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The paper presents a method of determining the robustness of solutions of systems of interval linear equations (ILEs). The
method can be applied also for the ILE systems for which it has been impossible to find solutions so far or for which
solutions in the form of improper intervals have been obtained (which cannot be implemented in practice). The research
conducted by the authors has shown that for many problems it is impossible to arrive at ideal solutions that would be fully
robust to data uncertainty. However, partially robust solutions can be obtained, and those with the highest robustness can
be selected and put into practice. The paper shows that the degree of robustness to the uncertainty of the entire system can
be calculated on the basis of the degrees of robustness of individual equations, which greatly simplifies calculations. The
presented method is illustrated with a series of examples (also benchmark ones) that facilitate its understanding. It is an
extension of the authors’ previously published method for first-order ILEs.
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1. Introduction
The motivation behind this paper is to show that some
difficult cases of linear interval equations (ILEs) that so
far have not been solved with one-dimensional interval
arithmetic (1D-IA) can be solved using multidimensional
interval arithmetic (MIA), and that solutions provided by
MIA are more informative and more realistic (practical).
The paper will consider determining robust solutions of
static systems of interval equations with control variables
(x1, x2), which can also be called decision variables. The
system of ILEs describing the dependence existing in a
real system can have the form

a11 x1 + a12 x2 = b1,

a21 x1 + a22 x2 = b2.
(1)

These types of ILE systems describe the balance
relationships existing in many physical, economic,
biological and other systems. Examples include
the Leontief economic model (Dymova, 2011) or the
patient-recommended multi-component diet model. In
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the case of many real systems, we do not have exact
knowledge about the values of the coefficients aij
occurring in the formula (1). We usually have only
approximate interval knowledge of the form

a11 ∈ [a11, a11], . . . , a22 ∈ [a22, a22]. (2)

In the system control task (1), one should choose
such values of the control variables (x1, x2) that in the
ideal case would ensure equality of the right and left-hand
sides of (1). However, because we do not know the
exact values of the coefficients aij and we only have an
approximate interval knowledge (2), this equality cannot
be obtained in practice. Therefore, tolerance corridors
[b1, b1] and [b2, b2] should be introduced for the output
variables b1, b2. These tolerances facilitate (but do
not always ensure) finding the appropriate control values
(x1, x2). Under conditions of uncertain knowledge, we
must therefore solve the following problem and not (1):

[a11, a11] x1 + [a12, a12] x2 = [b1, b1], (3)

[a21, a21] x1 + [a22, a22] x2 = [b2, b2].

It should be noted that, while the uncertainties
[aij , aij ] have a negative effect on the control process
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Fig. 1. Illustration of a system with two control inputs x1, x2

and four independent, uncertain inputs a11, a12, a21,
a22.

and can be called disturbances or uncertainty generators
(DUGs—disturbance uncertainty generators), which we
have no influence on, the uncertainties [bi, bi] in (3) can
be often chosen by us depending on the application.
Sometimes, however, they are also subject to the imposed
accuracy requirements of the controlled system. The
larger the span [bi, bi], the easier it is to ‘hit’ tolerance
corridors (TCs) and achieve the control target. There is
an analogy here with shooting a target with a rifle. The
described task is illustrated in Fig. 1.

The concept of a tolerable solution was formulated
by S.P. Shary in the 1990s and presented in many
publications (e.g., Shary, 1991; 1992; 1994; 1995). Let us
consider the interval system of linear algebraic equations:

Ax = b , (4)

whereA is an intervalm×nmatrix andb is anm-element
vector. Then the tolerable solution set can be defined as
∑

∀∃(A,b) = {x ∈ R
n | (∀A ∈ A)(∃b ∈ b)(Ax = b)} ,

(5)
or, in a shorter form, as

∑
∀∃(A,b) = {x ∈ R

n | (∀A ∈ A)(Ax = b)} . (6)

Another type of solution that can be defined is the
united solution set
∑

∃∃(A,b) = {x ∈ R
n | (∃A ∈ A)(∃b ∈ b)(Ax = b)} .

(7)
Lodwick and Dubois (2015) define a tolerance

solution set in a different way,

[A]x ∈ b. (8)

In the case of 1-variable ILEs, where [A] = [a] =
[a, a] and b = [b] = [b, b], the tolerance solution Ω∀∃ is
given by

Ω∀∃ = {x | [a, a]x ⊆ [b, b]} (9)

and supplemented by

b ≤ ax ≤ b, ∀a ∈ [a, a]. (10)

Both the definition (5) of the tolerable solution set
(TSS) proposed by Shary (1991) and the definition (9) of
Locwick and Dubois (2015) refer to a set of vectors x ∈
R

n that have full robustness to the entire set of possible
matrices A ∈ A. Meanwhile, in addition to vectors x that
are fully robust, there may be vectors x ∈ R

n that are
not fully but only partially robust. In other words, these
vectors will be robust to the part Ahit ⊂ A of the set
A. The part Ahit can be large, e.g., it can constitute 95%
of the set A. Should such a vector x not be considered
at all and discarded? After all, it gives a good chance of
hitting the required tolerance ranges defined by the vector
b. Besides, any possibility, even a small one, of hitting the
tolerance intervalb can be valuable in a practical problem.

The novelty of the approach presented in this article
is the introduction of new concepts of sets: a fully
robust part of the united solution set (USSFRP =∑

∃∃FRP(A,b)) and a partly robust part of the united
solution set (USSPRP =

∑
∃∃PRP(A,b)). These sets

are defined by the formulas (11) and (12), where r(x) ∈
(0, 1] is the degree of robustness of a single vector x to
system uncertainty:

USSFRP =
∑

∃∃FRP(A,b)

= {x ∈ R
n | (∃A ∈ A)

(∃b ∈ b)(Ax = b)(r(x) = 1)}, (11)

USSPRP =
∑

∃∃PRP(A,b)

= {x ∈ R
n | (∃A ∈ A)

(∃b ∈ b)(Ax = b)(r(x) ∈ (0, 1))}. (12)

It should be noted that the sum of a set of partial and
full robustness is a united solution set,

USSFRP +USSPRP = USS ,

∑
∃∃FRP(A,b)+

∑
∃∃PRP(A,b) =

∑
∃∃(A,b). (13)

In real-world problems, it often happens that the
subset of full robustness is empty USSFRP = ∅ , i.e.,
there is no control vector x ∈ R

n that satisfies all the
tolerance requirements specified by the vector b on the
right-hand side of the equation. Then there is only a partial
robust part of the USS:

USS = USSPRP ,
∑

∃∃(A,b) =
∑

∃∃PRP(A,b).
(14)

If there are both parts, USSFRP and USSPRP , the
optimal control vector x is one of the vectors contained
in USSFRP , since all the vectors x ∈ R

n contained in
this part have full robustness r(x) = 1 and guarantee
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hitting the tolerance intervals b. If there is only a subset
USSPRP , then vectors x ∈ R

n included in it have
diversified robustness 0 < r(x) < 1. Then the vector
xopt with the highest robustness to system uncertainty
should be determined and applied to the control process.
In the following, a general method of determining the
robustness r(x) of any single control vector x ∈ R

n will
be presented.

If a linear system defined by the equation Ax =
b is given, then, in the case of a continuous system,
the cardinality measure Mcard(A) of the matrix A of
uncertain coefficients and the cardinality measure of a set
Ahit (x) ⊂ A must be determined. The matrix Ahit (x)
is dependent on a particular control vector x ∈ R

n.
Therefore, for each vector x, it must be defined separately.
The matrix Ahit (x) is defined by

Ahit (x) = {A ∈ A | Ax = b ∈ b}. (15)

If the cardinality measures Mcard(A) and
Mcard(Ahit (x)) are specified, then the robustness
r(x) of the control vector x ∈ R

n can be calculated from
the formula

r(x) =
Mcard(Ahit (x))

Mcard(A)
,

Ahit (x) ⊂ A, r(x) ∈ [0, 1]. (16)

The exact method of determining Mcard(A) and
Mcard(Ahit (x)) for the 1st and the 2nd order linear
system will be presented further on. For 2nd and higher
order linear systems, due to the multidimensionality of the
problem, discretization can be used. Then it is possible
to determine card(A) and card(Ahit (x)) (the quantity of
discrete sets), and the robustness of r(x) can be calculated
from the formula

r(x) =
card(Ahit (x))

card(A)
, Ahit (x) ⊂ A, r(x) ∈ [0, 1].

(17)
Both in the case of the formulas of Shary (4)–(8)

as well as Lodwick Dubois (8)–(10), the elements of
the solution vector x are intervals, i.e., 1-dimensional
mathematical objects. This is due to the fact that
most IA types assume that the results of calculations
on intervals are also intervals. Currently, there are the
following 1-dimensional IA types, quoted according to
Boukezzoula et al. (2019) (but this is an incomplete
list): standard IA (SIA), extended (generalized) IA of
Kaucher, non-standard (inner) IA of Markov, generalized
Hukuhara IA of Dimitrova and Stefanini, optimistic IA
of Boukezzoula and Galichet, instantiated IA of Dubois
(Lodwick and Dubois, 2015), constrained IA of Lodwick,
single-level constrained IA of Klir, gradual IA of Dubois,
Prade, Fortin, Boukezzoula (Boukezzoula et al., 2014;
2019; Dubois and Prade, 2008; Fortin et al., 2008).

Research into the development of new 1D-versions
of IA continues. Scientists are aware of the shortcomings
of the existing types of 1D-IA and are trying to develop
new, more perfect versions. For example, Siahlooei
and Shahzadeh Fazeli (2018) propose IA based on new
inverse operations of addition and multiplication and a
new concept of the general closed interval.

The large number of existing types of IA
demonstrates the great difficulty in solving uncertainty
problems. This difficulty has already been noticed by
many scientists. For example, Dymova (2011) describes
the phenomenon where some IA types give different
solutions to the problem under consideration depending
on the mathematical form of its presentation. Changing
the form changes the calculation result. Mazandarani
et al. (2018) described this phenomenon as unacceptable
and called it unnatural behavior in modeling (UBM).
The weaknesses of the current IA were also noticed by
Kreinovich (2016). He emphasizes the need for a deep
understanding of the interval problem before starting
to solve it. Incomplete understanding of the problem
often leads to inaccurate or completely incorrect results.
The importance of correct interval problem solving is
even greater since IA is the basic arithmetic for fuzzy
arithmetic (FA). This is due to the possibility of presenting
the fuzzy number as a set of α-cuts which are intervals, in
accordance with the definition of Zadeh (1975). Hence,
all the imperfections of IA affect the imperfections of FA.
The fact that the current IA is imperfect is evidenced not
only by the UBM phenomenon, but also, for example, by
the interval equation anomaly detected by W. Lodwick,
presented several times in his publications (e.g., Lodwick
and Thipwiwatpotjana, 2017).

There are many examples in which the types of
IA known today sometimes provide solutions to interval
equations and sometimes they do not (Kaczorek and
Ruszewski, 2022). Lodwick and Dubois (2015) present
an example of a simple equation [1, 2]x = [4, 6] for
which the method presented by them gives a tolerance
solution being an improper interval of [4, 3], which is
interpreted as an empty solution set, because it is not
physically feasible. However, for other interval equations,
this method provides solutions in the form of proper
intervals.

The kind of interval arithmetic that differs from
1-dimensional arithmetic types is multi-dimensional IA
(MIA) of Piegat, Pluciński and Landowski. MIA will be
presented in Section 2. In their recent articles, the authors
presented how to determine realistic tolerance control for
the basic 1st order ILE (Piegat and Pluciński, 2022a) and
for the quadratic interval equation (Piegat and Pluciński,
2022b). These articles explained the basic concepts and
the essence of the proposed method, and the current article
is its extension to second- and higher-order ILE systems.
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2. Introduction to multidimensional
interval arithmetic

The concept of a multidimensional approach to IA was
developed in 2010–2011 by A. Piegat in connection with
the work on irregular fuzzy models. The first publication
on MIA appeared in 2012 (Piegat and Landowski, 2012),
soon followed by others (Piegat and Landowski, 2013;
Piegat and Pluciński, 2015a). On the basis of MIA
with the use of α-cuts, a multidimensional Type-1 fuzzy
arithmetic (MFA-Type-1) was developed (e.g., Piegat and
Pluciński, 2015b). MFA Type-1 was in turn used to
develop MFA Type-2 (e.g., Piegat and Dobryakova, 2020).
MIA, MFA Type-1, MFA Type-2 was developed mainly
by the research team of A. Piegat, M. Pluciński and M.
Landowski. By the beginning of 2022, this team had
published 47 articles on the above-mentioned types of
arithmetic. Multidimensional arithmetic has met with
considerable interest in the world. By the beginning
of 2022, other foreign scientists had published over
40 papers presenting various theoretical methods and
practical applications of this arithmetic. Examples include
the works of Alamanda and Boddeti (2021), Mazandarani
et al. (2018), or Ngo and Wu (2021).

The most important difference between MIA and
1D-IA is the form and meaning of the calculated result. In
MIA, the result is multidimensional and its dimensionality
depends on the number of variables involved in the
operation. However, in all 1D-IA types, the results of all
calculations are 1-dimensional intervals. This approach
causes a loss of information the more complex the
calculations are. It also causes inaccuracies (sometimes
significant) in many, but not all, of the final results. In
MIA, the intervals [a, a] and [b, b] are transformed into
the RDM-form a(γa) and b(γb), (RDM—relative distance
measure):

[a, a] → a+ γa(a− a), γa ∈ [0, 1] , (18)

[b, b] → b+ γb(b − b), γb ∈ [0, 1] .

The model (18) is an epistemic model of the true
value of the variable a and b (there is only one true value).
The operation of adding two intervals is

a(γa) + b(γb) = c(γa, γb), γa, γb ∈ [0, 1],

[a+ γa(a− a)] + [b+ γb(b − b)]

= (a+ b) + γa(a− a) + γb(b− b).

(19)

MIA takes into account the fact that, since we do
not know the true value of a and b, these variables are
unknowns. Can we add two unknowns? Yes! They
can be added by treating their possible values as possible
hypotheses. Each of the hypotheses will be conditional
and will describe one of possible states of the addition
system, e.g., IF (a = 2) AND (b = 4) THEN (c = 6).

Each of the possible hypotheses is a triple described by

(a(γa), b(γb), c(γa, γb) = a(γa) + b(γb)). (20)

If a ∈ [a, a] = [2, 3] and b ∈ [b, b] = [4, 6], examples
of possible states of the addition system are given by

(2.0, 4.0, 6.0), (2.0, 4.1, 6.1), (2.1, 4.1, 6.2), . . . .
(21)

The set of possible addition states SA+B =
{a(γa), b(γb), c(γa, γb)} is 3-dimensional and the result
c(γa, γb) depends on two RDM variables. The set SA+B

is the main and most informative result of intervals
adding. Figure 2 illustrates the operation of addition of
two intervals: [a, a] and [b, b]. It should be added here
that in the case of adding three intervals, the set S will be
visualized by a 3-dimensional cuboid, not a rectangle as
in Fig. 2.

The main result of the addition, the set SA+B =
{(a, b, c)}, is the set of all possible states (a, b, c) of
the addition system, of which only one state is the true
state. There are many states in the set SA+B containing
the same result c with different values of a and b. An
example covers the states (2.0, 5.0, 7.0), (2.1, 4.9, 7.0),
(2.2, 4.8, 7.0), . . . etc. This means that the set of possible
c-values contains repeating values and therefore it should
be named a bag, not the set. The bag BGC is defined by

BGC = {c(γa, γb) = a(γa) + b(γb) | (22)
∀γa ∈ [0, 1], ∀γb ∈ [0, 1]}.

Often, for practical calculations, the span SPBGC of
the bag BGC is necessary:

SPBGC
=

[
min
γa,γb

c(γa, γb),max
γa,γb

c(γa, γb)
]
,

γa, γb ∈ [0, 1]. (23)

The transformation of the intervals [a, a] = [2, 3] and
[b, b] = [4, 6] into the RDM form is shown by

[2, 3] → a(γa) = 2 + γa, γa ∈ [0, 1], (24)
[4, 6] → b(γb) = 4 + 2γb, γb ∈ [0, 1],

a(γa) + b(γb) = c(γa, γb) = 6 + γa + 2γb.

Using the formula (23), we can determine the span

SPBGC
= [6, 9], (25)

which does not contain the repeating values of the result
variable c. The meaning of the span is easy to understand
from Fig. 2. The span is the secondary, derivative
information about the set SA+B of possible states (a, b, c).
However, this information is poorer than the full, 3D set
SA+B . On the basis of the span, it is impossible to
reconstruct the set SA+B . However, on the basis of the
set SA+B , it is easy to determine its span.
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Fig. 2. Visualization of addition of two interval sets [a, a] and [b, b] and the 3D-result: the set SA+B{a(γa), b(γb), c(γa, γb)} of
possible states of the addition system in the projection on 2D-space A×B.

Another kind of simplified, secondary information
about the set SA+B of possible states of the addition
system is the cardinality density function carddf (c) of
the result variable c(γa, γb) shown in Fig. 3. In the
case of adding two intervals, the distribution carddf (c)
can be obtained from the length of the isocline segments
c = a + b = const. Two such isoclines are shown in
Fig. 2 for c = a + b = 7 and c = 8. A measure of the
cardinality density is the isocline length corresponding to
a given value of c. The area under the carddf (c) plot
is a measure of the number of all possible states (a, b, c)
of the addition system leading to the results c ∈ [6, 9]
(only one of these states will really exist). The plot in
Fig. 3 shows that the number of possible system states
leading to c ∈ [7, 8] is two times greater than that of
states leading to c ∈ [6, 7]. In other words, the conclusion
c ∈ [7, 8] is consistent with (is supported by) the two
times greater number of possible states (a, b, c) that may
occur than the conclusion c ∈ [6, 7]. In yet another
way the robustness of the conclusion c ∈ [7, 8] to the
uncertainty of the system states is two times higher than
the robustness of the conclusion c ∈ [6, 7]. Thus, the
carddf (c) distribution in Fig. 3 can be interpreted in three
ways: as the cardinality density distribution, as the density
distribution of the conclusion adjustment c = c∗ to the
set of possible states of the system, and as the density
distribution of the robustness of the conclusion c = c∗ on
the set of uncertain states (a, b, c) of the addition system,
where c∗ is a number selected from the range [c, c], here
equal to the interval [6, 9].

The distributions carddf (c) of the results of addition
and subtraction, as linear operations, are created on the
basis of straight line segments. On the other hand, the
distributions of the results of multiplication and division,
as nonlinear operations, are created on the basis of curved
segments.

The third instance of simplified, secondary

Fig. 3. Distribution carddf (c): the cardinality density function
of possible result values c = a+b in the interval addition
[2, 3] + [4, 6].

information about the set SA+B of possible states
(a, b, c = a + b) of the addition is the center of gravity
CofGC giving the expected value of the result variable c:

CofGC =

∫ c

c
c · carddf (c) dc

∫ c

c carddf (c) dc
= 7.5 . (26)

The description of the results of addition of the
intervals [a, a] + [b, b] shows that in the case of
MIA there is no single calculation result as there is in
one-dimensional IA. Here we have one main result (3D),
i.e., the set SA+B of possible states of the addition system,
and three secondary results derived from the main result:
the span SPBGC , the distribution carddf (c), and the
center of gravity CofGC . 1D IA suggests that the main
and only result is the span SPBGC

, which is actually only
a secondary result and which is informatively quite poor.
Further arithmetic operations are presented below.

Subtraction of intervals [a, a]− [b, b]: The result variable
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c(γa, γb) is given by

c(γa, γb) = a(γa)− b(γb) (27)

= [a+ γa(a− a)]− [b+ γb(b− b)]

= (a− b) + γa(a− a)− γb(b− b),

γa, γb ∈ [0, 1].

The resulting set SA−B of states of the subtraction system
is given by

SA−B = {(a(γa), b(γb), c(γa, γb) = a(γa)− b(γb)) |
∀γa ∈ [0, 1], ∀γb ∈ [0, 1]}. (28)

Multiplication of intervals [a, a]·[b, b]: The result variable
c(γa, γb) is given by

c(γa, γb) = a(γa)b(γb), γa, γb ∈ [0, 1]. (29)

The resulting set SAB of possible states of the
mutiplication is given by

SAB = {(a(γa), b(γb), c(γa, γb) = a(γa)b(γb)) |
∀γa ∈ [0, 1], ∀γb ∈ [0, 1]}. (30)

Dividing proper intervals [a, a]/[b, b]: The result variable
c(γa, γb) is given by

c(γa, γb) = a(γa)/b(γb), 0 /∈ b(γb), γa, γb ∈ [0, 1].
(31)

The resulting set SA/B of possible states of the dividing
system is given by

SA/B = {(a(γa), b(γb), c(γa, γb) = a(γa)/b(γb)) |
∀γa ∈ [0, 1], ∀γb ∈ [0, 1]}.

(32)

If [b, b] contains zero, which can be written as
[b, 0, b], where b < 0, b > 0, then the division operation
can be performed approximately using the decomposition
of the interval [b, 0, b] into two component intervals
excluding zero:

[b, 0, b] = [b,−Δ] ∪ [Δ, b], (33)

where Δ is a very small number, such as Δ = 0.001.
The entire division operation can also be

decomposed into a union of 2-component division
operations:

[a, a]/[b, 0, b] = [a, a]/[b,−Δ] ∪ [a, a]/[Δ, b] . (34)

In summary, the most important benefits of using
MIA are as follows:

• Almost all laws of the arithmetic of crisp numbers
hold for RDM arithmetic.

• Complicated problems can be solved, thanks to
possibility of an equation’s transformation.

• MIA provides complete, multidimensional
problem solutions from which various simplified
representations can be derived.

In Section 3, MIA will be applied to solve interval
equations with one unknown.

3. Determining the robustness of solutions
of interval equations of order 1

First, the solution method will be presented for the
case of one control variable, because only then this
method can be visualized and the basic concepts explained
understandably. In the case of two control variables, the
problem becomes high-dimensional and its visualization
is much complicated.

Solving an ILE of order 1 can be formulated as
follows. Given is a static, multiplicative system with
inputs a and x that performs the operations ax = b. We
only have an approximate knowledge about the input a:
a ∈ [a, a]. We also know the requirement for the output
tolerance corridor b: b ∈ [b, b]. Specify a value of the
control input x (or the set X = [x, x] of these values) that
allows ‘hiting’ the output b, (ax ∈ [b, b]). Although the
variables a and x are physical inputs of the system under
consideration and b is its output, in terms of information a
and b are information inputs and the control x becomes
the information output. The algorithm for solving this
problem will be presented using the example of the
system [2, 3]x = [3, 6]. This example was studied by
Lodwick and Dubois (2015). Both SIA and CIA detected
only a partial range of solutions here.

Example 1. (Solving steps)

Step 1: Formulate the interval sets [a, a] and [b, b] in terms
of MIA:

[a, a] = [2, 3] → a(γa) = a+ γa(a− a) = 2 + γa,

[b, b] = [3, 6] → b(γb) = b+ γb(b− b) = 3 + 3γb,

γa, γb ∈ [0, 1]. (35)

Step 2: Determine the bag model BGX :

ax = b → x(γa, γb) =
b(γb)

a(γa)
=

3 + 3γb
2 + γa

, (36)

BGX =
{
x(γa, γb) =

3 + 3γb
2 + γa

|

∀γa ∈ [0, 1], ∀γb ∈ [0, 1]
}
.
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Step 3: Determine the bag span SPBGX
= Xposs =

[x, x]:

SPBGX =
[
min
γa,γb

3 + 3γb
2 + γa

,max
γa,γb

3 + 3γb
2 + γa

]
(37)

= [1, 3] = [x, x] = Xposs .

A minimum of x(γa, γb) was obtained for γa = 1,
γb = 0, and a maximum of x(γa, γb) for γa = 0, γb = 1.

Step 4: Determine the degrees of robustness r(x) for
x-values contained in Xposs .

Figure 4 illustrates the meaning of the bag BGX

of possible system states (a, b, x = b/a) satisfying the
control objective as well as the meaning of the span
SPBGX

= Xposs = [x, x].
Figure 4 shows that the control range Xposs = [1, 3]

enabling (but not always ensuring) a hit in the tolerance
corridor TC = [3, 6] includes the sub-rangeXFR = [1.5, 2]
of full control robustness x to all possible DUG values
a ∈ [2, 3]. Xposs also includes 2 sub-ranges of partial
robustness. The sub-range XPR1 = [1, 1.5] is robust
to large values of the variable a, but not robust to small
values of a. On the other hand, the sub-range XPR2 =
[2, 3] has robustness to small values of disturbance a, but
does not have robustness to large disturbances a. In Fig. 4
it is possible to distinguish some characteristic values of
x defining the points of intersection of the TC borders
ax = 3 and ax = 6 with the lower and upper disturbance
values a = 2 and a = 3. These are the points x = 1,
x = 1.5, x = 2, x = 6.

The robustness of the control (decision) value x can
be interpreted as a fraction, r(x) ∈ [0, 1], telling to how
large a part of the a-disturbance range the selected x value
is robust.

In the range XFR = [1.5, 2], the value r(x) = 1. In
the range XPR1 = [1, 1.5], the robustness is given by

r(x) =
Mcard(ahit (x))

Mcard(a)
=

a− a(x)

a− a
=

a− (b/x)

a− a
(38)

and in the range XPR2 = [2, 3] by

r(x) =
a(x)− a

a− a
=

(b/x)− a

a− a
. (39)

Figure 5 shows the distribution of r(x).

Step 5: Determine the optimal tolerance control value
xopt based on the criterion of maximal robustness.

Determining xopt is easy in this problem. One of
the x-values within the range [1.5, 2] can be selected. It
should be noted that the optimal range of x is determined
by two internal characteristic values: x = 1.5 and x =
2. However, in most problems the choice will not be that
easy because the range of full robustness will not exist
at all. This is due to the large number of DUGs found in

Fig. 4. Visualization of the solution of the task of determining
tolerant control of the system defined by the equation
[2, 3]x = [3, 6]. The tolerance corridor is limited by two
curves: ax = 3 and ax = 6. FR: full robustness, PR:
partial robustness.

Fig. 5. Distribution of the robustness degree r(x) of particular
control values x ∈ Xposs in the tolerant control problem
[2, 3]x = [3, 6].

practical problems. The following example will show how
increasing the uncertainty of the variable a ∈ [a, a] affects
the achieved control robustness. �

Example 2. The system [2, 5]x = [3, 6] will be
considered. Here the width of the disturbance uncertainty
[a, a] = [2, 5] is greater than in the system (35): [2, 3]x =
[3, 6]. This example has not been previously explored in
publications of other authors. Figure 6 shows the solution
of the problem in the A×X space.

The robustness distribution r(x) from Fig. 7 shows
that there is no control value x that guarantees full
robustness r(x) = 1 for the disturbance [a, a] = [2, 5].
Thus, in this task the possibilities of implementing of
TC worsened in relation to the task (35) with [a, a] =
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Fig. 6. Visualization of the solution to the problem [2, 5]x =
[3, 6] with the uncertainty [a] = [2, 5] increased in rela-
tion to the problem (35).

Fig. 7. Robustness distribution of possible control values x in
the problem [2, 5]x = [3, 6].

[2, 3]. Nevertheless, there is a control value xopt =
1.2 which makes it possible to obtain high robustness
r(xopt ) = 0.833. The value of xopt = 1.2 is an internal
characteristic value of the variable x. �

Section 4 presents the problem of determining the
robustness of solutions for a system with two control
variables (x1, x2).

4. Determining the robustness of solutions
of interval equation systems

4.1. Example 3. Let us consider the well-known
system of equations presented by Barth and Nuding
(1974) and later analyzed many times in various
publications (Gay, 1982; Lodwick and Dubois, 2015).
The methods presented in these articles were unable to
calculate the robustness of possible solutions (x1, x2)
lying outside the area of full robustness (Fig. 11—dark

gray area):

[2, 4] x1 + [−2, 1] x2 = [−2, 2], (40)
[−1, 2] x1 + [2, 4] x2 = [−2, 2].

The set of possible solutions of the system (united
solutions set) is shown in Fig. 8.

However, to better explain the methodology for
determining the robustness of the solution, an initially
simplified variant of the system (40) will be considered:

[2, 4] x1 − x2 = [−2, 2], (41)
x1 + 3x2 = [−2, 2],

in which there is only one uncertain coefficient on the
left-hand side of the system. The coefficients can be
written in the form

a11 = 2 + 2γa11 , b1 = −2 + 4γb1 ,

a12 = −1, b2 = −2 + 4γb2 ,

a21 = 1,

a22 = 3.

The values of the main determinant of the system of
equations

Δ = 3(2 + 2γa11) + 1 = 7 + 6γa11 (42)

belong to the interval [7, 13]. The solution of the system
(41) is

x1 =
(−2 + 4γb1) · 3− (−2 + 4γb2) · (−1)

Δ
(43)

=
−8 + 12γb1 + 4γb2

7 + 6γa11

,

x2 =
(−2 + 4γb2) · (2 + 2γa11)− (−2 + 4γb1) · 1

Δ

=
−2− 4γa11 − 4γb1 + 8γb2 + 8γa11γb2

7 + 6γa11

.

The set of possible solutions (united solutions set) is
shown in Fig. 9 and additionally also plotted in Fig. 8.

Table 1 gives the values of the ‘characteristic
solutions’ calculated for the boundary values of the
coefficients a11, b1, b2 for which γa11 , γb1 , γb2 ∈ {0, 1}.
These points are also plotted on the graph in Fig. 9.

Robust solutions (tolerable solutions in the Shary
sense) are defined by Eqn. (5). In other words, it is a
set of solutions characterized by the property that, for
every solution point (x1, x2), for every possible matrix A,
there exists a vector b such that the equation is satisfied.
To determine such a set, it should be checked for each
possible solution that for all possible combinations of
coefficients of the matrix A, the values on the left-hand
sides of the system of equations belong to the intervals on
the right-hand sides.
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Fig. 8. Set of possible solutions of the system (40) (light gray
area) and of the system (41) (dark gray area).

Table 1. Values of the ‘characteristic solutions’ of the sys-
tem (41).

γa11 γb1 γb2 x1 x2

0 0 0 −8/7 −2/7

0 0 1 −4/7 6/7

0 1 0 4/7 −6/7

0 1 1 8/7 2/7

1 0 0 −8/13 −6/13

1 0 1 −4/13 10/13

1 1 0 4/13 −10/13

1 1 1 8/13 6/13

In the example under consideration, we have only
one uncertain coefficient on the left-hand side of the
equations:

a11 = 2 + 2γa11 .

For each point of the possible solution (x1, x2), we can
determine an interval a11r of coefficient a11 values which
guarantees that the value of the left-hand side of the first
equation is included in the interval b1.

From the first equation, we can calculate

a11 =
x2 − b1

x1
.

Considering the boundary values b1 = −2 and b1 = 2, we

Fig. 9. Set of possible solutions of the system (41).

can determine

a11r =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
x2−2
x1

, x2+2
x1

]
for x1 > 0,

[
x2+2
x1

, x2−2
x1

]
for x1 < 0,

R for x1 = 0.

(44)

If the intersection of intervals a11r and a11 is equal to a11,

a11r ∩ a11 = a11, (45)

then the tested point (x1, x2) is a robust solution. The set
of fully robust solutions of the system (41) is marked in
gray in Fig. 9.

If the condition (45) is not satisfied, we can speak
about lack of full robustness and existence of only partial
robustness. The intersection of the intervals a11r and a11
can be denoted as a11hit (x). If

• Mcard(a11hit (x))—the width of the intersection of
the interval a11r and a11,

• Mcard(a11)— the width of the interval a11,

then the robustness of the solution can be calculated as

r(x1, x2) =
Mcard(a11hit (x))

Mcard(a11)
. (46)

For solutions that belong to the tolerable solutions set we
get r(x1, x2) = 1.

For the system considered, it is sufficient to analyze
only the first equation when determining the robustness.
The second equation for any point that is a possible
solution will always be satisfied, since all the coefficients
on the left-hand side are certain.
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Fig. 10. Robustness r(x1, x2) of possible solutions of the sys-
tem (41).

In practice, robustness calculations can also be
performed numerically. For each point of possible
solutions (x1, x2), we can greedily examine the values
of the interval a11 = [2, 4] with a sufficiently small
step, testing whether, when substituted into the system of
equations, the values on the left-hand side belong to the
intervals on the right-hand side. The number of the values
a11 that satisfy the system divided by the number of all
tested values will be an approximation of the robustness
value r(x1, x2) for the point (x1, x2). Of course, the
higher the sampling density of the interval we take, the
better the determined value will be as an approximation
of robustness. Figure 10 shows the robustness r(x1, x2)
graph for possible solutions of the system.

Let us now return to the initial system of equations
(40). The coefficients can be written in the form

a11 = 2 + 2γa11 , b1 = −2 + 4γb1 ,

a12 = −2 + 3γa12 , b2 = −2 + 4γb2 ,

a21 = −1 + 3γa21 ,

a22 = 2 + 2γa22 .

The values of the main determinant of the system of
equations,

Δ = (2 + 2γa11)(2 + 2γa22)

− (−2 + 3γa12)(−1 + 3γa21),
(47)

belong to the interval [2, 20]. The solution of the system
(40) is

x1 =
1

Δ

[
(−2 + 4γb1)(2 + 2γa22)

− (−2 + 4γb2)(−2 + 3γa12)
]
,

Fig. 11. Solutions of the system (40): the set of possible
(united) solutions (light gray area), the set of fully ro-
bust (tolerable) solutions (dark gray area).

x2 =
1

Δ

[
(−2 + 4γb2)(2 + 2γa11)

− (−2 + 4γb1)(−1 + 3γa21)
]
. (48)

The set of possible solutions is shown in Fig. 11.
The calculation of the robustness of the solutions

should be carried out for each point (x1, x2) that is a
possible solution to the system of equations.

Theorem 1. We can determine the robustness for each
equation separately (r1(x1, x2) for the first equation and
r2(x1, x2) for the second equation), and calculate the ro-
bustness of the whole system as

r(x1, x2) = r1(x1, x2) · r2(x1, x2) . (49)

For a larger number of equations with more
unknowns, the calculations can similarly be performed for
each equation separately, and the total robustness of the
system can be calculated as the product of the robustness
terms determined for each equation.

Proof. The proof will be provided for a system of linear
equations of 2nd order, but it is easy to adapt it for systems
of higher orders. Given is an ILS defined by

a11x1 + a12x2 = b1, (50)
a21x1 + a22x2 = b2,

a11 ∈ [a11, a11], a12 ∈ [a12, a12], b1 ∈ [b1, b1],

a21 ∈ [a21, a21], a22 ∈ [a22, a22], b2 ∈ [b2, b2].

The values of the four coefficients
(a11, a12, a21, a22) are independent of us. The intervals
[b1, b1] and [b2, b2], on the other hand, are determined
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Fig. 12. Illustration of sets of possible values of tuples A11,12

and A21,22 as well as sets of hits in tolerances [b1, b1]
and [b2, b2] for a single possible control pair (x1, x2).

by the system expert and are the tolerances into which
the values of the left-hand sides of the equations in (50)
should hit. Let us define the sets A11,12, A21,22 and
A11,12,21,22:

A11,12 = {(a11, a12) |
(a11 ∈ [a11, a11]), (a12 ∈ [a12, a12])},

A21,22 = {(a21, a22) |
(a21 ∈ [a21, a21]), (a22 ∈ [a22, a22])},

A11,12,21,22

= {(a11, a12, a21, a22) |
(a11 ∈ [a11, a11]), (a12 ∈ [a12, a12]),

(a21 ∈ [a21, a21]), (a22 ∈ [a22, a22])}. (51)

It can be seen that A11,12,21,22 = A11,12 × A21,22.
The above are the sets of all possible tuples (a11, a12),
(a21, a22) and quadruples (a11, a12, a21, a22) that can
exist in the ILS (50). The sets of A11,12 and A21,22 are
visualized in Fig. 12.

Let us now define the sets A11,12hit , A21,22hit and
A11,12,21,22hit . These depend on the chosen pair of
controls (x1, x2):

A11,12hit (x1, x2)

= {(a11, a12) |(a11x1 + a12x2 = b1 ∈ [b1, b1]),

((x1, x2) ∈ USS)}

A21,22hit (x1, x2)

= {(a21, a22) |(a21x1 + a22x2 = b2 ∈ [b2, b2]),

((x1, x2) ∈ USS)}
A11,12,21,22hit (x1, x2)

= {(a11, a12, a21, a22)) |
(a11x1 + a12x2 = b1 ∈ [b1, b1]),

(a21x1 + a22x2 = b2 ∈ [b2, b2]),

((x1, x2) ∈ USS)}. (52)

A11,12hit (x1, x2) is the set of tuples (a11, a12) that
are matched to the selected pair (x1, x2) in the sense
that together they give the solution of the first equation
a11x1 + a12x2 = b1, b1 ∈ [b1, b1], which means
that the value b1 dependent on them hits the required
tolerance interval [b1, b1]. The set A21,22hit (x1, x2) has
a similar meaning with respect to the second equation.
It is easy to figure out that A11,12,21,22hit (x1, x2) is
the set of quadruples (a11, a12, a21, a22) such that,
when combined with a pair of controls (x1, x2), yield
the fulfillment of both the equations in (50), that is,
hit both tolerances [b1, b1] and [b2, b2] simultaneously.
Such quadruples (a11, a12, a21, a22) must therefore be
composed of tuples (a11, a12) ∈ A11,12hit (x1, x2) and
(a21, a22) ∈ A21,22hit (x1, x2). It follows that

A11,12,21,22hit (x1, x2)

= (A11,12hit (x1, x2))× (A21,22hit (x1, x2)). (53)

A similar formula can be written for the sets A11,12,
A21,22 and A11,12,21,22:

A11,12,21,22 = (A11,12)× (A21,22). (54)

If all sets of tuples and quadruples occurring in the
problem are continuous, then the number of elements
included in them is infinitely large. In such a situation,
a measure Mcard of their quantity can be used to perform
calculations. The formulas (55) give measures of quantity
(cardinality) for particular sets:

Mcard(A11,12) = (a11 − a11)(a12 − a12), (55)
Mcard(A21,22) = (a21 − a21)(a22 − a22),

Mcard(A11,12,21,22)

= (a11 − a11)(a12 − a12)(a21 − a21)(a22 − a22)

= (Mcard A11,12) · (Mcard A21,22),

Mcard(A11,12hit (x1, x2)) = Area A11,12hit (x1, x2),

Mcard(A21,22hit (x1, x2)) = Area A21,22hit (x1, x2),

Mcard(A11,12,21,22hit (x1, x2))

= HVA11,12,21,22hit (x1, x2)

= (Area A11,12hit (x1, x2))

· (Area A21,22hit (x1, x2)).
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The HV notation is the abbreviation for the
hyper-volume, meaning the volume of a geometric
solid in the 4D space. Such a solid is a relation
of geometric figures existing in the 2D space
(A11,12hit (x1, x2)) × (A21,22hit (x1, x2)), see Fig. 12.
Geometric figures defined by the sets A11,12hit (x1, x2)
and A21,22hit (x1, x2) are always convex, hence
HV of a 4D solid can be calculated as the product
(Area A11,12hit (x1, x2)) · (Area A21,22hit (x1, x2)).

The robustness r(x1, x2) of a pair of
controls (x1, x2) to the uncertainty of coefficients
a11, a12, a21, a22 can be determined by

r(x1, x2)

=
Mcard(A11,12,21,22hit (x1, x2))

Mcard(A11,12,21,22)
(56)

=
Mcard(A11,12hit (x1, x2))

Mcard(A11,12)

· Mcard(A21,22hit (x1, x2))

Mcard(A21,22)

= r1(x1, x2) · r2(x1, x2).

The formula (56) means that the measure of
robustness r(x1, x2) for a pair of controls (x1, x2) of a
system described by the two equations in (50) can be
calculated from the measures of robustness r1(x1, x2)
and r2(x1, x2) calculated separately for each equation of
the system. This significantly reduces the computational
complexity of the problem.

Extension of the formulas (56) to an ILS of higher
orders should not be a problem. Only the number of
equations for which ri(x1, x2, . . . , xn), i = 1, . . . , n,
must be separately determined increases, and then their
product is calculated, which is the total robustness of the
analyzed system.

�
To calculate the robustness of the first equation, we

must first determine the span of the resulting interval on
the left-hand side of the equation and check whether its
intersection with the right-hand side is not empty.

1. If the intersection is empty, the robustness of the
equation one r1(x1, x2) = 0 (and thus the robustness
of the whole system r(x1, x2) = 0). The calculations
can be stopped here.

2. If the interval on the left is completely included in the
interval on the right, then the robustness of the first
equation r1(x1, x2) = 1.

3. If the interval on the left is partially included in the
interval on the right, we must perform the following
steps:

• Create an empty set of points S1.

• Determine the values of the expression on
the left L1(x1, x2) = a11x1 + a12x2 for all
combinations of boundary values of a11 and
a12, that is, for the points

(a11, a12), (a11, a12), (a11, a12), (a11, a12) .
(57)

• Add to the set of points S1 those for which the
value of the expression L1(x1, x2) belongs to
the interval b1.

• Find all points of the intersection of lines:

a11x1 + a12x2 = b1, a11x1 + a12x2 = b1 ,

with four segments defined by the points (57)
and add them to the set S1.

• Remove repeating points from the set.

• If the number of points in the set S1 is less
than three, then the robustness r1(x1, x2) =
0. Otherwise, calculate the area of the convex
figure AR1hit (x1, x2) defined by points from
the set S1 (the maximum number of points is
six).

• Calculate the robustness of the first equation as

r1(x1, x2) =
Mcard(A11,12hit (x1, x2))

Mcard(A11,12)

=
AR1hit (x1, x2)

AR1
,

where AR1 is the area of the rectangle
described by the points (57).

For the second equation, the robustness r2(x1, x2)
can be determined similarly. The robustness of the whole
system can be calculated from Eqn. (49).

Let us perform sample calculations for the point
(x1, x2) = (−1, 1).

Figure 13 shows a rectangle defined by intervals of
the coefficients a11 = [2, 4] and a12 = [−2, 1]. The
values of the left-hand side of the first equation L1 at
corner points (shown in italics in the figure) are calculated.
The intersection points of the line a11x1 + a12x2 = b1
with sides of the rectangle are also determined. Next, we
determine a set consisting of the points that are relevant to
us (for which the value L1 belongs to the b1 interval). In
the set we have three points:

S1 = {(2, 1), (2, 0), (3, 1)} ,
which define a triangle. The area of the triangle
AR1hit (x1, x2) = 0.5, and the area AR1 = 6, hence the
robustness of the first equation at the point (x1, x2) =
(−1, 1) is

r1(x1, x2) =
AR1hit (x1, x2)

AR1
=

1

12
.
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Fig. 13. Illustration for calculations at the point (x1, x2) =
(−1, 1) for the first equation.

Fig. 14. Illustration for calculations at the point (x1, x2) =
(−1, 1) for the second equation.

Figure 14 shows a rectangle defined by intervals of
the coefficients a21 = [−1, 2] and a22 = [2, 4]. The
values of the left-hand side of the second equation L2 at
corner points (shown in italics in the figure) are calculated.
The intersection points of the line a21x1 + a22x2 = b2
with sides of the rectangle are also determined. Next, we
determine a set consisting of the points that are relevant to
us (for which the value L2 belongs to the interval b2). In
the set we have three points:

S2 = {(2, 2), (0, 2), (2, 4)} ,

which define a triangle. The area of the triangle
AR2hit (x1, x2) = 2, and the area AR2 = 6; hence the
robustness of the second equation at the point (x1, x2) =
(−1, 1) is

r2(x1, x2) =
AR2hit (x1, x2)

AR2
=

2

6
.

We get

r(x1, x2) = r1(x1, x2) · r2(x1, x2) =
1

12
· 2
6
=

1

36
.

Fig. 15. Illustration for calculations at the point (x1, x2) =
(0.5, 0.5) for the first equation.

Fig. 16. Illustration for calculations at the point (x1, x2) =
(0.5, 0.5) for the second equation.

In order to better explain the process of calculations,
let us next determine the robustness at the point
(x1, x2) = (0.5, 0.5).

Figure 15 shows a rectangle defined by intervals of
the coefficients a11 = [2, 4] and a12 = [−2, 1]. The
values of the left-hand side of the first equation L1 at
corner points (shown in italics in the figure) are calculated.
The intersection points of the line a11x1 + a12x2 = b1
with sides of the rectangle are also determined. Next, we
determine a set consisting of the points that are relevant to
us (for which the value L1 belongs to the interval b1). In
the set we have five points:

S1 = {(2,−2), (4,−2), (2, 1), (3, 1), (4, 0)} ,
which define a pentagon. The area of the pentagon
AR1hit (x1, x2) = 5.5, and the area AR1 = 6, hence the
robustness of the first equation at the point (x1, x2) =
(−1, 1) is

r1(x1, x2) =
AR1hit (x1, x2)

AR1
=

11

12
.

Figure 16 shows a rectangle defined by intervals of
the coefficients a21 = [−1, 2] and a22 = [2, 4]. The
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Fig. 17. 3D plot of the robustness r(x1, x2) of the system (40).
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Fig. 18. Contour plot of the robustness r(x1, x2) of the sys-
tem (40).

values of the left-hand side of the second equation L2 at
corner points (shown in italics in the figure) are calculated.
The intersection points of the line a21x1 + a22x2 = b2
with sides of the rectangle are also determined. Next, we
determine a set consisting of the points that are relevant to
us (for which the value L2 belongs to the interval b2). In
the set we have four points:

S2 = {(−1, 2), (2, 2), (−1, 4), (0, 4)} ,

which define the quadrangle. The area of the quadrangle
AR2hit (x1, x2) = 4, and the area AR2 = 6; hence the
robustness of equation two at the point (x1, x2) = (−1, 1)
is

r2(x1, x2) =
AR2hit (x1, x2)

AR2
=

4

6
.
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Fig. 19. Contour plots of the robustness r1(x1, x2) and
r2(x1, x2) of the system (40).

We get

r(x1, x2) = r1(x1, x2) · r2(x1, x2)

=
11

12
· 4
6
=

11

18
≈ 0.611 .

Figure 17 shows a 3D plot of the robustness r(x1, x2)
of the system (40), Fig. 18 shows a contour plot of
the robustness, and Fig. 19 shows contour plots of the
robustness of the first and the second equation.

Robustness calculations can also be performed
numerically. For each point of the possible solution
(x1, x2), we must calculate the robustness of the first and
the second equation. To determine the robustness of the
first one, we can greedily check all combinations of values
from the intervals a11, a12 with a sufficiently small step,
testing whether, when substituted into the equation, the
value on the left-hand side belongs to the interval b1 on
the right-hand side. The number of combinations (a11,
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a12) that satisfy the equation, divided by the number of all
combinations examined, will approximate the robustness
r1(x1, x2) for the point (x1, x2). Similar calculations can
be performed for the second equation, for which we check
all combinations of values from the intervals a21, a22. The
number of combinations (a21, a22) that satisfy the second
equation, divided by the number of all combinations
examined, will approximate the robustness r2(x1, x2)
for the point (x1, x2). As before, we calculate the
robustness of the system at the point (x1, x2) as a product
r(x1, x2) = r1(x1, x2) · r2(x1, x2). Experiments showed
that the accuracy of numerically determined robustness is
very good.

4.2. Example 4. Let us consider the system of interval
equations presented by Shary (1995) for which the fully
robust solution does not exist,

[1, 2] x1 + [−1, 1] x2 = [1, 3], (58)
[−1, 1] x1 + [1, 2] x2 = [1, 3].

The coefficients can be written in the form

a11 = 1 + γa11 , b1 = 1 + 2γb1 ,

a12 = −1 + 2γa12 , b2 = 1 + 2γb2 ,

a21 = −1 + 2γa21 ,

a22 = 1 + γa22 .

The values of the main determinant of the system of
equations,

Δ = (1 + γa11)(1 + γa22)

− (−1 + 2γa12)(−1 + 2γa21),
(59)

belong to the interval [0, 5]. The solution of the system
(58) is

x1 =
1

Δ

[
(1 + 2γb1)(1 + γa22)

− (1 + 2γb2)(−1 + 2γa12)
]
,

x2 =
1

Δ

[
(1 + 2γb2)(1 + γa11)

− (1 + 2γb1)(−1 + 2γa21)
]
. (60)

The set of possible solutions is shown in Fig. 20.
Robustness calculations confirmed that the system

does not have fully robust (tolerable) solutions. Thus, for
the set of points representing possible (united) solutions,
partial robustness calculations were performed. Figure 21
shows the robustness plot for possible solutions of the
system. Robustness calculations were performed for
each point described by coordinates (x1, x2). In the
research, calculations were performed for a predetermined
rectangle for which x1 ∈ [−4, 8] and x2 ∈ [−4, 8].

Fig. 20. Set of possible (united) solutions of the system (58).
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Fig. 21. 3D plot of the robustness r(x1, x2) of the system (58).

These ranges were selected with the help of preliminary
experiments. Calculations were performed for values x1

and x2 changing with a step of 0.01, i.e., 12012 points
were examined. The maximum robustness of the system
was found at the point (x1, x2) = (1.11, 1.11):

r(1.11, 1.11) ≈ 0.6006.

4.3. Example 5. Let us consider the system of interval
equations presented by Piegat and Pluciński (2017) for
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Fig. 22. Contour plot of the robustness r(x1, x2) of the system
(58).
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Fig. 23. Contour plots of the robustness r1(x1, x2) and
r2(x1, x2) of the system (58).
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Fig. 24. 3D plot of the robustness r(x1, x2) of the system (61).

which the fully robust solution does not exist,

[1, 4] x1 + [3, 6] x2 = [15, 17], (61)
[2, 5] x1 + [7, 9] x2 = [21, 25].

The coefficients can be written in the form

a11 = 1+ 3γa11 , b1 = 15 + 2γb1 ,

a12 = 3+ 3γa12 , b2 = 21 + 4γb2 ,

a21 = 2+ 3γa21 ,

a22 = 7+ 2γa22 .

The values of the main determinant of the system of
equations,

Δ = (1 + 3γa11)(7 + 2γa22)

− (3 + 3γa12)(2 + 3γa21),
(62)

belong to the interval [−23, 30]. The solution of the
system (61) is

x1 =
1

Δ

[
(15 + 2γb1)(7 + 2γa22)

− (21 + 4γb2)(3 + 3γa12)
]
,

x2 =
1

Δ

[
(21 + 4γb2)(1 + 3γa11)

− (15 + 2γb1)(2 + 3γa21)
]
. (63)

The set of possible solutions can be seen on the
contour plot of the robustness (Fig. 25).

Robustness calculations confirmed that the system
does not have fully robust (tolerable) solutions. Thus, for
the set of points representing possible (united) solutions,
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Fig. 25. Contour plot of the robustness r(x1, x2) of the sys-
tem (61).
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Fig. 26. Contour plots of the robustness r1(x1, x2) and
r2(x1, x2) of the system (61).
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Fig. 27. 3D plot of the set of possible (united) solutions of the
system (64).

partial robustness calculations were performed. Figure 24
shows the robustness plot for possible solutions of the
system. The maximum robustness of the system was
found at the point (x1, x2) = (0.625, 2.625):

r(0.625, 2.625) ≈ 0.1802.

4.4. Example 6. Let us consider the 3rd order system
of interval equations,

[1, 2] x1 + [−2,−1] x2 + [−1, 1] x3 = [1, 5], (64)
[0, 2] x1 + [1, 2] x2 + [−1, 1] x3 = [2, 6],

[−1, 1] x1 + [0, 2] x2 + [1, 2] x3 = [0, 5].

Due to the higher order of the system, robustness
calculations were carried out numerically. Figure 27
shows a 3D plot of points with robustness greater than
0, i.e., the set of possible (united) solutions. The
maximum robustness of the system was found at the point
(x1, x2, x3) = (2.21, 0.75, 0.74):

r(2.21, 0.75, 0.74) ≈ 0.60576.

5. Conclusions
The paper presented a new method for determining
robust, realistic, tolerant solutions of ILE systems, which
enables solving ILE systems unsolvable so far. These
enhanced solving possibilities were obtained by using
MIA and by applying the concept of the robustness of
the possible solutions. In practical problems, it is usually
not possible to obtain the full robustness of the result to
data uncertainty. Most often only the partial robustness
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can be obtained. The realistic approach is based on the
practical application of solutions with high, though not
perfect, robustness, i.e., on applying what is possible.

The article presented two methods of determining
the robustness of possible solutions for data uncertainty:
the exact geometric method and the slightly less accurate
but practical numerical method. The proposed method
for tolerant solving of ILE systems was explained with
a few examples of different dimensions, including the
benchmark ILE system (40) well known in the literature.
This allowed a new, fuller view of this benchmark. In
the opinion of the authors, the presented method allows
relatively easy determining of the robustness of ILE
systems due to the possibility of separate determination
of the robustness of individual equations included in the
system (problem decomposition).

Further research will focus on developing methods
for determining solutions of a tolerant 3rd degree (and
higher) static equation with the interval coefficients
[a3, a3]x

3 + [a2, a2]x
2 + [a1, a1]x+ [a0, a0] = [y

T
, yT ].

It should be noted that the dimensionality of the problem
and the difficulty of solving it increase as the degree of
the equation increases. There is also work in progress on
solving tolerance equations with coefficients in the form
of fuzzy intervals.
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