approach is flexible in choosing how to
split the original transition system, but it does not provide
any minimization algorithm, so that the redundancy due
to overlapping states in the component transition systems
translates into redundant places of the final Petri net.
Another method presented by de San Pedro and Cortadella
(2016) is based on the decomposition of transition systems
into “slices,” where each transition system is separately
synthesized into a Petri net, and in the case of Petri
nets “hard” to understand the process can be recursively
repeated on one or more “slices” creating a higher number
of smaller PNs. With respect to the aforementioned
methods, our approach yields by construction a set of PNs
restricted to only SMs and applies to them minimization
criteria. The results of Mokhov et al. (2017) instead show
how complex processes can be formally represented by
process windows, where each window covers a part of
the process behaviour. In our case, each SM could be
interpreted as a window representing a part of the entire
process.

1.1.1. Decomposition in process mining. The aim
of de San Pedro and Cortadella (2016) is the mining
of comprehensive Petri nets for a better visualization
of spaghetti models obtained by process mining. Also
decomposition plays an important role in process mining,
especially in business process management (BPM) (Van
der Aalst, 2012; 2013; Verbeek and Van der Aalst,
2014; Taibi and Systä, 2019), where a decomposed
process can be better understood and maybe parallelized.
Say that we mined some traces and represented them
as a transition system; then the decomposition of the
transition system splits it as different concurrent flows
which can be analyzed separately. Furthermore, since
each SM is completely concurrent with the others, also
parallelization of concurrent processes becomes easier.
In most cases, the decomposition starts from a Petri net
representing the whole behaviour of the system (Van der
Aalst, 2012; 2013; Verbeek and Van der Aalst, 2014).
Instead of creating a PN from event logs, we can easily
create a transition system (Van der Aalst et al., 2010;
Carmona et al., 2009a) and directly decompose it with

our algorithm. The application to process decomposition
is part of current research that will be reported when
completed.

1.2. Contributions. This is an extended version of the
short paper that we presented at the 24th Euromicro Con-
ference on Digital System Design (DSD) (Teren et al.,
2021). This paper extends the decomposition algorithm
of the conference version by introducing a new mixed
strategy to select the components state machines of the
decomposition. The new mixed strategy combines exact
and heuristic algorithms for the removal of redundant
SMs, and operates adaptively according to the number of
SMs obtained after the initial extraction step. We report
the new related experiments showing the effectiveness of
the mixed strategy.

Altogether, the new material includes: additional
definitions, complete proofs and detailed examples for
each step of the decomposition procedure, a new
decomposition strategy with revised experiments. In
particular, we added the bisimulation proof, a description
of the SAT clause encoding and a step-by-step example of
SM set generation.

The paper is organized as follows. Section 2
introduces the background material (including the theory
of regions to extract PNs from TSs) and then characterizes
the extraction of SMs from TSs. The procedures to extract
the SMs are described in Section 3. Section 4 discusses
composition of SMs and contains the main theoretical
result that the synchronous product of SMs is bisimilar
to the original transition system (proof in Appendix).
Exhaustive experiments are reported in Section 5, with
final conclusions drawn in Section 6.

2. Preliminaries
2.1. Transition systems.

Definition 1. (TS/LTS (Cortadella et al., 1998)) A labeled
transition system (LTS, or simply TS) is defined as the
quadruple (S, E, T , s0), where

• S is a non-empty set of states,

• E is a set of events/labels,

• T ⊆ S × E × S is a transition relation,

• s0 ∈ S is an initial state.
Every transition system is supposed to satisfy the

following properties:

• it does not contain-self loops: ∀(s, e, s′) ∈ T :
s �= s′;

• each event has at least one occurrence: ∀e ∈ E :
∃(s, e, s′) ∈ T ;

136 V. Teren et al.

s0

s7

s9 s1

s2 s8

s4

s3s6

s5

a

b
c

b

c
d

a

fe

e

f
d

Fig. 3. Example of a transition system.

• every state is reachable from the initial state:
∀s ∈ S : s0 →∗ s;

• it is deterministic: for each state there is at most one
successor state reachable with label e.

An example of a transition system can be seen in
Fig. 3.

Definition 2. (Isomorphism) Two transition systems
TS1 = (S1, E, T1, s0,1) and TS2 = (S2, E, T2, s0,2) are
said to be isomorphic (or that there is an isomorphism
between TS1 and TS2) if there is a bijection bS : S1 → S2,
such that

• bS(s0,1) = s0,2,

• ∀(s, e, s′) ∈ T1 : (bS(s), e, bS(s
′)) ∈ T2,

• ∀(s, e, s′) ∈ T2 : (b−1
S (s), e, b−1

S (s′)) ∈ T1.

Definition 3. (Bisimulation) Given two transition systems
TS1 = (S1, E, T1, s0,1) and TS2 = (S2, E, T2, s0,2), a
binary relation B ⊆ S1 × S2 is a bisimulation, denoted
by TS1 ∼B TS2, if (s0,1, s0,2) ∈ B and if whenever
(p, q) ∈ B with p ∈ S1 and q ∈ S2:

• ∀(p, e, p′) ∈ T1 : ∃q′ ∈ S2 such that (q, e, q′) ∈ T2

and (p′, q′) ∈ B,

• ∀(q, e, q′) ∈ T2 : ∃p′ ∈ S1 such that (p, e, p′) ∈ T1

and (p′, q′) ∈ B.

Two TSs are said to be bisimilar if there is a bisimulation
between them.

The operation ‘Ac’ deletes from a TS all the states
that are not reachable or accessible from the initial state
and all transitions attached to them.

Definition 4. (Synchronous product) Given two
transition systems TS1 = (S1, E1, T1, s0,1) and
TS2 = (S2, E2, T2, s0,2), the synchronous product is
defined as TS1||TS2 = Ac(S,E1 ∪ E2, T, (s0,1, s0,2))
where S ⊆ S1 × S2, (s0,1, s0,2) ∈ S, T ⊆ (S1 × S2) ×
E × (S1 × S2) is defined as follows:

• if a ∈ E1 ∩E2, (s1, a, s′1) ∈ T1 and (s2, a, s
′
2) ∈ T2

then ((s1, s2), a, (s
′
1, s

′
2)) ∈ T ,

• if a ∈ E1, a /∈ E2 and (s1, a, s
′
1) ∈ T1 then

((s1, s2), a, (s
′
1, s2)) ∈ T ,

• if a /∈ E1, a ∈ E2 and (s2, a, s
′
2) ∈ T2 then

((s1, s2), a, (s1, s
′
2)) ∈ T ,

• nothing else belongs to T .
The synchronous product is associative, so we

can define the product of a collection of n TSs:
TS1||TS2|| . . . ||TSn = ((TS1||TS2) . . .)||TSn; as an
alternative, we can extend directly the previous definition
to more than two TSs.

2.2. Petri nets. We assume the reader to be familiar
with Petri nets. We refer to Murata (1989) for a deeper
insight on the concepts used in this work. This section
introduces the nomenclature related to Petri nets used
along the paper.

In this work we will only deal with safe Petri nets,
i.e., nets whose places do not contain more than one
token in any reachable marking. For this reason, we will
model markings as sets of places. This approach could be
extended to k-bounded Petri nets, but the extension would
increase the computational complexity of the algorithm.

Definition 5. (Ordinary Petri net (Murata, 1989)) An
ordinary Petri net is the quadruple PN = (P, T, F,M0),
where

• P = {p1, p2, . . . , pm} is a finite set of places,

• T = {t1, t2, . . . , tn} is a finite set of transitions,

• F ⊆ (P×T)∪(T×P) is a set of arcs (flow relation),

• M0 is an initial marking,

• P ∩ T = ∅ and P ∪ T �= ∅.
A Petri net structure N = (P, T, F) without any specific
initial marking is denoted by N . A Petri net with an initial
marking M0 is denoted by (N,M0).

For any x ∈ P ∪ T , then •x = {y|(y, x) ∈ F}.
Similarly, x• = {y | (x, y) ∈ F}.
Definition 6. (Firing rule (Badouel et al., 2015, p.
17)) Let N = (P, T, F,M0) be a safe Petri net. A
transition t ∈ T enabled in marking M is represented as
M [t〉. If t is enabled in M , then t can be fired leading
to another marking M ′, denoted as M [t〉M ′, such that
M ′ = M\•t ∪ t•.

We call [M〉 the set of markings that can be reached
from M by firing sequences of enabled transitions.

Definition 7. (Reachability graph (Badouel et al., 2015,
p. 20)) Given a safe Petri net N = (P, T, F,M0),
the reachability graph of N is the transition system
RG(N) = ([M0〉, T, Δ,M0) defined by (M, t,M ′) ∈ Δ
if M ∈ [M0〉 and M [t〉M ′.

Generation of synchronizing state machines from a transition system . . . 137

Definition 8. (State machine, SM (Murata, 1989)) A state
machine is an ordinary Petri net, N = (P, T, F,M0) such
that for every transition t ∈ T , |•t| = |t•| = 1, i.e., it has
exactly one incoming and one outgoing edge. In a safe
state machine it also holds that |M0| = 1.

For an analysis of safeness in Petri nets, we refer to
the work of Wojnakowski et al. (2021).

Badouel et al. (2015, p. 49) observed that a state
machine M = (P, T, F,M0) can be interpreted as a
transition system TS = (P, T,Δ, s0), where the places
correspond to the states, the transitions to the events,
s0 corresponds to the unique marked initial place, and
(p, t, p′) ∈ Δ iff •t = {p} and t• = {p′} (in an SM
by definition |•t| = |t•| = 1). Therefore the reachability
graph of M is isomorphic to the transition system TS, i.e.,
RG(M) is isomorphic to TS.

In this paper we consider sets of synchronizing SMs.

2.3. From LTS to Petri nets by regions. In this
paper we propose a procedure for the decomposition of
transition systems based on the theory of regions (from
the work of Cortadella et al. (1998)). A region is a
subset of states in which all the transitions under the same
event have the same relation with the region: either all
entering, or all exiting, or some completely inside and
some completely outside the region.

Definition 9. (Region) Given a TS = (S,E, T, s0), a
region is defined as a non-empty set of states r � S such
that the following properties hold for each event e ∈ E:

enter(e, r) =⇒ ¬in(e, r) ∧ ¬out(e, r) ∧ ¬exit(e, r),
exit(e, r) =⇒ ¬in(e, r) ∧ ¬out(e, r) ∧ ¬enter(e, r),

no cross(e, r) =⇒ ¬enter(e, r) ∧ ¬exit(e, r),
where

in(e, r) ≡ ∃(s, e, s′) ∈ T : s, s′ ∈ r,

out(e, r) ≡ ∃(s, e, s′) ∈ T : s, s′ /∈ r,

enter(e, r) ≡ ∃(s, e, s′) ∈ T : s /∈ r ∧ s′ ∈ r,

exit(e, r) ≡ ∃(s, e, s′) ∈ T : s ∈ r ∧ s′ /∈ r,

no cross(e, r) ≡ in(e, r) ∨ out(e, r).

Definition 10. (Minimal region) A region r is called min-
imal if there is no other region r′ strictly contained in r
(�r′ | r′ ⊂ r).

The minimal regions of the TS in Fig. 3 are shown in
Table 2.

Definition 11. (Pre-region (resp. post-region)) A region
r is a pre-region (resp. post-region) of an event e if there is
a transition labeled with e which exits from r (resp. enters
into r). The set of all pre-regions (resp. post-regions) of
the event e is denoted by ◦e (e◦).

Table 2. Minimal regions of the TS in Fig. 3.

Region States of the TS

r1 {s0, s8}
r2 {s0, s1, s3, s5, s7}
r3 {s0, s5, s6, s7, s9}
r4 {s1, s2, s3, s4, s8}
r5 {s1, s2, s3, s5}
r6 {s1, s4, s6, s7}
r7 {s2, s4, s6, s8, s9}
r8 {s2, s5, s6, s9}
r9 {s3, s4, s7, s9}
r10 {s0, s1, s5, s6, s7}
r11 {s0, s3, s5, s7, s9}
r12 {s1, s2, s4, s6, s8}
r13 {s1, s2, s5, s6}
r14 {s1, s3, s4, s7}
r15 {s2, s3, s4, s8, s9}
r16 {s2, s3, s5, s9}
r17 {s4, s6, s7, s9}

Table 3. Pre-regions and ESs for each event of the TS in Fig. 3.

Event Pre-regions ES(event)

a {r1} {s0, s8}
b {r3, r9, r11, r17} {s7, s9}
c {r2, r6, r10, r14} {s1, s7}
d {r5, r8, r13, r16} {s2, s5}
e {r4, r9, r14, r15} {s3, s4}
f {r6, r7, r12, r17} {s4, s6}

By definition, if r ∈ ◦e (resp. r ∈ e◦) all the
transitions labeled with e are exiting from r (resp. entering
into r), furthermore, if the transition system is strongly
connected, all the regions are also pre-regions of some
event.

Definition 12. (Excitation set/switching set) The exci-
tation (resp. switching) set of event e, ES(e) (SS(e)), is
the maximal set of states such that for every s ∈ ES(e)
(resp. s ∈ SS(e)) there is a transition t ∈ T such that
t = (s′, e, s) (resp. t = (s, e, s′)).

The excitation sets of the TS in Fig. 3 are reported in
Table 3.

Definition 13. (Excitation-closed transition system,
ECTS) A TS with the set of labels E and the pre-regions
◦e is an ECTS if the following conditions are satisfied:

• excitation-closure: ∀e ∈ E :
⋂

r∈◦e r = ES(e),

• event effectiveness: ∀e ∈ E : ◦e �= ∅.
If the initial TS does not satisfy the excitation-closure

(EC) or event effectiveness property, label split-

138 V. Teren et al.

s0 s1 s2 s3
a a b

c

s0 s1 s2 s3
a a′ b

c

(a) TS (b) ECTS

Fig. 4. TS before label splitting (a) and ECTS after label split-
ting (b).

ting (Cortadella et al., 1998) can be performed to obtain
an ECTS.

An example can be seen in Fig. 4: the initial TS has
two regions r1 = {s0, s1, s2} and r2 = {s3}. Label a
satisfies the no-cross property, and so it is not an ECTS,
because, e.g., event effectiveness is not satisfied for the
event a: ◦a = ∅. Also excitation-closure is not satisfied
for the event b:

⋂
r∈◦b r = r1 �= ES(b).

After label splitting, label a is split into a and a′

yielding the following smaller minimal regions: r0 =
{s0}, r1 = {s1}, r2 = {s2} and r3 = {s3}. After label
splitting, both excitation-closure and event effectiveness
are satisfied.

The EC property also ensures that if two states, s1
and s2, cannot be separated by any region, i.e., there is no
minimal region r such that s1 ∈ r and s2 �∈ r, then s1 and
s2 are bisimilar.

The synthesis of a Petri net from an ECTS, proposed
by Cortadella et al. (1998), can be summarized by the
following steps:

1. Generation of all minimal regions.
All the excitation sets are expanded until they
become regions, i.e., all events satisfy one of the
enter/exit/no cross conditions with respect to the
regions. The non-minimal regions can be removed
by comparing them with the other regions.

2. Removal of redundant regions.
Some minimal regions may be redundant, meaning
that they can be removed while the excitation-closure
property still holds.

3. Merging minimal regions.
In order to obtain a place-minimal PN, subsets
of disjoint minimal regions can be merged into
non-minimal regions, thus reducing the number
of places. This merging must preserve the
excitation-closure of the final set of regions.

2.4. From LTS to SMs by regions. We now show how
to decompose an ECTS into a set of synchronizing SMs.

From the set of all minimal regions obtained from an
ECTS we can extract subsets of regions representing state
machines. A set of regions R represents a state machine
if R covers all the states S of the transition system and all

the regions are disjoint, i.e.,

(∀r ∈ R, �r′ ∈ R : r∩r′ �= ∅)∧(∀s ∈ S, ∃r ∈ R : s ∈ r)

Given a set of regions satisfying the previous
properties we obtain a state machine whose places
correspond to the regions, with a transition ri

e→ rj when
ri and rj are pre- and post-regions of e, respectively.
Since the regions of an SM are disjoint, each derived
SM has only one marked place, which corresponds to the
regions that cover the initial state. Notice that only the
events that cross some region appear in the SM. Notice
also that the reachability property of the original TS is
inherited by the SMs obtained by this construction.

Theorem 1. Given an ECTS TS = (S,E, T, s0) and
the set of all its minimal regions, a subset of regions R
represents an SM if and only if the set covers all the states
of TS and all its regions are pairwise disjoint.

Proof. The proof is based on the fact that every event
appearing in one SM can only have one pre-region and
one post-region in the SM. Therefore, each event has one
incoming and one outgoing edge in the SM.

Given a collection R of disjoint regions that cover all
states of TS, each element ri ∈ R has entering, exiting
and no-crossing events. We claim the following:

1. If event e exits (enters) region ri ∈ R, it cannot exit
(enter) region rj ∈ R, j �= i.

2. If event e exits (enters) region ri ∈ R, there must
be a region rj ∈ R, j �= i, such that event e enters
(exits) rj ∈ R, j �= i.

We prove the first claim. Given a region ri with e as
exiting event, there cannot be another region rj such that
e is an exiting event also for rj . Otherwise, i.e., if ri ∈ ◦e
and rj ∈ ◦e, j �= i, there are two transitions sa

e→ sb
and sc

e→ sd with sa ∈ ri and sc ∈ rj . There are two
options for sb: either it is inside or outside rj , i.e., sb ∈ rj
or sb �∈ rj , which means that e would either be entering or
no-crossing for rj , contradicting that by construction rj
is a region with e as an exiting arc. The same reasoning
applies when e is an entering event.

We prove the second claim: if event e appears as
exiting (entering) event of ri ∈ R, it must appear as
entering (exiting) event of rj ∈ R. Indeed, suppose
that ri ∈ ◦e, then there is a transition sa

e→ sb with
sa ∈ ri and sb �∈ ri, but then there must exist a region
rj ∈ R, j �= i, such that sb ∈ rj , because the union of the
regions in R covers all the states of the original TS, and
so rj ∈ e◦. The case ri ∈ e◦ is proved similarly.

Notice that we use also the fact that in our definition
of TS we rule out self-loops. �

The property of excitation-closure can be inherited
by the SMs, as stated in the following definition.

Generation of synchronizing state machines from a transition system . . . 139

Definition 14. (Excitation-closed set of state machines
derived from an ECTS) Given a set of SMs S derived
from an ECTS TS, the set of all regions R of S, the set
of labels E of TS, and the sets of pre-regions ◦e of the
TS for all e ∈ E, we have that S is excitation-closed with
respect to the regions of TS if the following conditions are
satisfied:

• EC: ∀e ∈ E :
⋂

r∈(◦e∩R) r = ES(e),

• event effectiveness: ∀e ∈ E : ∃r ∈ R | r ∈ ◦e.

3. Decomposition algorithm
The first step to decompose a transition system is to
enumerate all the minimal regions of the original TS. Each
collection of disjoint regions covering all the states of the
TS represents a state machine, such that the regions are
mapped to places of the SM, i.e., each such SM includes
a subset of regions of the original TS and represents
only the behavior related to the transitions entering into
these regions or exiting from them (instead, internal and
external events are missing).

The example in Section 4 shows also that we do
not need all the SMs to reconstruct the original LTS,
so the question is how many of them we need and
which is the “best” (in some sense) subset of SMs
sufficient to represent the given LTS. Therefore, we
may set up a search to obtain a subset of SMs, which
are excitation-closed and cover all events, to yield a
composition equivalent to the original TS. An easy
strategy to guarantee the complete coverage of all events
is to add new SMs until all regions are used. However,
the resulting collection of SMs may contain completely
or partially redundant SMs (see Sections 3.2 and 3.3),
which can be removed exactly or greedily by verifying
the excitation-closure property. Moreover, the size of the
selected SMs can be reduced through removing redundant
labels by merging regions. Summarizing, (i) minimal
regions are computed, (ii) from which a set of SMs with
EC is generated, (iii) redundant SMs are removed and,
lastly, (iv) regions are merged preserving the EC property.

The first step of the algorithm can be achieved by
a greedy algorithm from the literature, which checks
minimality while creating regions (Cortadella et al., 1998;
1997; Badouel et al., 2015, p. 103).

The second step of the decomposition algorithm
is performed by reducing it to an instance of maximal
independent set (MIS), and by calling an MIS solver
on the graph whose vertices correspond to the minimal
regions with edges which connect intersecting regions.
Each maximal independent set of the aforementioned
graph corresponds to a set of disjoint regions that define
an SM.

A greedy algorithm is used for the computation of the
third step: starting from the SM with the highest number

Algorithm 1. Generation of excitation-closed set of SMs.
Require: Set of minimal regions of an ECTS
Ensure: An excitation-closed set of SMs

1: Create the graph G where each node is a region and
there is an edge between intersecting regions

2: G0 ← G
3: M ← ∅, F ← ∅
4: do
5: Compute m = MIS(G)
6: M ←M ∪ {m}
7: G← G \M
8: while G �= ∅
9: for m ∈M do

10: Compute m̃ = MIS(G0) with the constraint
m̃ ⊇ m

11: Build state machine ˜sm induced by set of regions
m̃

12: F ← F ∪ { ˜sm}
13: end for
14: return F

of regions, one removes each SM whose removal does not
invalidate the ECTS properties.

The last step of merging is reduced to a SAT instance,
by encoding all the regions of each SM and also the events
implied by the presence of one or more regions. Solving
this SAT instance by a SAT solver, the number of labels
can be minimized by merging the regions which occur
multiple times in different SMs.

3.1. Generation of a set of SMs with excitation-
closure. Given a set of minimal regions of
an excitation-closed TS, Algorithm 1 returns an
excitation-closed set of SMs, by associating sets of
non-overlapping regions to SMs as mentioned below.
Notice that in Definition 14 we extended Definition 13
of an excitation-closed transition system (ECTS) to an
excitation-closed set of SMs, by requiring that the two
properties of excitation-closure and event-effectiveness
hold on the union of regions underlying the SMs.

Initially, Algorithm 1 converts the minimal regions
of the TS into a graph G, where intersecting regions
define edges between the nodes of G (line 1). As long
as G is not empty, the search of the maximal independent
sets is performed on it by invoking the procedure MIS
on G (MIS(G), line 5), storing the results in M (line
6) and removing the vertices selected at each iteration
(line 7). In this way, each vertex will be included in one
MIS solution. Notice that the maximal independent sets
computed after the first one are not maximal with respect
to the original graph G0, because the MIS procedure is
run on a subgraph of G0 without the previously selected
nodes. To be sure that we obtain maximal independent
sets with respect to the original G0, we expand to

140 V. Teren et al.

Table 4. Adjacency matrix representing the edges (value 1) be-
tween vertices of the graph G created from the regions
of the TS in Fig. 3.

r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17
r1 1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 1
r2 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
r3 0 1 1 1 1 1 1 1 0 1 1 1 1 1
r4 1 1 1 1 1 0 1 1 1 1 1 1 1
r5 1 1 1 1 1 1 1 1 1 1 1 0
r6 1 1 1 1 1 1 1 1 1 0 1
r7 1 1 1 1 1 1 1 1 1 1
r8 1 1 1 1 1 0 1 1 1
r9 1 1 1 0 1 1 1 1
r10 1 1 1 1 0 1 1
r11 0 1 1 1 1 1
r12 1 1 1 1 1
r13 1 1 1 1
r14 1 1 1
r15 1 1
r16 1

maximality the independent sets in M , by invoking
the MIS procedure on each independent set m ∈ M
constrained to obtain a maximal independent set m̃ ⊃ m
on G0 (from line 9). Then from the maximal independent
sets we obtain the induced state machines to be stored in F
(from line 12). The motivation behind this step to enlarge
the independent sets is to increase the number of regions
for each SM, in order to widen the space of solutions for
the successive optimizations of redundancy elimination
and merging. The set of SMs derived from Algorithm 1
satisfies the EC and event-effectiveness properties because
by construction each region is included in at least one
independent set.

Consider a step-by-step execution of Algorithm 1
on the TS in Fig. 3. Initially one builds the graph G
connecting the regions with common states (see Table 4).

Then the set of independent sets M is populated by
the first cycle starting at line 5 as follows:

1. MIS = {r1, r6, r16},
M = {{r1, r6, r16}},
Nodes(G) = {r1 − r17} \ {r1, r6, r16}.

2. MIS = {r2, r7},
M = {{r1, r6, r16}, {r2, r7}},
Nodes(G) = {r2, r3, r4, r5, r7, r8, r9, r10, r11,
r12, r13, r14, r15, r17} \ {r2, r7} = {r3, r4, r5, r8,
r9, r10, r11, r12, r13, r14, r15, r17}.

3.

The last cycle of the procedure checks, for each
element m of M , if there is a larger independent set
m̃ ⊇ m in G0. The only independent sets which are
extended are SM4 = {r1, r8, r14}, SM6 = {r1, r5, r17}
and SM7 = {r1, r9, r13}.

r1

a

d

r6

c f

r16

r2

f c

r7

r3

e b

r4

(a) SM1 (b) SM2 (c) SM3

r1

a

d

r14

c e

r8

r11

f b

r12

r1

a

d

r17

b f

r5

(d) SM4 (e) SM5 (f) SM6

r1

a

d

r9

e b

r13

r10

e c

r15

(g) SM7 (h) SM8

Fig. 5. All SMs created from the TS in Fig. 3.

SM4 = {r1, r8, r14} because {r8, r14} is not a MIS
on G0.

SM6 = {r1, r5, r17} because {r5, r17} is not a MIS
on G0.

SM7 = {r1, r9, r13} because {r9, r13} is not a MIS
on G0.

Figure 5 shows the resultant SMs derived from the
TS in Fig. 3.

3.2. Removal of redundant SMs. The set of SMs
generated by Algorithm 1 may be redundant, i.e., it may
contain a subset of SMs which still define an ECTS.
We describe a greedy search algorithm to obtain an
irredundant set of SMs: we order all the SMs by size
and try to remove them one by one starting from the
largest to the smallest, by checking that the union of the
remaining regions satisfies excitation-closure and event
effectiveness. If excitation-closure and event effectiveness
are preserved, then the given SM can be removed. This
algorithm is not optimal, because the removal of an SM
may prevent the removal of a set of smaller SMs whose
sum of places is greater than the number of places of the
removed SM. However, this approach guarantees good
performance having linear complexity in the number of
SMs.

To check if the excitation-closure property is still
valid after the removal of an SM, we consider the
excitation sets and the pre-regions (see Table 3) for each
event of the original transition system. We notice that
SM2 (whose nodes are {r2, r7}) affects only the events c
and f (see Fig. 5(b)). Indeed, in the graph of SM2 there is
an edge from r2 to r7 under c because r2 is a pre-region of

Generation of synchronizing state machines from a transition system . . . 141

Table 5. Minimal regions of the transition system in Fig. 6.

Region States of the TS

r1 {s1, s3, s5}
r2 {s2, s4, s6}
r3 {s7}
r4 {s8}
r5 {s1, s2}
r6 {s3, s4}
r7 {s5, s6}

Table 6. Pre-regions for each event of the transition system in
Fig. 6.

Event Pre-regions

a {r1}
b {r1, r7}
b′ {r5}
c {r2, r6}
d {r2, r7}
e {r3}
f {r4}

c since c exits from {s1, s7} ⊆ r2 = {s0, s1, s3, s5, s7},
and r7 is a post-region of c since c enters into
{s2, s9} ⊆ r7 = {s2, s4, s6, s8, s9}; similarly, there is an
edge from r7 to r2 under f because r7 is a pre-region
of f since f exits from {s4, s6} ⊆ r7}, and r2 is a
post-region of f since f enters into {s3, s5} ⊆ r2}. After
the removal of event c, the intersection of the pre-regions
is: r6∩r10∩r14 = {s1, s4, s6, s7}∩{s0, s1, s5, s6, s7}∩
{s1, s3, s4, s7} = {s1, s7} = ES(c); after the removal
of event f it is: r6 ∩ r12 ∩ r17 = {s1, s4, s6, s7} ∩
{s1, s2, s4, s6, s8}∩{s4, s6, s7, s9} = {s4, s6} = ES(f).
For the other events the intersection of pre-regions is
unchanged. Thus, SM2 can be removed. Subsequently,
following the same reasoning for the other events, also
SM1, SM3 and SM7 can be removed. Consequently, after
the removal of the redundant SMs from the set shown in
Fig. 5 only SM4, SM5, SM6 and SM8 are left.

3.3. Merge between regions preserving excitation-
closure. We will use the transition system in Fig. 6
as running example to illustrate this subsection. By the
procedure discussed so far, it can be decomposed as the
synchronous product of two SMs shown in Fig. 7.

The third step of the procedure merges pairs of
regions with the objective to minimize the size of the
sets of SMs: edges carrying labels are removed and, in
consequence, the two nodes connected to them are merged
decreasing their number. For example, in Fig. 7, both
SMs contain an instance of label e connected by regions
r3 and r4. This means that an edge carrying label e can
be removed in one of the SMs. The result of removing the

edge with label e in SMb and merging the regions r23 and
r24 replacing them with the region r34 is shown in Fig. 8.

All instances of a region except one can be removed,
because removing all of them would change the set of
regions used for checking the excitation-closure property,
whereas keeping at least one guarantees the preservation
of the property.

We formulated the merging problem as solving an
instance of SAT. We now describe the problem encoding.
We introduce next three types of SAT clauses required to
represent the problem.

1. A set of SAT clauses states that we cannot remove
all instances of a given region r from all the SMs
where it appears. If we define rki to be true if region
ri appears in SMk, the constraint that each region
must appear in at least one SM is modelled by the
following equality:

∀i∃k rki = 1

which is then encoded with SAT clauses.

Therefore, the SAT model will contain a clause for
each region ri to represent all instance of a given ri
in all SMs. In the running example the clauses will
be

r11 ∧ r12 ∧ (r13 ∨ r23) ∧ (r14 ∨ r24) ∧ r25 ∧ r26 ∧ r27 .

2. Another set of SAT clauses states, for each SM, that
if a label on a given edge is removed, then also
the two regions connected by the edge are removed,
i.e., if label l is on the edge connection regions r1
and r2, the clause template is (r1 ∨ r2) → l, i.e.,
(¬r1 ∧ ¬r2) ∨ l, i.e., (¬r1 ∨ l) ∧ (¬r2 ∨ l). In
the running example, the clauses for SMa are the
following (l replaced by the actual labels):

(¬r11 ∨ a) ∧ (¬r12 ∨ a) ∧ (¬r11 ∨ b) ∧ (¬r13 ∨ b) ∧
(¬r11 ∨ c) ∧ (¬r12 ∨ c) ∧ (¬r12 ∨ d) ∧ (¬r14 ∨ d) ∧
(¬r13 ∨ e) ∧ (¬r14 ∨ e) ∧ (¬r11 ∨ f) ∧ (¬r14 ∨ f);

the clauses for SM2 are (l replaced by the actual
labels):

(¬r25 ∨ b′) ∧ (¬r26 ∨ b′) ∧ (¬r26 ∨ c) ∧ (¬r27 ∨ c) ∧
(¬r24 ∨ d) ∧ (¬r27 ∨ d) ∧ (¬r23 ∨ e) ∧ (¬r24 ∨ e) ∧

(¬r24 ∨ f) ∧ (¬r25 ∨ f).

3. Finally, we must express the optimization objective:
keep the minimum number of labels needed to satisfy
the excitation-closure property. This is expressed by

min(
∑

∀k∀j
lkj) (1)

142 V. Teren et al.

s1

s2

s3

s4 s5 s6

s7 s8
b′

a

b′
a

c a

b d

e

f

Fig. 6. ECTS.

r1

c a f

r2

d r4

e

b

r3

r5

f

r4

e r3 b

r7

d c

r6b′

(a) SMa (b) SMb

Fig. 7. SMs obtained with the MIS solver from the TS of Fig. 6.

r1

c a f

r2

d r4

e

b

r3

r5

f

r34

b

r7

d c

r6b′

(a) SMa (b) SMb

Fig. 8. SMs of Fig. 7 after the removal of label e in SMb.

where lkj is true if there is an instance of label j in
SMk.

Setting x as the total number of labels in all SMs (in
the running example x =

∑
lkj = 6 + 6 = 12), this

constraint is rewritten as

∑

∀k∀j
lkj ≤ x. (2)

Then (2) is converted into a set of SAT clauses
using the library PBLib (Philipp and Steinke, 2015).
The first assignment of x yields a trivially true
SAT instance because it corresponds to the initial
situation, as stated by

∑

∀k∀j
lkj = x. (3)

Therefore, a solution of Eqn. (1) can be found by
solving a sequence of SAT instances whose clauses are
the ones previously defined (clauses to represent regions,
clauses encoding the relation between regions and labels,
and clauses from the conversion of Eqn. (2), and where

x decreases from the initial largest value down, until
an UNSAT model4 is reached. The solution of the last
satisfiable SAT instance encountered represents the best
decomposition of the initial transition system. As a matter
of fact, the linear search on x is sped up by transforming
it into a logarithmic binary search on x (in the running
example, we solve for x = 12, x = 6, x = 9 till we
converge for x = 11).

At the end, according to the SAT solution, the
SMs are restructured by removing arcs and nodes to be
deleted and adding merged nodes, and redirecting arcs as
appropriate. In the running example, in SMb we merge
the nodes r3, r4 into node r34, remove the edge labeled e
between the deleted nodes r3 and r4, and redirect to r34
the edges pointing to r3 or r4.

4. Composition of SMs and equivalence to
original TS

Intuitively, the SMs derived from an LTS interact running
in parallel with the same rules of the synchronous product
of transition systems (see Definition 4). Indeed, if we
interpret the reachability graphs of the SMs as LTSs
and execute the synchronous product deriving a single
LTS which models the interaction of the SMs, it turns
out that the result of the composition is equivalent to
the original LTS, as proved in Appendix. For example,
consider the composition of reachability graphs of SMs
SM4 and SM5 in Fig. 9, it generates a superset of
behaviors of the original LTS in Fig. 3, it produces the
sequence “acbdaefd” which is in the original LTS, but
also new behaviors, like the sequences starting by the
event b (e.g., “bacfd”), which are not in the original LTS
because some constraints of the original LTS are missing;
indeed, these two SMs are not enough to satisfy the
excitation-closure property, whereas event effectiveness is
satisfied by them because all events are included in the
composition. In this example, by considering a single SM,
even event effectiveness may fail, when some events are
hidden because they are completely inside or outside some
regions: e.g., considering only SM4, event effectiveness
is not satisfied because the events b and f are missing
(in this case sequences containing the aforementioned
events cannot be produced, for example the previously
cited sequence “acbdaefd”). The composition of SMs can
exhibit these hidden behaviors by including new regions.
For example, the composition of SM4 with SM5 includes
two new regions r11 and r12 so that the events b and f
show up in the composition.

Theorem 2. Given an excitation-closed set {SM1, . . . ,
SMn} of SMs derived from the ECTS TS, there is a bisim-
ulation B such that TS ∼B ||i=1,...,nRG(SMi).

4A model for which no satisfiable SAT solution can be found.

Generation of synchronizing state machines from a transition system . . . 143

r1r11

r8r11 r14r11

r1r12

r8r12 r14r12

ad

c

e

ad

c

e

b

b b

f

f f

Fig. 9. Composition between RG(SM4) and RG(SM5) of Fig. 5.

For a proof, see Appendix.

Theorem 2 states that, given a set of SMs, the
excitation-closure and event effectiveness of the union of
their regions is a necessary and sufficient condition to
guarantee that their synchronous product is equivalent to
the original TS.

5. Experimental results
We implemented the procedure described in Sec. 3 and
performed experiments on an Intel core running at 2.80
GHz with 16 GB of RAM. Our software is written in
C++ and uses PBLib (Philipp and Steinke, 2015) for the
resolution of SAT. The resolution of the MIS problem
is performed by the NetworkX library (Hagberg et al.,
2008). For our tests, we used two sets of benchmarks,
both from the world of asynchronous controllers: the
first set (the same as in the work of Cortadella et al.
(1995)), with smaller transition systems is listed in the
first rows of Table 7 and denoted as “Small-sized set”;
the second one containing large transition systems is listed
in the second part of Table 7, denoted as “Large-sized
set.” “Large-sized set” contains parametrized controllers
(art m n) from the work of Carmona et al. (2006)
and the biggest parametrized controller computable by
our software (pparb 2 6) from the set of Khomenko
et al. (2004). Differently from the miscellaneous small
benchmarks, the large set mainly contains controllers with
m pipelines (art m n, pparb m n), a suitable type of
input for our algorithm, being highly concurrent. However
there is also a case with a completely sequential circuit
(seq40) in order to show also the worst case where each
region contains only one state.

The software used for the synthesis of Petri nets
is Petrify5 (Cortadella et al., 1997). Even if the core
of this software did not change for many years, it is
still a reference point for PN synthesis using the theory
of regions. Genet (Carmona et al., 2009b) is the only
alternative used nowadays (still based on the theory of
regions).

Table 7 shows the absolute and relative runtimes of
the steps of the flow: region generation, decomposition
into SMs, irredundancy, place merging. The generation

5Version 5.2, May 2019.

of minimal regions is the dominating operation taking
more than 60% of the overall time spent; it is exponential
in the number of events and with an increase in the
input dimensions it becomes a bottleneck shadowing the
remaining computations. However, it is still possible to
decompose quite large transition systems with about 106

states and 3 · 106 transitions.
Table 8 compares the states and transitions of

transition systems vs. the places/transitions/crossing arcs
of the Petri nets derived by Petrify (columns under
PN), and vs. our product of state machines for the first
benchmark set. The number of crossing arcs is reported
by the dot algorithm of graphviz (Gansner et al., 1993)
and can be considered as a metric of structural simplicity
of the model (i.e., fewer crossings implies a simpler
structure). Our results from synchronized state machines
have similar sizes compared with those from Petri nets,
but they have fewer crossings, which is a significant
advantage in supporting a visual representation for “large
systems.” Therefore the plots, in a two-dimensional
graphical representation of synchronizing SMs, are
substantially more readable than the ones of Petri nets:
see the inputs intel edge and pe-rcv-ifc witnessing that
peaks of edge crossings are avoided. The example
master-read instead is an impressive case of how our
decomposition tames the state explosion of the original
transition system derived from a highly concurrent
environment, since from 8932 states we go down to 8 SMs
with an average number of 5 states each.

We implemented also an exact search of all SMs
derived from the original TS, to gauge our heuristics,
when it is possible to find a near exact solution. We
compare the times taken by the exact and heuristic SM
generation steps: the exponential behaviour of the exact
algorithm makes it hardly affordable for about 15 regions
and run out of 16 GB of memory for more than 20
regions (Table 9). Instead, the approximate algorithms
presented in Section 3 can handle very large transition
systems. Even though the result is not guaranteed to be
a minimum one, the irredundancy procedure guarantees a
form of minimality, yielding a compact representation that
avoids state explosion and exhibits concurrency explicitly.

5.1. Creation of a new mixed strategy. We performed
a set of three experiments on top of those reported
by Teren et al. (2021). The first experiment consists
in the execution of the exact algorithm for both phases:
search of the new SMs and the removal of redundant
ones. Previously an experiment had been performed
running the exact algorithm only to generate the SMs;
as reported by Teren et al. (2021), the execution of the
exact algorithm for this task followed by an approximate
removal of SMs requires a lot of effort without bringing
interesting results. The removal of redundant SMs with
an exact algorithm too provides a lower bound of the

144 V. Teren et al.
Table

7.
T

S
statistics

and
C

PU
tim

e
foreach

decom
position

step
including

the
tim

e
spentto

generate
the

regions.

Input
States

Transitions
E

vents
R

egions

Tim
e

region
generation

[s]

Tim
e

decom
position

[s]

Tim
e

G
reedy
[s]

Tim
e

M
erge
[s]

Total
tim

e
[s]

Tim
e

region
generation

[%
]

Tim
e

decom
position

[%
]

Tim
e

G
reedy
[%

]

Tim
e

M
erge

[%
]

“Small-sized” set

alloc-outbound
17

18
14

15
0.0

0
0.2

5
0.0

0
0
.0
6

0
.3
1

0
.3
6

8
0.3

6
0.0

7
1
9.2

1
clock

10
10

4
11

0.0
1

0.2
0

0.0
0

0
.0
3

0
.2
4

3
.0
2

8
5.7

1
0.1

3
1
1.1

4
dff

20
24

7
20

0.2
9

0.2
0

0.0
0

0
.7
7

1
.2
7

2
3.2

8
1
5.5

0
0.0

8
6
1.1

4
espinalt

27
31

20
23

0.0
0

0.2
1

0.0
0

0
.4
9

0
.7
0

0
.3
7

2
9.5

4
0.0

7
7
0.0

2
fair

arb
13

20
8

11
0.0

2
0.2

0
0.0

0
0
.0
3

0
.2
5

8
.8
0

8
0.4

1
0.0

4
1
0.7

4
future

36
44

16
19

0.0
3

0.2
1

0.0
0

0
.1
1

0
.3
5

9
.4
0

6
0.3

5
0.2

0
3
0.0

5
intel

div3
8

8
4

8
0.0

0
0.2

3
0.0

0
0
.0
1

0
.2
4

0
.7
5

9
4.7

3
0.0

4
4
.4
8

intel
edge

28
36

6
27

1.6
0

0.2
0

0.0
0

1
.3
0

3
.1
1

5
1.5

8
6
.4
1

0.1
4

4
1.8

6
isend

53
66

15
128

5
7.6

7
0.3

1
0.3

2
1
.0
4

5
9.3

3
9
7.2

1
0
.5
1

0.5
3

1
.7
5

lin
edac93

20
28

8
10

0.0
0

0.1
9

0.0
0

0
.0
1

0
.2
1

1
.1
6

9
3.3

8
0.1

0
5
.3
6

m
aster-read

8932
36

26
33

6.7
1

0.5
3

0.1
2

1
.0
3

8
.3
9

8
0.0

0
6
.2
8

1.4
5

1
2.2

8
pe-rcv-ifc

46
62

16
7

8.8
0

0.1
9

0.0
0

1
.2
1

1
0.2

1
8
6.2

0
1
.9
0

0.0
1

1
1.9

0
pulse

12
12

6
33

0.0
0

0.1
9

0.0
0

0
.0
1

0
.1
9

0
.3
6

9
6.6

2
0.0

5
2
.9
6

rcv-setup
14

17
10

11
0.0

0
0.1

9
0.0

0
0
.0
4

0
.2
3

1
.4
1

8
1.3

6
0.0

9
1
7.1

4
vm

e
read

255
668

26
44

0.5
3

0.2
0

0.0
1

1
5.1

7
1
5.9

1
3
.3
6

1
.2
3

0.0
4

9
5.3

7
vm

e
w

rite
821

2907
30

51
2.7

8
0.2

4
0.0

3
3
0.0

3
3
3.0

8
8
.3
9

0
.7
3

0.1
0

9
0.7

7

“Large-sized” set

art
3

10
32000

93200
60

64
1
5
4.9

6
2.0

2
0.0

7
1
.1
8

1
5
8.2

3
9
7.9

3
1
.2
8

0.0
4

0
.7
5

art
3

11
42592

124388
66

70
1
0
5.5

1
3.0

2
0.3

1
1
.7
1

1
1
0.5

5
9
5.4

4
2
.7
3

0.2
8

1
.5
5

art
3

12
55296

161856
72

76
1
3
3.5

8
4.2

1
0.3

9
2
.0
6

1
4
0.2

4
9
5.2

5
3
.0
1

0.2
7

1
.4
7

art
3

13
70304

206180
78

83
1
1
5
3.2

0
6.9

7
1.5

2
2
.8
4

1
1
6
4.5

4
9
9.0

3
0
.6
0

0.1
3

0
.2
4

art
3

14
87808

257936
84

88
2
0
6
2.9

1
9.0

9
0.9

4
3
.4
9

2
0
7
6.4

3
9
9.3

5
0
.4
4

0.0
5

0
.1
7

art
3

15
108000

317700
90

94
2
2
4
0.1

7
1
0.2

0
0.7

7
4
.1
1

2
2
5
5.2

5
9
9.3

3
0
.4
5

0.0
3

0
.1
8

art
3

16
131072

386048
96

100
9
7
1.2

3
1
2.7

0
0.5

6
5
.7
5

9
9
0.2

3
9
8.0

8
1
.2
8

0.0
6

0
.5
8

art
3

17
157216

463556
102

108
6
0
6
8.1

4
1
5.8

4
4.8

1
0
.4
3

6
0
8
9.2

2
9
9.6

5
0
.2
6

0.0
8

0
.0
1

art
3

18
186624

550800
108

112
5
1
3
3.0

3
1
6.5

7
0.9

5
0
.4
7

5
1
5
1.0

1
9
9.6

5
0
.3
2

0.0
2

0
.0
1

art
3

19
219488

648356
114

118
9
0
4.4

1
1
8.8

4
1.1

1
0
.5
7

9
2
4.9

3
9
7.7

8
2
.0
4

0.1
2

0
.0
6

art
3

20
256000

756800
120

124
1
1
9
1
5.9

3
3
0.3

0
1.9

7
0
.6
5

1
1
9
4
8.8

5
9
9.7

2
0
.2
5

0.0
2

0
.0
1

art
4

04
32768

120832
32

38
6
5.3

0
2.2

3
0.5

5
0
.2
7

6
8.3

5
9
5.5

4
3
.2
6

0.8
1

0
.4
0

art
4

05
80000

300000
40

46
2
3
2.2

3
5.9

5
0.4

9
0
.6
7

2
3
9.3

4
9
7.0

3
2
.4
9

0.2
1

0
.2
8

art
4

06
165888

628992
48

55
7
6
8.9

5
1
6.5

7
5.6

1
0
.9
6

7
9
2.0

9
9
7.0

8
2
.0
9

0.7
1

0
.1
2

art
4

07
307328

1174432
56

62
2
1
5
1.3

7
2
8.1

2
4.5

3
1
.0
6

2
1
8
5.0

7
9
8.4

6
1
.2
9

0.2
1

0
.0
5

art
4

08
524288

2015232
64

70
3
3
7
3.9

2
6
1.7

8
1
0.8

8
1
.6
0

3
4
4
8.1

7
9
7.8

5
1
.7
9

0.3
2

0
.0
5

art
4

09
839808

3242592
72

78
4
2
9
3.8

7
5
7.9

8
4.9

5
2
.0
7

4
3
5
8.8

7
9
8.5

1
1
.3
3

0.1
1

0
.0
5

seq
40

164
164

164
164

0.0
4

0.2
3

0.0
0

1
.4
7

1
.7
5

2
.5
4

1
3.1

9
0.0

1
8
4.2

6
pparb

2
6

69632
321536

34
77

8
8
6.5

4
2
5.5

1
3
0.2

7
8
.3
2

9
5
0.6

5
9
3.2

6
2
.6
8

3.1
8

0
.8
8

AV
E

R
A

G
E

6
3.7

0
2
0.6

9
0.2

8
1
5.3

3

Generation of synchronizing state machines from a transition system . . . 145

Ta
bl

e
8.

N
um

be
ro

fp
la

ce
s

(P
),

tr
an

si
tio

ns
(T

)a
nd

ar
c

cr
os

si
ng

s
(C

)o
ft

he
or

ig
in

al
tr

an
si

tio
n

sy
st

em
s

vs
.d

er
iv

ed
Pe

tr
in

et
s

vs
.p

ro
du

ct
of

SM
s

an
d

SM
de

ta
ils

.
Si

ze
co

m
pa

ri
so

n
SM

de
ta

ils

In
pu

t
T

S
PN

PN
*6a

Sy
nc

hr
on

iz
in

g
N

um
be

r
of

SM
s

A
vg

.
A

vg
.

Pl
ac

es
A

lp
ha

be
t

SM
s

pl
ac

es
al

ph
ab

et
la

rg
es

t
la

rg
es

t
St

at
es

T
P

T
C

P
T

C
P

T
C

pe
rS

M
pe

rS
M

SM
SM

al
lo

c-
ou

tb
ou

nd
21

18
14

14
3

17
18

0
1
7

2
1

0
2

8.
5
0

1
0.
5
0

1
0

1
1

cl
oc

k
10

10
8

5
4

10
10

0
1
1

1
5

0
3

3.
6
7

5.
0
0

4
4

df
f

20
24

13
14

21
20

20
0

2
5

4
1

0
3

8.
3
3

1
3.
3
3

1
3

7
es

pi
na

lt
27

31
22

20
5

27
25

1
2
9

3
2

0
3

9.
3
3

1
1.
0
0

1
1

1
3

fa
ir

ar
b

13
20

11
10

4
11

10
4

1
2

1
8

0
2

6.
0
0

9.
0
0

6
6

fu
tu

re
36

44
18

16
1

30
28

0
2
1

2
2

0
3

7.
0
0

7.
3
3

1
3

1
4

in
te

l
di

v3
8

8
7

5
2

8
8

0
1
0

1
1

0
2

5.
0
0

5.
5
0

6
4

in
te

l
ed

ge
28

36
11

15
22

21
30

56
3
5

6
8

1
4

8.
5
0

1
6.
7
5

1
3

6
is

en
d

53
66

25
27

10
6

54
43

5
8
0

1
3
8

4
1
3

6.
3
1

1
1.
8
5

1
2

1
1

lin
ed

ac
93

20
28

10
8

1
14

12
0

1
3

1
4

0
3

4.
3
3

4.
6
7

5
6

m
as

te
r-

re
ad

89
32

36
22

6
33

26
0

33
26

0
3
8

3
8

0
8

4.
7
5

4.
7
5

1
0

1
0

pe
-r

cv
-i

fc
46

62
23

20
96

43
37

13
3
9

5
7

2
2

1
9.
0
0

2
8.
5
0

2
1

1
3

pu
ls

e
12

12
7

6
2

12
12

0
7

1
0

0
2

3.
5
0

5.
0
0

3
6

rc
v-

se
tu

p
14

17
10

10
5

14
14

4
1
2

1
4

0
2

6.
0
0

7.
0
0

9
1
0

vm
e

re
ad

25
5

66
8

38
29

18
41

32
2

5
0

6
7

1
9

6.
1
1

7.
6
7

1
2

1
3

vm
e

w
ri

te
82

1
29

07
46

33
31

49
36

6
5
7

7
4

1
1
1

6.
1
8

7.
3
6

9
1
1

a P
N

*
is

a
re

pr
es

en
ta

tio
n

of
th

e
PN

af
te

rs
pl

itt
in

g
di

sc
on

ne
ct

ed
E

R
s,

th
us

pr
od

uc
in

g
m

ul
tip

le
la

be
ls

(tr
an

si
tio

ns
)

fo
rt

he
sa

m
e

ev
en

t.
T

hi
s

re
su

lts
in

a
PN

w
ith

m
or

e
tr

an
si

tio
ns

an
d

a
si

m
pl

er
st

ru
ct

ur
e.

Ta
bl

e
9.

C
PU

tim
e

an
d

re
su

lts
of

th
e

ex
ac

td
ec

om
po

si
tio

n
al

go
ri

th
m

.

In
pu

t
D

ec
om

po
si

tio
n

[s
]

G
re

ed
y

[s
]

M
er

ge
[s

]

St
at

es
af

te
r

de
co

m
po

si
tio

n

St
at

es
af

te
r

gr
ee

dy

St
at

es
af

te
r

m
er

ge

Tr
an

s.
af

te
r

de
co

m
po

si
tio

n

Tr
an

s.
af

te
r

gr
ee

dy

Tr
an

s.
af

te
r

m
er

ge

N
um

be
r

of
re

gi
on

s
T

S
al

lo
c-

ou
tb

ou
nd

1
4.
0
1

0.
00

09
0.
0
6

42
21

17
50

25
21

15
cl

oc
k

0
.5
5

0.
00

03
0.
0
2

18
14

11
22

18
15

11
fa

ir
ar

b
0
.5
8

0.
00

07
0.
0
3

24
12

12
36

18
18

11
fu

tu
re

1
8
8
1.
0
0

0.
00

12
0.
1
0

41
29

22
43

30
23

19
in

te
l

di
v3

0
.2
1

0.
00

01
0.
0
1

12
12

10
13

13
11

8
lin

ed
ac

93
0
.3
3

0.
00

02
0.
0
1

13
13

13
14

14
14

10
pu

ls
e

0
.2
0

0.
00

00
0.
0
1

7
7

7
10

10
10

7
rc

v-
se

tu
p

0
.3
6

0.
00

02
0.
0
4

18
18

12
22

22
14

11

146 V. Teren et al.

Table 10. Number of final SMs derived using an approximate
algorithm for the search of new SMs and different ap-
proaches for the removal of redundant SMs.

Greedy
algorithm

(approximate)

Exact
algorithm

Mixed
strategy

alloc-outbound 2 2 2
clock 3 3 3
dff 3 3 3
espinalt 3 3 3
fair arb 2 2 2
future 3 3 3
intel div3 2 2 2
intel edge 4 3 3
isend 13 - 13
lin edac93 3 3 3
master-read 8 8 8
pe-rcv-ifc 2 2 2
pulse 2 2 2
rcv-setup 2 2 2
vme read 9 9 9
vme write 11 10 10

AVERAGE 4,5 4,375

decomposition (in terms of the number of final SMs),
since both steps are performed with an exact algorithm;
moreover, it hits the scalability threshold of the exact
algorithm, since the computation of many benchmarks did
not finish. Consequently, the fully exact computation can
be performed only on very tiny benchmarks where the
number of SM combinations is very restricted. Notice that
for each available result of the completely exact flow also
the completely approximate one, and the combination of
exact SM search and approximate SM removal, found the
same number of SMs.

The second experiment consists in the execution
of the approximate SM search followed by an exact
algorithm for SM removal (column “Exact algorithm”
in Table 10). For some benchmarks we got better
results compared with a completely approximate approach
(intel edge, vme write), but in other cases
(isend) the computation did not finish due to the high
number of SMs available for the removal algorithm (more
than 50). Indeed, the complexity of the exact removal of
redundant SMs is O(2n), where n is the number of SMs.

The third experiment explored a mixed strategy
and represents the main algorithmic improvement with
the respect to the previous conference version. This
approach is based on the number of derived SMs
after the approximate search, given that between the
two computation steps we know the exact number of
derived SMs. The mixed strategy works as follows:

Let n be the initial number of SMs found with the
approximate search; then for a “small” n we apply the
exact removal algorithm whose computational times are
affordable; otherwise we apply the approximate removal
algorithm. In our experiments we have chosen n =
20. Column “Mixed strategy” in Table 10 represents
the result of this combination between the exact and
approximate algorithms for the removal of redundant
SMs. On the average, this combination yields slightly
better results than the previously proposed completely
approximate solution (column “Greedy algorithm”), but
without significant improvements.

6. Conclusions

In this paper, we described a method for the
decomposition of transition systems into a synchronous
composition of state machines (a restricted class of
Petri nets). We provided a complete exposition of the
underlying theory, clarifying the computational steps
with detailed running examples. The experimental results
demonstrate that the decomposition algorithm can be
run on transition systems with up to one million states;
therefore, it is suitable to handle real cases. In this
extended version, we reported also a new mixed strategy
leveraging in some cases the exact algorithm for the
removal of redundant SMs, which allowed us to improve
the decomposition results by decreasing the average
number of SMs in our benchmark set from 4,5 to 4,375.

Since the generation of minimal regions is currently
a computational bottleneck, future work will address this
limitation, while it will leverage the improvements in
efficiency of last-generation MIS and SAT solvers, and the
power of HPC7 since the generation of minimal regions
is highly parallelizable. HPC can be exploited also in
other steps of the decomposition algorithm, e.g., different
MIS computations could be performed simultaneously
applying constraints to each parallel computation (e.g.,
assigning a state to each thread and forcing it to be in the
MIS result).

As future work, we want to apply this decomposition
paradigm to process mining. Rather than synthesizing
intricate “spaghetti” Petri nets from logs, we aim
at distilling loosely coupled concurrent threads (SMs)
that can be easily visualized, analyzed and optimized
individually, while preserving the synchronization with
the other threads. Optionally, a new Petri net can
be obtained by composing back the optimized threads
and imposing some structural constraints, e.g., to be a
free-choice Petri net, thus providing a tight approximation
of the original behavior with a simpler structure.

7High performance computing: aggregation of computing power to
solve problems too complex to be solved by a normal desktop computer
or workstation.

Generation of synchronizing state machines from a transition system . . . 147

References
Badouel, E., Bernardinello, L. and Darondeau, P. (2015). Petri

Net Synthesis, Springer, Berlin.

Benini, L., De Micheli, G. and Macii, E. (2001). Designing
low-power circuits: Practical recipes, IEEE Circuits and
Systems Magazine 1(1): 6–25.

Boros, E. and Hammer, P.L. (2002). Pseudo-Boolean
optimization, Discrete Applied Mathematics
123(1–3): 155–225.

Carmona, J., Colom, J-M, Cortadella, J. and Garcı́a-Vallés,
F. (2006). Synthesis of asynchronous controllers using
integer linear programming, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, 25(9): 1637–1651.

Carmona, J., Cortadella, J. and Kishinevsky, M. (2009a).
Divide-and-conquer strategies for process mining, Interna-
tional Conference on Business Process Management, Ulm,
Germany, pp. 327–343.

Carmona, J., Cortadella, J. and Kishinevsky, M. (2009b). Genet:
A tool for the synthesis and mining of Petri nets, 9th In-
ternational Conference on Application of Concurrency to
System Design, Augsburg, Germany, pp. 181–185.

Carmona, J., Cortadella, J. and Kishinevsky, M. (2009c). New
region-based algorithms for deriving bounded Petri nets,
IEEE Transactions on Computers 59(3): 371–384.

Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L.
and Yakovlev, A. (1997). Petrify: A tool for manipulating
concurrent specifications and synthesis of asynchronous
controllers, IEICE Transactions on Information and Sys-
tems 80(3): 315–325.

Cortadella, J., Kishinevsky, M., Lavagno, L. and Yakovlev, A.
(1995). Synthesizing Petri nets from state-based models,
Proceedings of IEEE International Conference on Com-
puter Aided Design (ICCAD), San Jose, USA, pp. 164–171.

Cortadella, J., Kishinevsky, M., Lavagno, L. and Yakovlev, A.
(1998). Deriving Petri nets from finite transition systems,
IEEE Transactions on Computers 47(8): 859–882.

de San Pedro, J. and Cortadella, J. (2016). Mining structured
Petri nets for the visualization of process behavior, Pro-
ceedings of the 31st Annual ACM Symposium on Applied
Computing, New York, USA, pp. 839–846.

Desel, J. (1995). Free Choice Petri Nets, Cambridge University
Press, Cambridge.

Ehrenfeucht, A. and Rozenberg, G. (1990). Partial (set)
2-structures, Acta Informatica 27(4): 343–368.

Gansner, E., Koutsofios, E., North, S. and Vo, K.-P. (1993). A
technique for drawing directed graphs, IEEE Transactions
on Software Engineering 19(3): 214–230.

Hagberg, A., Swart, P. and S Chult, D. (2008). Exploring
network structure, dynamics, and function using
NetworkX, Proceedings of the 7th Python in Science
Conference (SciPy2008), Pasadena, USA, pp. 11–15.

Kalenkova, A.A., Lomazova, I.A. and Van der Aalst, W.M.
(2014). Process model discovery: A method based on

transition system decomposition, International Conference
on Applications and Theory of Petri Nets and Concurrency,
Tunis, Tunisia, pp. 71–90.

Kemper, P. and Bause, F. (1992). An efficient polynomial-time
algorithm to decide liveness and boundedness of
free-choice nets, in K. Jensen (Ed.), Application and
Theory of Petri Nets, Springer, Berlin/Heidelberg,
pp. 263–278.

Khomenko, V., Koutny, M. and Yakovlev, A. (2004). Detecting
state encoding conflicts in STG unfoldings using SAT,
Fundamenta Informaticae 62(2): 221–241.

Mattheakis, P.M. (2013). Logic Synthesis of Concurrent Con-
troller Specifications, PhD thesis, University of Crete,
Rethymnon, https://thesis.ekt.gr/thesisBo
okReader/id/29912#page/1/mode/2up.

Mokhov, A., Cortadella, J. and de Gennaro, A. (2017). Process
windows, 17th International Conference on Application of
Concurrency to System Design (ACSD), Zaragoza, Spain,
pp. 86–95.

Murata, T. (1989). Petri nets: Properties, analysis and
applications, Proceedings of the IEEE 77(4): 541–580.

Philipp, T. and Steinke, P. (2015). PBLib—A library
for encoding pseudo-Boolean constraints into CNF, in
M. Heule and S. Weaver (Eds), Theory and Applica-
tions of Satisfiability Testing, SAT 2015, Lecture Notes in
Computer Science, Vol. 9340, Springer, Cham, pp. 9–16.

Schrijver, A. (1998). Theory of Linear and Integer Program-
ming, Wiley, Amsterdam.

Taibi, D. and Systä, K. (2019). From monolithic systems
to microservices: A decomposition framework based
on process mining, Proceedings of the 9th Interna-
tional Conference on Cloud Computing and Services
Science—CLOSER, Heraklion, Greece, pp. 153–164, DOI:
10.5220/0007755901530164.

Teren, V., Cortadella, J. and Villa, T. (2021). Decomposition
of transition systems into sets of synchronizing state
machines, 2021 24th Euromicro Conference on Digital
System Design (DSD), Palermo, Italy, pp. 77–81, DOI:
10.1109/DSD53832.2021.00021.

Van der Aalst, W.M. (2012). Decomposing process mining
problems using passages, International Conference on Ap-
plication and Theory of Petri Nets and Concurrency, Ham-
burg, Germany, pp. 72–91.

Van der Aalst, W.M. (2013). Decomposing Petri nets for process
mining: A generic approach, Distributed and Parallel
Databases 31(4): 471–507.

Van der Aalst, W.M., Rubin, V., Verbeek, H., van Dongen, B.F.,
Kindler, E. and Günther, C.W. (2010). Process mining:
A two-step approach to balance between underfitting and
overfitting, Software & Systems Modeling 9(1): 87.

Verbeek, H. and Van der Aalst, W.M. (2014). Decomposed
process mining: The ILP case, International Conference
on Business Process Management, Eindhoven, The Nether-
lands, pp. 264–276.

https://thesis.ekt.gr/thesisBookReader/id/29912#page/1/mode/2up
https://thesis.ekt.gr/thesisBookReader/id/29912#page/1/mode/2up

148 V. Teren et al.

Wojnakowski, M., Wiśniewski, R., Bazydło, G. and Popławski,
M. (2021). Analysis of safeness in a Petri net-based
specification of the control part of cyber-physical
systems, International Journal of Applied Mathemat-
ics and Computer Science 31(4): 647–657, DOI:
10.34768/amcs-2021-0045.

Viktor Teren was born in 1993. He is currently
working toward his PhD in computer science at
the University of Verona. At present his research
interest is focused on the decomposition of tran-
sition systems into different subclasses of inter-
operable Petri nets.

Jordi Cortadella (IEEE Fellow) received his
PhD degree in computer science from Universi-
tat Politècnica de Catalunya, Barcelona, Spain, in
1987. He is a professor at the Computer Science
Department there. His current research interests
include formal methods and computer-aided de-
sign of VLSI systems, with a special emphasis on
asynchronous circuits, concurrent systems, and
logic synthesis. Prof. Cortadella received Best
Paper Awards at ASYNC 2004 and 2016, DAC in

2004, ACSD in 2009, and FPGA in 2020. He has served on technical
committees of several international conferences in the field of design au-
tomation and concurrent systems.

Tiziano Villa received his PhD in electrical en-
gineering and computer in 1995 from the Uni-
versity of California, Berkeley. Since 2006 he
has been a professor with the Department of
Computer Science (DI), Università di Verona,
Italy. His research interests are in formal methods
for electronic design automation, including logic
synthesis, formal verification, models of com-
putation, discrete-event dynamic systems, cyber-
physical systems. He has co-authored three

books: Synthesis of Finite State Machines: Functional Optimization
(Kluwer/Springer), Synthesis of Finite State Machines: Logic Optimiza-
tion (Kluwer/Springer), The Unknown Component Problem: Theory and
Applications (Springer), and has co-edited the book Coordination Con-
trol of Distributed Systems (Springer).

Appendix
Proof of Theorem 2

The equivalence between an ECTS and the
derived set of SMs is proved by defining a
bisimulation between the original TS, defined as
TS = (S,E, T, s0), and the synchronous product of
the reachability graphs of the derived state machines
RG(SM1)||RG(SM2)|| . . . ||RG(SMn), denoted by
||i=1,...,nRG(SMi) = (S||, E, T||, s0,||). Notice that each
RG(SMi) = (Ri, Ei, Ti, r0,i), with Ti ⊆ Ri × Ei × Ri,
is defined on a subset Ei of events of TS, its states
ri correspond to regions of the states of TS, and the

initial state is a region r0,i containing the initial state
of TS. To prove the existence of a bisimulation, we
require that the union of RG(SMi) satisfies ECTS,
where event-effectiveness guarantees that ∪Ei = E,
and excitation-closure guarantees that the two transition
systems simulate each other, i.e., the transition relations
allow to match each other’s moves.

Proof. We define the binary relation B as follows:

(sj , (rj,1, rj,2, . . . , rj,n)) ∈ B ⇐⇒ sj ∈
n⋂

i=1

rj,i,

where sj ∈ S and rj,i ∈ Ri, for i ∈ {1, . . . , n}.
Notice that writing (sj , (rj,1, rj,2, . . . , rj,n)) ∈

B ⇐⇒ {sj} =
⋂n

i=1 rj,i would be wrong, because the
intersection of regions could have two or more bisimilar
(i.e., behaviourally equivalent) states, as in the TS s0

a→
s1

b→ s2
a→ s3

b→ s0.
A region rj,i may appear in two or more sets of

regions Ri. Now we prove that B is a bisimulation in
three steps:

1. (s0, (r0,1, r0,2, . . . , r0,n)) ∈ B.

2. If (sj , (rj,1, rj,2, . . . , rj,n)) ∈ B and (sj , e, sk) ∈
T , then there is (rk,1, rk,2, . . . , rk,n) ∈ S|| such that
((rj,1, rj,2, . . . , rj,n), e, (rk,1, rk,2, . . . , rk,n)) ∈ T||
and (sk, (rk,1, rk,2, . . . , rk,n)) ∈ B.

3. If (sj , (rj,1, rj,2, . . . , rj,n)) ∈ B and, moreover,
((rj,1, rj,2, . . . , rj,n), e, (rk,1, rk,2, . . . , rk,n)) ∈ T||,
then there is sk ∈ S such that (sj , e, sk) ∈ T and
(sk, (rk,1, rk,2, . . . , rk,n)) ∈ B.

Let us now proceed with the proof.

1. Since TS has a unique initial state s0, each state
machine SMi has exactly one initial region r0,i such
that s0 ∈ r0,i because all the regions of an SM are
disjoint. Therefore, s0 ∈

⋂n
i=1 r0,i and we have that

(s0, (r0,1, r0,2, . . . , r0,n)) ∈ B.

2. Since (sj , e, sk) ∈ T and, moreover,
(sj , (rj,1, rj,2, . . . , rj,n)) ∈ B, we get
sj ∈

⋂n
i=1 rj,i. Now we will prove that there

is sk such that sk ∈
⋂n

i=1 rk,i, so that we can have
(sk, (rk,1, rk,2, . . . , rk,n)) ∈ B.
Since e is enabled in sj , none of the rj,i’s can be a
post-region of e. If one rj,i in {rj,1, . . . , rj,n} were
a post-region, then sj �∈

⋂n
i=1 rj,i. Therefore, the

following three cases can be distinguished for each
rj,i ∈ {rj,1, rj,2, . . . , rj,n}:

• e is not an event of SMi. Thus, rk,i = rj,i.
• e is an event of SMi and rj,i is a no-cross region

for e. Thus, rk,i = rj,i.
• e is an event of SMi and rj,i is a pre-region of
e. Thus, rk,i �= rj,i is a post-region of e.

Generation of synchronizing state machines from a transition system . . . 149

For the first and second cases, SMi will not change
state and TS will not change region when moving
from sj to sk. Therefore, sk ∈ rj,i = rk,i.

For the third case, e will exit rj,i and will enter
rk,i in TS, which means that sk ∈ rk,i. Therefore,
((rj,1, rj,2, . . . , rj,n), e, (rk,1, rk,2, . . . , rk,n)) ∈ T||.

For all cases we have that sk ∈ rk,i and therefore
sk ∈

⋂n
i=1 rk,i.

3. Since (sj , (rj,1, rj,2, . . . , rj,n)) ∈ B, we have that
sj ∈

⋂n
i=1 rj,i. Given the existence of the transition

((rj,1, rj,2, . . . , rj,n), e, (rk,1, rk,2, . . . , rk,n)), and
knowing that the EC property holds, we know
that sj ∈

⋂n
i=1 rj,i ⊆ ES(e). The latter inequality

holds because by Theorem 1 we have (i) ∀i, i =
1, . . . , n, label e appears once in SMi or it does
not appear, and (ii) ∀i, i = 1, . . . , n, if label
e appears in SMi then rj,i ∈ (◦e ∩ R), by
which

⋃n
i=1{rj,i} ⊇

⋃
r∈(◦e∩R){r} and so by

intersection of the regions considered as sets of
states

⋂n
i=1 rj,i ⊆

⋂
r∈(◦e∩R) r = ES(e).

Therefore, there is sk such that (sj , e, sk) ∈ T .
We can also see that sk ∈ ⋂n

i=1 rk,i, using
the same reasoning as in Step 2, since all the
pre-regions rj,i of e in {rj,1, . . . , rj,n} are exited
by entering rk,i, whereas the no-crossing regions
remain the same. We can then conclude that
(sk, (rk,1, rk,2, . . . , rk,n)) ∈ B.

�

Received: 28 January 2022
Revised: 24 June 2022
Re-revised: 6 October 2022
Accepted: 25 October 2022

	Introduction
	State of the art
	Decomposition in process mining

	Contributions

	Preliminaries
	Transition systems
	Petri nets
	From LTS to Petri nets by regions
	From LTS to SMs by regions

	Decomposition algorithm
	Generation of a set of SMs with excitation-closure
	Removal of redundant SMs
	Merge between regions preserving excitation-closure

	Composition of SMs and equivalence to original TS
	Experimental results
	Creation of a new mixed strategy

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

