
Int. J. Appl. Math. Comput. Sci., 2023, Vol. 33, No. 1, 103–115
DOI: 10.34768/amcs-2023-0009

FSPL: A META–LEARNING APPROACH FOR A FILTER AND EMBEDDED
FEATURE SELECTION PIPELINE

TEDDY LAZEBNIK a,*, AVI ROSENFELD b

aDepartment of Cancer Biology
University College London Cancer Institute
72 Huntley St., WC1E 6DD, London, UK

e-mail: t.lazebnik@ucl.ac.uk

bDepartment of Computer Science
Jerusalem College of Technology

21 Ha-Va’ad ha-Le’umi St., Jerusalem, Israel

There are two main approaches to tackle the challenge of finding the best filter or embedded feature selection (FS) algorithm:
searching for the one best FS algorithm and creating an ensemble of all available FS algorithms. However, in practice,
these two processes usually occur as part of a larger machine learning pipeline and not separately. We posit that, due to the
influence of the filter FS on the embedded FS, one should aim to optimize both of them as a single FS pipeline rather than
separately. We propose a meta-learning approach that automatically finds the best filter and embedded FS pipeline for a
given dataset called FSPL. We demonstrate the performance of FSPL on n = 90 datasets, obtaining 0.496 accuracy for the
optimal FS pipeline, revealing an improvement of up to 5.98 percent in the model’s accuracy compared to the second-best
meta-learning method.

Keywords: feature selection pipeline, meta-learning, no free lunch, autoML, genetic algorithm.

1. Introduction
A central problem in the development of machine learning
(ML) solutions is to identify which data features are
most useful for obtaining the optimal results (Molina
et al., 2002). To address this challenge, multiple
algorithms have been developed for feature selection (FS).
These algorithms can be divided into three main groups:
filter, embedded, and wrapper (Rosenfeld et al., 2015;
Chandrashekar and Sahin, 2014). The filter FS algorithms
act as a pre-processing step to rank the features based
on their connection to the target class variables wherein
the features with the highest connection are selected to
obtain a smaller dataset (Chandrashekar and Sahin, 2014).
Embedded FS algorithms select the features that yield
the best performance for a specific learning algorithm as
an integrated step within that learning algorithm. This
approach captures feature dependencies since it considers
not only relations between one input feature and its
output but also locally searches for features with better

*Corresponding author

discrimination (Kumar and Minz, 2014). Wrapper FS
algorithms are also based on a criterion of the performance
of an ML model (for example, the model’s accuracy) but
the search process to find the best feature subset is external
to that algorithm (e.g., wrapped around it). Wrapper FS
algorithms obtain promising results within a wide range
of applications such as image classification (Ma et al.,
2017), biomedical entity extraction (Akshaikhdeeb and
Ahmad, 2017), and SMS spam identification (Mussa and
Jameel, 2019). However, they are considered expensive
or even not feasible to use on large data sets due to the
need to train and evaluate ML models multiple times
during the training phase (Molina et al., 2002; Kusy and
Zajdel, 2021).

Based on the no free lunch (NFL) theorem, seeking
one FS algorithm that always works well and outperforms
all other methods is considered infeasible (Shilbayeh and
Vadera, 2014). Consequently, alternatives have been
suggested, such as to dynamically generate ensemble FS
algorithms for novel datasets, given a set of available FS

mailto:t.lazebnik@ucl.ac.uk

104 T. Lazebnik and A. Rosenfeld

algorithms (Bolón-Canedo and Alonso-Betanzos, 2019;
Teisseyre, 2022; Seijo-Pardo et al., 2017). As is the
case with ensemble learning in general, advocates for
creating ensembles of FS algorithms claim that they
yield better performing and more stable models. This
is because using several algorithms instead of just one
increases the chance of finding the best performing
algorithm and also increases robustness through reducing
the differences between the outputs of different algorithms
(Bolón-Canedo and Alonso-Betanzos, 2019; Saeys et al.,
2008). While this approach often produces good results,
ensembles produce unique FS results for each dataset
making then difficult to generalize, explain, and evaluate
the robustness and stability of the FS phase in the ML
pipeline (He et al., 2021; Waring et al., 2020). Another
approach, taken by this research, is to limit ourselves
to a list of available FS algorithms and assume that
one method does not fit all datasets. Similar to the
algorithm selection problem which was generally posed
(Rice, 1976), we specifically aim to identify which FS
algorithm works best for a given dataset and thus find the
best FS/dataset combination.

This paper aims to answer the following question:
Can we automatically learn which filter and embedded FS
pipeline works best for a given dataset? by developing
a new search approach that finds a meta-learning
model based on features’ of different datasets and their
interconnection to multiple FS pipelines. The novelty
of FSPL, a feature selection pipeline meta-learning
algorithm, lies in two points. First, this work is the
first to construct a unique meta-feature vector for datasets
designed specifically for the FS pipeline. Second,
the work uses a new search approach to find the
best-performing meta-learning model for the FS pipeline
task automatically.

The paper is organized as follows. Section 2 provides
a literature review of FS and meta-learning methods. In
Section 3, we present the FSPL algorithm and detail
its meta-feature vector constriction approach. Section 4
describes the results of an empirical evaluation of the
proposed approach and comparison to other meta-learning
methods. Section 5 concludes the paper and offers future
work.

2. Background and related work
Dataset sizes have become increasing more complex. This
growth has allowed for the development of successful ML
models in multiple tasks such as computer vision (Tokarev
et al., 2021; Maile et al., 2021; Ometto et al., 2019),
natural language processing (Wu et al., 2020; Kang et al.,
2020; Savchenko and Lazebnik, 2022) signal processing
(Wasimuddin et al., 2020) and others domains (Shatte
et al., 2019; Lazebnik et al., 2022; Keren Simon et al.,
2023). The complexity of these collected datasets can

be characterized by both their numbers of records and
features and a high level of noise (Tang et al., 2014).

To address this dataset complexity, methods for
dimensionality reduction have been proposed to clarify
the relationships between these datasets and their learned
models (Zebari et al., 2020). However, due to a large
number of methods and the large diversity between
them and when they are best suited to be used, several
meta-learning methods have been proposed to solve this
challenge by treating it as a learning problem. A
detailed review of both dimensionality reduction and
meta-learning methods is provided below.

2.1. Feature selection methods. Dimensionality
reduction is one of the most popular methods to remove
noise (i.e., irrelevant) and redundant features. These
methods can be divided into two main groups: feature
creation and feature selection (FS) (Zebari et al., 2020).
Feature creation approaches project features into a new
feature space with lower dimensionality. The new feature
space is usually a mapping of the original features to
optimize some utility function. For example, principle
component analysis (PCA) is a popular dimensionality
reduction technique that finds the largest orthogonal base
set of the given feature space (Vasan and Surendiran,
2016; Ivosev et al., 2008). Another example is the
canonical correlation analysis (CCA) which creates the
feature space that minimizes the cross-covariance between
the original features (Zhu et al., 2012).

The FS approach aims to select a subset of
the original feature set that optimizes a given utility
function. FS algorithms find this subset through three
main approaches: filters, embedded, and wrappers
(Chandrashekar and Sahin, 2014). Filter FS algorithms
act as pre-processing step to rank the features wherein
the highly ranked features are selected and applied to
obtain a small dimensional data (Chandrashekar and
Sahin, 2014). It is based on measures of the general
characteristics of the data such as distance, dependency,
consistency, and correlation between a given feature or
group of features with the data (e.g., class) being learned.
Embedded FS algorithms are performed with a specific
learning algorithm and perform feature selection during
the training process (Kumar and Minz, 2014). The
wrapper FS algorithms are based on a criterion of the
performance of an ML model such that the model is
wrapped by some search algorithm that aims to find
the best subset of features that results in the highest
performance of the model.

Multiple filter FS algorithms exist. For instance,
remove low variance (RLV) (Chandrashekar and Sahin,
2014) ranks the features according to their variance
and removes features with variance lower than some
predefined threshold. Chi-square (CS) (Plackett, 1983)
is based on the chi-square test measuring the connection

FSPL: A meta-learning approach for a filter and embedded feature selection pipeline 105

between the independent feature and dependent (target)
feature, aiming to select the features which are more
dependent on the target feature. Symmetrical uncertainty
(SU) (Kanna and Ramaraj, 2010) measures the relevance
between the feature and the class label in the target feature
through calculating the average normalized interaction
gain of an independent feature f , every other feature,
and the class label target feature. Based on the
combination of symmetrical uncertainty and normalized
interaction gain, less important features are removed
iteratively (Lin et al., 2019). Fisher’s score (FS)
(Chengzhang and Jiucheng, 2019) selects each feature
independently according to their scores based on the
Fisher criterion. Intuitively, the key idea of the Fisher
score is to find a subset of features such that the
distances between data points in different classes are
as large as possible, while the distances between data
points in the same class are as small as possible (Gu
et al., 2011). Information gain (IG) (Azhagusundari and
Thanamani, 2013) is an entropy-based selection method
which involves the calculation from the output data
grouped by an independent feature. The method ranks the
contribution of each independent feature, removing low
contributing features based on a predefined threshold.

In a complementary manner, embedded FS
algorithms can be associated with two main classes of ML
models: tree-based and coefficients-based. Tree-based
FS is performed by computing the average contribution
of each feature towards the classification of the target
class. For example, the scikit-learn Python library
sklearn uses a mean decrease impurity (i.e., the Gini
index (Grabmeier and Lambe, 2007)) for the tree-based
decision tree (Swain and Hauska, 1977) and random
forest (Rokach, 2016) ML models in order to compute
the features’ importance. In comparison, the outcome
of the learning process in coefficients-based models,
such as the lasso (Muthukrishnan and Rohini, 2016) and
support vector machine (SVM) (Neumann et al., 2005)
algorithms, is a vector of coefficients for some family
of functions (commonly linear or polynomial). As such,
if the coefficient associated with a feature is zero, it did
not contribute to the model during the learning phase
and can be eliminated. In the same manner, one can
rank the contributions of the features by comparing the
influence of the coefficients of these features. Of note,
neural networks (NNs) also operate as embedded models
and as such can be treated as an embedded FS algorithm.
However, we leave NN-based models out of the scope of
this work.

2.2. Meta-learning methods. Meta-learning,
or learning about learning, focuses on how
learning algorithms can tune themselves for a
specific learning algorithm/dataset combination
(Smith-Miles, 2009; Vanschoren, 2018). Meta-learning

for algorithm selection for various domains has a
rich body of work (Brazdil et al., 2009; Lemka
et al., 2015; Luo, 2016; Rice, 1976). Algorithm
selection was previously defined as the task of finding
the best algorithm from a set of n algorithms A1 . . . An

given a specific problem (Rice, 1976). Meta-learning
has been applied to many tasks including sorting,
forecasting, constraint satisfaction, and optimization
(Smith-Miles, 2009). Within the ML community,
meta-learning has also been used to search and obtain
hyper-parameters within specific algorithms such as
within binary classification problems (Nisioti et al., 2018)
and finding the optimal width of the Gaussian kernel used
in support vector regression model (Soares et al., 2004).

This paper’s novelty is in its use of meta-learning
for developing an FS pipeline to learn which features
are best suited given an ML and FS algorithm pair.
One potential solution would be to learn the entire
ML pipeline by trying all the possible combinations
and using the combination that yielded the best results
(Serban et al., 2013). However, the number of possible
configurations grows dramatically as the number of
possible ML models, hyperparameter configurations, and
pre-processing methods increases, making it even more
important to leverage prior experience. Therefore, a
reduction in the search space is required to provide a
feasible solution to the full ML pipeline meta-learning
task. These reduction techniques can be divided into two
main groups: space reduction and directed search.

Space reduction methods assume that some structure
or prior knowledge about the search space can be
leveraged to makes the search simpler. For example,
one can control the search space by imposing a fixed
structure on the ML pipeline. Based on the smaller
space, prior knowledge in the form of the most promising
pipelines can be used as an initial condition for an
optimization algorithm such as the Bayesian optimization
(Feurer et al., 2014). These methods are highly sensitive
to the assumptions used in the space reduction phase and
therefore require domain knowledge of the problem. As
we lack any such knowledge, they are less useful for the
FS pipeline we propose.

Directed search methods use a utility function based
on some heuristics to narrow and focus the search
effort towards a near-optimal result. For example,
Strang et al. (2018) showed that non-linear classifiers
outperform linear classifiers when large amounts of data
are available. The authors highlighted that one can use
meta-features of the training dataset to determine a subset
of appropriate classifiers. Gil et al. (2018) proposed
a planning-based ML pipeline construction approach.
The authors used a hierarchical meta-dataset planner
that searches for solutions while automatically annotating
a catalog of primitive data processing and modeling
steps. The planning approach provides promising results

106 T. Lazebnik and A. Rosenfeld

but requires large amounts of data and computation to
perform properly (Kietz et al., 2012).

Nguyen et al. (2014) proposed a beam search focused
on components recommended by a meta-learner. The
meta-learner was trained on examples of successful prior
ML pipelines, defining a heuristic utility function for the
search algorithm. This approach is limited to searching for
the classic algorithm selection problem as the beam search
in the operator-based framework is useful for selecting
algorithms but does not directly support hyperparameter
search. The authors indicate that a poor distribution of
the successful prior ML pipelines for the meta-learner
will result in poorer results. However, obtaining a good
distribution of the successful prior ML pipelines is a time-
and resource- consuming task by itself. Drori et al.
(2018) use a self-play reinforcement learning approach
that is based on edit operations performed over ML
pipeline primitives. The authors used a Monte Carlo
tree search (Anthony et al., 2017) with a deep neural
network architecture to learn an agent’s best strategy in
the construction of an ML pipeline game. While all of
these approaches are able to yield promising results, they
are based on heuristics that are not readily available for
the FS pipeline problem we consider.

3. FSPL: Feature selection pipeline
meta-learning model

We aim to find a meta-learning ML algorithm (A∗) that
receives as input a set of datasets (D), a set of Filter FS
algorithms (F), and a set of embedded FS algorithms (E).
It outputs a model (e.g., function) (M) such that given a
new dataset and the same sets of filter and embedded FS
algorithms, the model (M) returns the best FS pipeline,
according to some loss function (L), constructed from one
filter (f) and one embedded (e) FS algorithm. Formally,
the algorithm A∗ satisfies

A∗ := min
A∈A

∑

d∈D

L
(
A(d, F,E)

)
, (1)

where A is the set of all possible meta-learning models
and A ∈ A is a meta-learning model. We solve this
optimization problem using a meta-learning approach.
First, we construct a meta-dataset which operates as the
data for the learning model. Second, we automatically
find a learning model that optimizes Eqn. (1) using a
search algorithm.

3.1. Meta-dataset constriction. In order to obtain
A∗, we propose a meta-learning approach that requires
a meta-dataset to learn from. We construct this dataset
as follows. First, each dataset is converted into a
meta-feature vector as described in Table 1, marked
as X̄ . This feature space is constructed from a basic

set of dataset attributes such as the number of records
and features (Engels and Theusinger, 1998), statistical
properties of the dataset such as the fourth standardized
moment (Reif et al., 2012), and statistical features
measuring the connections between the independent
features and the target feature such as the average Pearson
correlation between the independent features and the
target feature (Shen et al., 2020). These features have
been used to obtain good results in previous meta-learning
tasks (Engels and Theusinger, 1998; Reif et al., 2012;
Shen et al., 2020).

An FS pipeline is formally defined to be an assembly
of filter FS and embedded FS functions (i.e., algorithm).
Specifically in this study, each FS pipeline is constructed
from a single filter and embedded FS algorithm. Hence,
the set {L(e(f(d))) | ∀f ∈ F, e ∈ E} is computed for
each dataset d ∈ D using a given loss function L such as
the FS pipeline’s accuracy for classification tasks or mean
absolute error for regression tasks. The outcome of this
computation is a vector of size |E × F | representing the
performance of all possible FS pipelines, marked by Ȳ .
Based on the two sets (X̄, Ȳ), we define a meta-dataset
such that X̄ are the source features and Ȳ are the target
features of the dataset MD. Thus, the meta-dataset is a
matrix of size |D| × (|F × E|+ |X |).

Based on the meta-dataset one can solve a Top-k
problem in which the algorithm is assumed to predict a
correct outcome from a set of possible outcomes if its
score is at least the score of the k-highest outcome’s score
(Sharma et al., 2012). In practice, one typically aims to
find the best model to answer a single classification or
regression task (i.e., Top-k for k = 1). Thus, we focused
on the Top-1, configuration computing from Ȳ a single
feature indicating the index of the best FS pipeline for
each dataset Ī1. Therefore, the meta-dataset is now with
size |D| × (|X |+ 1) as we reduced the Ȳ feature set to a
single feature indicating the index of the highest value in
Ȳ for each record.

3.2. Meta-learning algorithm search. Allocating an
FS pipeline to a dataset from a large and discrete space of
FS pipelines is a multi-categorical classification problem.
We formalize this task as a search problem in which
one needs to find the optimal ML pipeline as defined in
Eqn. (1). In particular, we define a meta-search space of
ML models of the form

S := F ∪ R
α × Z ∪ R

β × E ∪ R
γ × Z ∪ R

δ, (2)

where F ∪ R
α is the set of available filter FS algorithms

with their hyperparameters, Z ∪ R
β is the set of

ensemble algorithms spanning from the set E with
their hyperparameters, E ∪ R

γ is the set of available
classification algorithms with their hyperparameters, and
Z ∪ R

δ is the set of ensemble algorithms spanning from

FSPL: A meta-learning approach for a filter and embedded feature selection pipeline 107

Table 1. Constructed meta-feature vector representing a dataset.
Name Description Source
row count the number of records (rows) in the dataset Engels and Theusinger, 1998
column count the number of features (columns) in the dataset Engels and Theusinger, 1998
row over classes the number of records divided by the number of

the classes in the classification task
Engels and Theusinger, 1998

column over classes the number of features divided by the number of
the classes in the classification task

Engels and Theusinger, 1998

numerical features the number of numerical features in the dataset Engels and Theusinger, 1998
categorical features the number of categorical features in the dataset Engels and Theusinger, 1998
cancor canonical correlation for the best single

combination of features
Reif et al., 2012

kurtosis the fourth standardized moment Reif et al., 2012
average entropy the average entropy of the features in the dataset Shen et al., 2020
standard deviation
entropy

the standard deviation entropy of the features in
the dataset

Shen et al., 2020

row over column the number of records divided by the number of
features in the dataset

Rosenfeld and Freiman, 2021

average asymmetry of
features

the average value of the Pearson asymmetry
coefficient

Shen et al., 2020

average Pearson to
target feature

the average Pearson correlation score of all the
features in the dataset and the target feature in
the classification task

Shen et al., 2020

standard deviation
Pearson to target feature

the standard deviation of the Pearson correlation
scores between all the features in the dataset and
the target feature in the classification task

Shen et al., 2020

average correlation
between features

the average Pearson correlation score between
all the features and themselves

Shen et al., 2020

average coefficient of
variation

the average value of the standard deviation
divided by the mean of each feature, for all the
features in the dataset

Shen et al., 2020

standard deviation
coefficient of variation

the standard deviation value of the standard
deviation divided by the mean of each feature,
for all the features in the dataset

Shen et al., 2020

average coefficient of
anomaly

the average value of the mean divided by the
standard deviation of each feature, for all the
features in the dataset

Shen et al., 2020

standard deviation
coefficient of anomaly

the standard deviation value of the mean divided
by the standard deviation of each feature, for all
the features in the dataset

Shen et al., 2020

the set E with their hyperparameters. A schematic view
of the ML pipeline for the meta-learning model is shown
in Fig. 1. Of note, the sets β and δ can be different based
on prior knowledge, by choosing a different subset of the
available ensemble algorithms.

One way to solve this optimization problem is by
using a stochastic directed search approach, as previously
proposed by Olson and Moore (2016). These methods
do not require any additional knowledge on the search
space or assumption about the loss function (Holland,
1992). One such algorithm is the genetic algorithm (GA)
approach which has yielded promising results in a wide

range of optimization problems (Ghaheri et al., 2005;
Bo and Rein, 2005). These approaches use GA for a
stochastic iterative optimization process as follows. First,
a random population of possible solutions (also called
genes) is initialized. In each iteration, the algorithm
performs four steps: evaluation, next-generation creation,
mutation, and cross-over. The evaluation step allocates
a fitness score to each gene in the population. The next
generation creation step is responsible to generate the new
population of genes based on the fitness scores of the
previous population, primarily giving a higher probability
to better performing (e.g., with higher fitness score) to

108 T. Lazebnik and A. Rosenfeld

Filter FS
ranking

Filter FS
ensemble

model

Classification
models ranking

Classification
models

 ensemble
model

F U R Z U R E U R Z U R α β γ δ

Fig. 1. Schematic view of the feature selection pipeline for the meta-learning model.

pass to the next generation. The mutation step introduces
random noise to genes in the population. Finally, the
cross-over step replaces two genes in the population with
two other genes which are a combination of the original
two.

FSPL implements each step of this GA approach.
Specifically, a gene (g) is defined by a tuple g :=
(f, zf , e, ze), where f ∈ F ∪ R

α includes the
hyperparameters’ values of each filter FS in F , zf ∈ Z ∪
R

β is the ensemble algorithm with its hyperparameters’
values for the filter FS rankings, e ∈ E ∪ R

γ includes
the hyperparameters’ values of each embedded FS in E,
and ze ∈ Z ∪ R

δ is the ensemble algorithm with its
hyperparameters’ values for the classification algorithm.
First, a population of genes is generated such that
each hyperparameter’s value and algorithm are picked in
random. The fitness function is

∑

d∈D

L
(
g(d)

)
(3)

for a given loss function L, where g is a meta-learning
model represented by a gene and d ∈ D is a dataset from
a set of D datasets. The next-generation creation is based
on the tournament selection process (Bo et al., 2006)
which works as follows. First, a portion ε ∈ (0, 1) of
the population is picked for the next generation. Second,
the remaining genes in the new generation are selected
based on a distribution originating in the normalized
fitness score (i.e., L1 normalization). The mutation is
implemented by adding a random value x ∈ R for
the hyperparameter values and replacing the algorithms
constructing the gene with other algorithms from the same
set in random. The cross-over step is implemented such
that two genes g1 and g2 are picked randomly from the
genes population. Afterward, a single value between 1 and
4 is picked, representing the index I of the computation
step in the meta-learning model’s FS pipeline. Two new
genes ḡ1 and ḡ2 are copies of the genes g1 and g2 but
element I is switched between the gene g1 and g2 in
ḡ1 and ḡ2, respectively. The algorithm stops when the
average fitness score of the population is not improving
for ξ ∈ N iterations.

For example, given five filter FSs and five embedded
FSs, {fk}5k=1 and {ek}5k=1, respectively, and a single
ensemble approach AN which is the majority vote

between three algorithms, a possible random gene can be

g := [{fh
k }5k=1, {f3, f2, f1, f4, f5},

{ehk}5k=1, {e1, e5, e2, e4, e3}],

where fh
k and ehk are the sets of hyperparameter values of

the k-th filter and embedded FS algorithm, respectively.

4. Empirical evaluations
We empirically evaluated FSPL and compared its
performance with state-of-the-art meta-learning
frameworks. We focused on supervised classification
because it is the most widely studied problem in
meta-learning (Feurer et al., 2015). Nonetheless, in
theory, our approach applies to every optimization
problem that is based on optimizing a measurable target
variable and has a source dimension with enough samples.
For example, hidden Markov chain based models are not
suitable for this method as they are based on a reflected
feature rather than the measurable feature itself. In
order to take into consideration a large set of both filter
and embedded FS algorithms while making sure they
mathematically differ from each other (rather than just
variations of the same algorithm), we chose eight filter FS
and three embedded FS algorithms. The implementation
of all the FS algorithms is taken from the scikit-learn
library (Pedregosa et al., 2011) (version 0.23.2) and
includes: chi square (CS) (Plackett, 1983), symmetrical
uncertainty (SU) (Kanna and Ramaraj, 2010), information
gain (IG) (Azhagusundari and Thanamani, 2013),
Pearson correlation (PC) (Liu et al., 2020), Spearman
correlation (SC) (Saeys et al., 2008), remove low
variance (RLV) (Chandrashekar and Sahin, 2014),
missing value ratio (MSR) (Chandrashekar and
Sahin, 2014), and Fisher’s score (FS) (Chengzhang
and Jiucheng, 2019) for the filter FS algorithms and
decision trees (DTs) (Swain and Hauska, 1977), lasso
(LO) (Muthukrishnan and Rohini, 2016), and the
support vector classifier (SVC) (Neumann et al., 2005)
for the embedded FS algorithms. This FS pipeline
algorithm selection problem is of high practical relevance
since it describes the manual search task an end-user
needs to perform when given a new dataset and has
applications such as performance and explainability
(Rosenfeld et al., 2015; Rosenfeld, 2021; Rosenfeld and
Richardson, 2019).

FSPL: A meta-learning approach for a filter and embedded feature selection pipeline 109

For our experiments, we used n = 90 classification
datasets from Kaggle1 uploaded between 2014 and
2021. For each dataset, we computed its 20-dimensional
meta-feature vector (X̄) and a 24-dimensional FS pipeline
performance vector (Ȳ) comprised from the filter and
embedded FS pipeline (see Section 3.1). Formally, each
value in the FS pipeline performance vector (Y) is the
accuracy of the model obtained by each combination
of the filter (eight options) and the embedded (three
options) FS. The FS pipeline’s performance is measured
as follows. Initially, records with missing values were
removed, categorical features replaced with their one-hot
encoding (i.e., replacing each categorical feature f with
a set of binary features ν1, . . . νz where z is the number
of unique values in f) representation. Afterwards, the
dataset is divided into training and testing cohorts at
random, where the training cohort includes 80% of
the dataset’s records and the testing cohort includes
the remaining 20%. The FS pipeline is fitted on the
training cohort and the accuracy is computed on the
testing cohort as the performance metric. A schematic
view of the experiment’s structure is shown in Fig. 2.
The computation time required for the experiments with
complexity analysis of the GA algorithm is provided in
Appendix.

4.1. No free lunch. The main assumption of the
proposed approach is that the “no free lunch” theorem
holds for the FS pipeline task. To test this assumption,
we computed the portion of times each FS pipeline would
be the optimal one based on the obtained meta-dataset
(MD), as shown in Fig. 3. Moreover, we computed the
probability that each Filter and Embedded FS algorithm
would be included in the optimal FS pipeline individually
as presented in Figs. 3(b) and (c), respectively. In these
figures, the distribution of the optimal FS pipeline and
breakdown of the filter and embedded FS algorithms
for n = 90 classification tasks, such that CS, SU, IG,
PC, SC, RLV, MVR, FS, DT, L, and SVC stands for
chi square, symmetrical uncertainty, information gain,
Pearson correlation, Spearman correlation, remove low
variance, missing value ratio, Fisher’s score, decision tree,
lasso, and support vector machine, respectively.

One can see from Fig. 3 that there is no optimal filter
or embedded FS algorithm for all of the FS pipelines.
This empirically shows that the “no free lunch” theorem
holds for the FS pipeline task. Nonetheless, for the
given set of datasets, the decision tree (DT) embedded
FS algorithm outperforms the lasso (L) and linear support
vector classifier (SVC) algorithms for 75 out of the 90
datasets (83.33%). This phenomenon is expected as the
tested set of datasets are primarily tabular classification
problems and tree-based models such as the DT model are

1https://www.kaggle.com/.

known to perform well in this type of data, particular when
relatively low number of features and a large number of
samples exist (Abdullah et al., 2017; Freitas, 2014).

4.2. Comparison to other meta-learning ap-
proaches. The meta-learning search algorithm is trained
and evaluated using the k-fold cross-validation method
(Fushiki, 2011) with k = 5. As such, 80% (72 datasets)
of the records of the meta-dataset (MD) are used as
a training cohort, and the remaining 20% (18 datasets)
are used as a testing cohort to evaluate the proposed
algorithm (see Section 3.2). This division was repeated
five times according to the k-fold cross-validation method
such that the training/testing pairwise cohort is distinct
each time. We computed the mean ± standard deviation
accuracy, which was used as the fitness function L (see
Eqn. (3)), for the Top-i, i ∈ [1, . . . , 9], as shown in
Fig. 4 for the proposed algorithm and four state-of-the-art
learning methods: AutoSklearn (Feurer et al., 2019),
AutoGluon (Erickson et al., 2020), AutoBagging (Pinto
et al., 2017), and the model proposed by Nisioti et
al. (2018). In particular, AutoSklearn and AutoGluon
are autoML models rather than meta-learning models
and as such solve an online search or optimization task
rather than the offline learning tasks meta-learning models
perform.

Thus AutoSklearn and AutoGluon are guaranteed
to get the optimal FS pipeline eventually by checking
all possible combinations. Nonetheless, this process
could take a long (and even infeasible) time. Thus,
to compare between the performance meta-learning and
autoML models, we allow both to run at the same
time. First, the meta-learning models were trained and
queried on the test cohort. The total duration of training
τtraining and the average duration of querying each record
in the test cohort E[τquery] is fixed as τ = τtraining +
E[τquery]. Afterward, each autoML model received τ
time to compute the optimal FS model for each record in
the testing cohort. In addition, AutoBagging is a binary
classification meta-learning algorithm; thus, we computed
a sequence of binary classifications originated from the
one-hot code encoding of the optimal FS pipeline.

A breakdown of the algorithms’ performance in
predicting the filter or embedded FS algorithm in the
optimal FS pipeline as mean ± standard deviation for
the Top-1 accuracy is shown in Table 2. FSPL’s success
in outperforming other meta-learning models is based
on two properties. First, the meta-vector representing
the data sets is generated from a wide range of known
meta-features (Vanschoren, 2018), which were previously
used for finding optimal performance for other learning
problems (Bilalli et al., 2017). Thus, it is not surprising
that this vector outperforms other meta-learning methods
which did not leverage this information. Second, the
meta-learning model uses a search method based on

https://www.kaggle.com/

110 T. Lazebnik and A. Rosenfeld

Source
datasets

80%

20%

Dataset standardization
& compute feature vector

Dataset standardization
& compute feature vector Apply meta learning model Compute Top-i accuracy

Test phase

Compute the optimal FS
pipeline using brute-force

Train the meta learning
model using the GA

Train phase

[X] [Y] [M]

[X] [M]

Fig. 2. Schematic view of the experiment’s structure for the FSPL algorithm.

a b c

Fig. 3. Distribution of the optimal FS pipeline and breakdown of the filter and embedded FS algorithm for n = 90 classification tasks,
such that CS, SU, IG, PC, SC, RLV, MVR, FS, DT, L, and SVC stand for chi square, symmetrical uncertainty, information gain,
Pearson correlation, Spearman correlation, remove low variance, missing value ratio, Fisher’s score, decision tree, lasso, and
support vector machine, respectively.

GA, which was previously shown to yield theoretical
close-to-optimal performance in other search problems.
Thus, we were not surprised that meta-learning based on
this search approach was highly successful in meta-search
for FS pipelines.

5. Conclusions and future work
FS is a significant element in the development of an
effective ML model. Given the importance of FS,
many algorithms have been developed. Since no single
algorithm is dominant across all datasets, a phenomenon
known as the no-free-lunch theorem and confirmed by our
experiments (see Fig. 3), ML developers are required
to spend time and effort to properly determine the most
appropriate filter and embedded FS algorithms for each
dataset separately.

In this paper, we describe how FSPL can find an
optimal FS pipeline. Given the large search space,
brute force-based data generation methods are typically
inefficient as they need to train a very large number
of models, resulting in a process that is slow and may
not converge to an optimal solution given limited time.
To overcome this challenge, one can use one of two
possible directions. One option is to to learn offline
which ensemble FS pipeline to use by using a problems’
representative meta-data and then apply this model to
online select the optimal pipeline for new datasets. A

second option is to introduce heuristics to reduce the
number of FS pipelines one needs to evaluate to find the
best FS pipeline for the meta-dataset. Multiple search
heuristic could potentially be used to find the optimal
pipeline, including directed search algorithms such as
genetic algorithms (Olson and Moore, 2016; Holland,
1992) or simulated annealing (Aarts and van Laarhoven,
1987).

FSPL’s novelty lies in how it combines these two
main options to find the best FS pipeline. It generates a
meta-dataset offline which contains a meta-feature vector
representing a dataset and all the possible FS pipelines’
performance on these datasets. As even offline learning
with such a large search space is infeasible, it uses a
meta-learning, GA-based search approach to learn the
optimal pipeline. Then when faced with a new dataset,
it quickly applies online the prediction model previously
learned based on the meta-features of the new dataset.

We implemented FSPL based on the scikit-learn2

library. We then validated this approach by comparing the
performance of different FS pipelines on a large number
(n = 90) of datasets. We found that FSPL outperforms all
the other meta-learning methods for the Top-1 accuracy
and outperforms other methods by 5.98% or more. As
can be seen from Fig. 4, the method proposed by Nisioti
et al. (2018) is at least as good as the best method (not

2https://scikit-learn.org/stable/.

https://scikit-learn.org/stable/

FSPL: A meta-learning approach for a filter and embedded feature selection pipeline 111

Table 2. Comparison between FSPL and other learning models for the Top-1 accuracy FS pipeline, divided into finding the filter and
embedded FS. The results are the mean ± standard deviation for the k-fold (k = 5) cross-validation test.

Model Filter FS Embedded FS
FSPL 0.53± 0.05 0.82± 0.05
AutoSklearn (Feurer et al., 2019; 2020) 0.51± 0.04 0.77± 0.02
AutoGluon (Erickson et al., 2020) 0.46± 0.04 0.82± 0.04
AutoBagging (Pinto et al., 2017) 0.44± 0.02 0.76± 0.05
Nisioti et al., 2018 0.52± 0.06 0.76± 0.03

Fig. 4. Best meta-learning model’s Top-i accuracy from a k-fold (k = 5) cross-validation.

including FSPL) for the TOP-i (i ∈ [1, . . . , 9]) accuracy.
Thus, we computed a one-tail paired T-test between the
FSPL and Nisioti et al.’s results, obtaining that FSPL is
statistically significantly better with a p-value p < 0.05.

For future work, we hope to develop how FSPL
can be extended in several directions. One of them
is to perform hyperparameter optimization by defining
the same filter and embedded FS algorithms as several
different candidates for the FS pipeline, but only differing
with their hyperparameters. For example, we could divide
the DT algorithm into two embedded FS algorithms:
DT with Gini and DT with entropy as the splitting
rule. While this extension will result in a much larger
search space during the meta-learning model training
phase, this can be run on a large and resource-rich
environment and then seamlessly used in the endpoint
device without a significant increment in the requirement
of computation resources. This work focused on filter
and embedded FS algorithms, and for future work we
hope to introduce wrapper FS algorithms to FSPL.
Moreover, this work focused on average accuracy to test
the performance of FSPL. We hope to consider additional
performance metrics (e.g., F1, recall, precision) in the
future. Additionally, we only considered supervised
classification datasets. We hope to consider what
extensions, if any, are needed to use FSPL on regression
tasks when performance metrics such as MSE and SSE

will be needed instead. Finally, our approach does not
provide an explanation why one FS pipeline outperform
others for each given dataset. If such connection would be
found, it can reveal a better approach for meta-learning.

References
Aarts, E.H.L. and van Laarhoven, P.J.M. (1987). Simulated

annealing: A pedestrian review of the theory and some
applications, in P.A. Devijver and J. Kittler (Eds), Pat-
tern Recognition Theory and Applications, Springer,
Berlin/Heidelberg, pp. 179–192.

Abdullah, A.S., Selvakumar, S., Karthikeyan, P. and Venkatesh,
M. (2017). Comparing the efficacy of decision tree and its
variants using medical data, Indian Journal of Science and
Technology 10: 1–8.

Akshaikhdeeb, B. and Ahmad, K. (2017). Feature selection
for chemical compound extraction using wrapper approach
with naive Bayes classifier, 6th International Confer-
ence on Electrical Engineering and Informatics (ICEEI),
Langkawi, Malaysia, pp. 1–6.

Anthony, T., Tian, Z. and Barber, D. (2017). Thinking fast
and slow with deep learning and tree search, Conference
on Neural Information Processing Systems, Long Beach,
USA.

Azhagusundari, B. and Thanamani, A.S. (2013). Feature
selection based on information gain, International Jour-
nal of Innovative Technology and Exploring Engineering
2(2): 18–21.

112 T. Lazebnik and A. Rosenfeld

Bilalli, B., Abelló, A. and Aluja-Banet, T. (2017). On the
predictive power of metafeatures in OpenML, Interna-
tional Journal of Applied Mathematics and Computer Sci-
ence 27(4): 697–712, DOI: 10.1515/amcs-2017-0048.

Bo, L. and Rein, L. (2005). Comparison of the Luus–Jaakola
optimization procedure and the genetic algorithm, Engi-
neering Optimization 37(4): 381–396.

Bo, Z.W., Hua, L.Z. and Yu, Z.G. (2006). Optimization
of process route by genetic algorithms, Robotics and
Computer-Integrated Manufacturing 22: 180–188.

Bolón-Canedo, V. and Alonso-Betanzos, A. (2019). Ensembles
for feature selection: A review and future trends, Informa-
tion Fusion 52: 1–12.

Brazdil, P., Giraud-Carrier, C., Soares, C. and Vilalta, R. (2009).
Metalearning: Applications to Data Minings, Springer,
Berlin/Heidelberg .

Chandrashekar, G. and Sahin, F. (2014). A survey on feature
selection methods, Computers & Electrical Engineering
40(1): 16–28.

Chengzhang, L. and Jiucheng, X. (2019). Feature selection
with the Fisher score followed by the maximal clique
centrality algorithm can accurately identify the hub genes
of hepatocellular carcinoma, Scientific Reports 9: 17283.

Drori, I., Krishnamurthy, Y., Rampin, R., de Paula Lourenco,
R., Ono, J.P., Cho, K., Silva, C. and Freire, J. (2018).
AlphaD3M: Machine learning pipeline synthesis, AutoML
Workshop at ICML, Stockholm, Sweden.

Engels, R. and Theusinger, C. (1998). Using a data metric for
preprocessing advice for data mining applications, Euro-
pean Conference on Artificial Intelligence, Brighton, UK,
pp. 23–28.

Erickson, N., Mueller, J., Shirkov, A., Zhang, H., Larroy, P., Li,
M. and Smola, A. (2020). AutoGluon-tabular: Robust and
accurate AutoML for structured data, arXiv: 2003.06505.

Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M. and
Hutter, F. (2020). Auto-Sklearn 2.0: Hands-free AutoML
via meta-learning, arXiv: 2007.04074.

Feurer, M., Klevin, A., Eggensperger, K., Springenberg, J.T.,
Blum, M. and Hutter, F. (2019). Auto-sklearn: Efficient
and robust automated machine learning, in F. Hutter et al.
(Eds), Automated Machine Learning, Springer, Cham, pp.
113–134.

Feurer, M., Springenberg, J.T. and Hutter, F. (2014).
Using meta-learning to initialize Bayesian optimization
of hyperparameters, International Conference on Meta-
learning and Algorithm Selection, Prague, Czech Repub-
lic, pp. 3–10.

Feurer, M., Springenberg, J.T. and Hutter, F. (2015). Initializing
Bayesian hyperparameter optimization via meta-learning,
Proceedings of the 29th AAAI Conference on Artificial In-
telligence, Austin, USA, pp. 1128–1135.

Freitas, A.A. (2014). Comprehensible classification models:
A position paper, ACM SIGKDD Explorations Newsletter
15(1): 1–10.

Fushiki, T. (2011). Estimation of prediction error by using k-fold
cross-validation, Statistical Computation 21: 137–146.

Ghaheri, A., Shoar, S., Naderan, M. and Hoseini, S.S. (2005).
The applications of genetic algorithms in medicine, Oman
Medical Journal 30(6): 406–416.

Gil, Y., Yao, K.-T., Ratnakar, V., Garijo, D., Steeg, G.V., Szekely,
P., Brekelmans, R., Kejriwal, M., Lau, F. and Huang,
I.-H. (2018). P4ml: A phased performance-based pipeline
planner for automated machine learning, AutoML Work-
shop at ICML, Stockholm, Sweden.

Grabmeier, J.L. and Lambe, L.A. (2007). Decision trees for
binary classification variables grow equally with the Gini
impurity measure and Pearson’s chi-square test, Interna-
tional Journal of Business Intelligence and Data Mining
2(2): 213–226.

Gu, Q., Li, Z. and Han, J. (2011). Generalized Fisher score
for feature selection, Proceedings of the 27th Conference
on Uncertainty in Artificial Intelligence, Barcelona, Spain,
p. 266–273.

He, X., Zhao, K. and Chu, X. (2021). AutoML: A survey of the
state-of-the-art, Knowledge-Based Systems 212: 106622.

Holland, J.H. (1992). Genetic algorithms, Scientific American
267(1): 66–73.

Ivosev, G., Burton, L. and Bonner, R. (2008). Dimensionality
reduction and visualization in principal component
analysis, Analytical Chemistry 80(13): 4933–4944.

Kang, Y., Cai, Z., Tan, C.-W., Huang, Q. and Liu, H. (2020).
Natural language processing (NLP) in management
research: A literature review, Journal of Management An-
alytics 7(2): 139–172.

Kanna, S.S. and Ramaraj, N. (2010). Feature selection
algorithms: A survey and experimental evaluation,
Knowledge-Based Systems 23(6): 580–585.

Keren Simon, L., Liberzon, A. and Lazebnik, T. (2023). A
computational framework for physics-informed symbolic
regression with straightforward integration of domain
knowledge, Scientific Reports 13(1): 1249.

Kietz, J.-U., Serban, F., Bernstein, A. and Fischer, S.
(2012). Designing KDD workflows via HTN-planning
for intelligent discovery assistance, 5th Planning to Learn
Workshop at the European Conference on Artificial Intelli-
gence, Montpellier, France.

Kumar, V. and Minz, S. (2014). Feature selection: A literature
review, Smart Computing Review 4(3): 211–229.

Kusy, M. and Zajdel, R. (2021). A weighted wrapper approach to
feature selection, International Journal of Applied Math-
ematics and Computer Science 31(4): 685–696, DOI:
10.34768/amcs-2021-0047.

Lazebnik, T., Zaher, B., Bunimovich-Mendrazitsky, S. and
Halachmi, S. (2022). Predicting acute kidney injury
following open partial nephrectomy treatment using
sat-pruned explainable machine learning model, BMC
Medical Informatics and Decision Making 22: 133.

Lemka, C., Budka, M. and Gabrys, B. (2015). Metalearning:
A survey of trends and technologies, Artificial Intelligence
Review 44(1): 117–130.

FSPL: A meta-learning approach for a filter and embedded feature selection pipeline 113

Lin, X., Li, C., Ren, W., Luo, X. and Qi, Y. (2019). A new
feature selection method based on symmetrical uncertainty
and interaction gain, Computational Biology and Chem-
istry 83: 107149.

Liu, Y., Mu, Y., Chen, K., Li, Y. and Guo, J. (2020).
Daily activity feature selection in smart homes based on
Pearson correlation coefcient, Neural Processing Letters
51: 1771–1787.

Luo, G. (2016). A review of automatic selection methods for
machine learning algorithms and hyper-parameter values,
Network Modeling Analysis in Health Informatics and
Bioinformatics 5(1): 18.

Ma, L., Li, M., Gao, Y., Chen, T., Ma, X. and Qu, L.
(2017). A novel wrapper approach for feature selection
in object-based image classification using polygon-based
cross-validation, IEEE Geoscience and Remote Sensing
Letters 14(3): 409 – 413.

Maile, H., Li, J.O., Gore, D., Leucci, M., Mulholland, P., Hau,
S., Szabo, A., Moghul, I., Balaskas, K., Fujinami, K., Hysi,
P., Davidson, A., Liskova, P. Hardcastle, A., Tuft, S. and
Pontikos, N. (2021). Machine learning algorithms to detect
subclinical keratoconus: Systematic review, JMIR Medical
Informatics 9(12): e27363.

Molina, L.C., Belanche, L. and Nebot, A. (2002). Feature
selection algorithms: A survey and experimental
evaluation, 2002 IEEE International Conference on
Data Mining, Maebashi City, Japan, pp. 306–313.

Mussa, D.J. and Jameel, N. G.M. (2019). Relevant SMS
spam feature selection using wrapper approach and
XGBoost algorithm, Kurdistan Journal of Applied Re-
search 4(2): 110–120.

Muthukrishnan, R. and Rohini, R. (2016). Lasso: A feature
selection technique in predictive modeling for machine
learning, IEEE International Conference on Advances
in Computer Applications (ICACA), Coimbatore, India,
pp. 18–20.

Neumann, J., Schnorr, C. and Steidl, G. (2005). Combined
SVM-based feature selection and classification, Machine
Learning 61: 129–150.

Nguyen, P., Hilario, M. and Kalousis, A. (2014). Using
meta-mining to support data mining workflow planning
and optimization, Journal of Artificial Intelligence Re-
search 51: 605–644.

Nisioti, E., Chatzidimitriou, K.C. and Symeonidis, A.L. (2018).
Predicting hyperparameters from meta-features in binary
classification problems, AutoML Workshop at Interna-
tional Conference on Machine Learning, Stockholm, Swe-
den.

Oliveto, P. S. and Witt, C. (2015). Improved time complexity
analysis of the simple genetic algorithm, Theoretical Com-
puter Science 605: 21–41,

Olson, R.S. and Moore, J.H. (2016). TPOT: A tree-based
pipeline optimization tool for automating machine
learning, JMLR: Workshop and Conference Proceedings
64: 66–74.

Ometto, G., Moghul, I., Montesano, G., Hunter, A., Pontikos,
N., Jones, P. R., Keane, P.A., Liu, X., Denniston, A.K.
and Crabb, D.P. (2019). ReLayer: A free, online
tool for extracting retinal thickness from cross-platform
oct images, Translational Vision Science and Technology
8(3): 25.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V. (2011). Scikit-learn: Machine
learning in Python, Journal of Machine Learning Research
12: 2825–2830.

Pinto, F., Cerqueira, V., Soares, C. and Mendes-Moreira, J.
(2017). Autobagging: Learning to rank bagging workflows
with metalearning, arXiv: 1706.09367.

Plackett, R.L. (1983). Karl Pearson and the chi-squared test,
International Statistical Review/Revue Internationale de
Statistique 51: 59–72.

Reif, M., Shafait, F. and Dengel, A. (2012). Meta-learning
for evolutionary parameter optimization of classifiers, Ma-
chine Learning 87: 357–380.

Rice, J.R. (1976). The algorithm selection problem, Advances in
Computers 15: 65–118.

Rokach, L. (2016). Decision forest: Twenty years of research,
Information Fusion 27: 111–125.

Rosenfeld, A. (2021). Better metrics for evaluating explainable
artificial intelligence, AAMAS’21: 20th International Con-
ference on Autonomous Agents and Multiagent Systems,
pp. 45–50, (virtual).

Rosenfeld, A. and Freiman, M. (2021). Explainable feature
ensembles through homogeneous and heterogeneous
intersections, JCAI-PRICAI 2020 Workshop on Explain-
able Artificial Intelligence, (online).

Rosenfeld, A., Graham, D.G., Hamoudi, R., Butawan, R.,
Eneh, V., Khan, S., Miah, H., Niranjan, M. and Lovat,
L.B. (2015). MIAT: A novel attribute selection approach
to better predict upper gastrointestinal cancer, Interna-
tional Conference on Data Science and Advanced Analyt-
ics, Paris, France.

Rosenfeld, A. and Richardson, A. (2019). Explainability
in human-agent systems, Autonomous Agents and Multi-
Agent Systems 33(6): 673–705.

Saeys, Y., Abeel, T. and de Peer, Y.V. (2008). Robust feature
selection using ensemble feature selection techniques,
in W. Daelemans et al. (Eds), Machine Learning and
Knowledge Discovery in Databases, Springer, Berlin, pp.
313–325.

Savchenko, E. and Lazebnik, T. (2022). Computer aided
functional style identification and correction in modern
Russian texts, Journal of Data, Information and Manage-
ment 4: 25–32.

Seijo-Pardo, B., Porto-Dı́az, I., Bolón-Canedo, V. and
Alonso-Betanzos, A. (2017). Ensemble feature selection:
Homogeneous and heterogeneous approaches, Knowledge-
Based Systems 118: 124–139.

114 T. Lazebnik and A. Rosenfeld

Serban, F., Vanschoren, J., Kietz, J.U. and Bernstein, A.A.
(2013). A survey of intelligent assistants for data analysis,
ACM Computing Surveys 45(3): 1–35.

Sharma, A., Imoto, S. and Miyano, S. (2012). A top-r feature
selection algorithm for microarray gene expression data,
IEEE/ACM Transactions on Computational Biology and
Bioinformatics 9(3): 754–764.

Shatte, A.B.R., Hutchinson, D.M. and Teague, S.J. (2019).
Machine learning in mental health: A scoping review
of methods and applications, Psychological Medicine
49(9): 1426–1448.

Shen, Z., Chen, X. and Garibaldi, J.M. (2020). A novel
meta learning framework for feature selection using data
synthesis and fuzzy similarity, IEEE World Congress on
Computational Intelligence, (online).

Shilbayeh, S. and Vadera, S. (2014). Feature selection in meta
learning framework, Science and Information Conference,
London, UK, pp. 269–275.

Smith-Miles, K.A. (2009). Cross-disciplinary perspectives on
meta-learning for algorithm selection, ACM Computa-
tional Surveys 41(1): 6.

Soares, C., Brazdil, P.B. and Kuba, P. (2004). A meta-learning
method to select the kernel width in support vector
regression, Machine Learning 54: 195–209.

Strang, B., van der Putten, P., van Rijn, J.N. and Hutter, F.
(2018). Don’t rule out simple models prematurely: A
large scale benchmark comparing linear and non-linear
classifiers in OpenML, in W. Duivesteijn et al. (Eds), Ad-
vances in Intelligent Data Analysis XVII, Springer, Berlin,
pp. 303–315.

Swain, P. H. and Hauska, H. (1977). The decision tree classifier:
Design and potential, IEEE Transactions on Geoscience
Electronics 15(3): 142–147.

Tang, J., Alelyani, S. and Liu, H. (2014). Feature Selection for
Classification: A Review, CRC Press, Boca Raton.

Teisseyre, P. (2022). Joint feature selection and classification
for positive unlabelled multi-label data using weighted
penalized empirical risk minimization, International Jour-
nal of Applied Mathematics and Computer Science
32(2): 311–322, DOI: 10.34768/amcs-2022-0023.

Tokarev, K.E., Zotov, V.M., Khavronina, V.N. and Rodionova,
O.V. (2021). Convolutional neural network of deep
learning in computer vision and image classification
problems, IOP Conference Series: Earth and Environmen-
tal Science 786(1): 012040.

Vanschoren, J. (2018). Meta-learning: A survey,
arXiv: 1810.03548.

Vasan, K.K. and Surendiran, B. (2016). Dimensionality
reduction using principal component analysis for network
intrusion detection, Perspectives in Science 8: 510–512.

Waring, J., Lindvall, C. and Umeton, R. (2020). Automated
machine learning: Review of the state-of-the-art and
opportunities for healthcare, Artificial Intelligence in
Medicine 104: 101822.

Wasimuddin, M., Elleithy, K., Abuzneid, A.-S., Faezipour,
M. and Abuzaghleh, O. (2020). Stages-based ECG
signal analysis from traditional signal processing to
machine learning approaches: A survey, IEEE Access
8: 177782–177803.

Wu, S., Roberts, K., Datta, S., Du, J., Ji, Z., Si, Y., Soni, S.,
Wang, Q., Wei, Q., Xiang, Y., Zhao, B. and Xu, H. (2020).
Deep learning in clinical natural language processing: A
methodical review, Journal of the American Medical In-
formatics Association 27(3): 457–470.

Zebari, R.R., Abdulazeez, A.M., Zeebaree, D.Q., Zebari, D.A.
and Saeed, J.N. (2020). A comprehensive review of
dimensionality reduction techniques for feature selection
and feature extraction, Journal of Applied Science and
Technology Trends 1(2): 56–70.

Zhu, X., Huang, Z., T., S.H., Cheng, J. and Xu, C.
(2012). Dimensionality reduction by mixed kernel
canonical correlation analysis, Pattern Recognition
45(8): 3003–3016.

Teddy Lazebnik is a postdoctoral research associative at the Univer-
sity College London Cancer Institute. His main research line focuses
on personalized treatment protocols for individuals and communities;
specifically, personalizing treatments and policies is a two-edged sword
where the one obtaining the policy or treatment enjoys a more fitting one
while paying for the additional effort required to provide such treatment
or policy.

Avi Rosenfeld works at the Jerusalem College of Technology (also
known as JCT and Machon Lev/Machon Tal). He holds a PhD in ap-
plied artificial intelligence from the Computer Science Department of
Bar Ilan University. His research focuses on applying AI concepts to
distributed systems. He has had worked full time as an instructor in the
MIS Department in the Sy Syms School of Business of Yeshiva Univer-
sity, and as an adjunct professor in the Computer Science Department of
New York University’s (NYU) Courant School.

Appendix

Complexity of the proposed GA

Analyzing the time complexity of genetic algorithms
(GAs) is challenging due to the stochastic selection,
crossover, and mutation components that they contain (Bo
and Rein, 2005). The proposed GA can be reduced to
a “bitone” task in which the GA algorithm starts with a
random population of genes represented by a string of
bits and aims to make the entire population identical to
a pre-defined target string of bits. Formally, this reduction
replaces each component in the FS pipeline represented by
a gene’s chromosome with the index of this FS algorithm
in a pre-defined set of FS algorithms (S). This index
value can be represented using a binary string such that
the length of the string (a) satisfies a := mink(|S| < 2k).
The target bit string is the optimal FS represented in the
same manner as the gene. While the target bit string

FSPL: A meta-learning approach for a filter and embedded feature selection pipeline 115

is unavailable to us, we assume that the fitness function
implicitly defines it.

Based on previous work (Oliveto and Witt, 2015),
and since the used population size in our experiments
(1000) satisfies the condition |P | ≤ n1/4−ε, where |P |
is the gene population size, n is the problem’s size,
and ε > 0 is an arbitrarily small number (since n =
1.12 · 1015 used to describe the number of bits required
to represent all ML pipelines possible from eight filter
and three embedded FS algorithms, allowing ensembles
of up to five algorithms), the algorithm is exponential with
overwhelming probability.

To obtain the results shown in Section 4, we used
a server with four GTX 1080 Ti (Nividia) GPUs and
16-Core (Intel Xeon) LGA 3647 CPU that computed for
81.7 hours in total. The distribution of the computation
time between the methods is: 19.9, 16.8, 14.3, 15.5, 15.2
for the FSPL, AutoSklearn, AutoGluon, AutoBagging,
and the one by Nisioti et al. (2018), respectively.

Received: 17 February 2022
Revised: 1 May 2022
Re-revised: 12 May 2022
Accepted: 27 September 2022

	Introduction
	Background and related work
	Feature selection methods
	Meta-learning methods

	FSPL: Feature selection pipeline meta-learning model
	Meta-dataset constriction
	Meta-learning algorithm search

	Empirical evaluations
	No free lunch
	Comparison to other meta-learning approaches

	Conclusions and future work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

