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Associative memories based on lattice algebra are of great interest in pattern recognition applications due to their excellent
storage and recall properties. In this paper, a class of binary associative memory derived from lattice memories is presented,
which is based on the definition of new complemented binary operations and threshold unary operations. The new learning
method generates memories M and W; the former is robust to additive noise and the latter is robust to subtractive noise.
In the recall step, the memories converge in a single step and use the same operation as the learning method. The storage
capacity is unlimited, and in autoassociative mode there is perfect recall for the training set. Simulation results suggest that
the proposed memories have better performance compared to other models.
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1. Introduction
One of the most interesting primary functions of the
human brain is the ability to associate information. This
function, known as associative memory, allows us to store,
maintain and recall information. For example, we can
learn the relationship between a person’s face and their
name, memorize this face–name association for years, and
remember the person’s name by recognizing their face,
even if they have aged. Associative memory is a special
type of one-layer artificial neural network that stores and
recalls patterns. This memory is modeled and represented
as a system that stores input–output pattern associations
(x,y) and recalling patterns based on complete inputs
or distorted versions of them (Hassoun, 1993; Ritter and
Urcid, 2021). If the vectors x and y are equal, then the
memory is said to operate in autoassociative mode; if they
are different, then it operates in heteroassociative mode.
The association feature is used in the field of artificial
intelligence and image recalling, and is of interest in
various associative memory models for the study of
learning, recalling and storage capacity, noise sensitivity,
hardware design for implementation and processing time.

In this article, an associative memory is presented
with a new method of computing the learning and
recalling phases for binary patterns; for this purpose, two
new operations are defined, a binary ◦ and a unary ↓. Two

learning algorithms are generated to calculate memories
M and W. The first one is the result of the superposition
of maxima of the partial calculations of the operation
◦ between each pair of input–output vectors, while the
second one uses the superposition of maxima of the partial
computations of the complement of the operation ◦. In
the recalling phase, the output is obtained from the result
of the superposition of the maxima of the calculation of
the operation ◦ (or its complement) between memory M
(or W) and the input presented to the memory. The
unary operation ↓ is used as a threshold in the internal
association of input (learning phase) and in the recalling
of the input–output association (recalling phase). The
associative memories M and W are robust to additive
and subtractive noise, respectively, and their convergence
is in a single step in both the heteroassociative and
autoassociative modes. In the latter mode, there is
unlimited pattern storage capacity and perfect recall for
the training set. For example, an associative memory
(content-addressable memory) can be used to significantly
reduce the time to find an object stored in a memory buffer
by the content of its data; this idea can be employed in
more complex queuing systems such as those described
by Tikhonenko et al. (2021).

The rest of the article is organized as follows.
Works related to associative memory models are briefly
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presented in Section 2. Associative memory concepts
are introduced in Section 3. Theoretical foundations and
learning-recalling methods of the proposed associative
memories are defined in Section 4. Numerical and
computer simulations results of memory performance in
comparison with other models are explained in Section 5.
A discussion and some conclusions are presented in
Section 6. Finally, the proofs of the theorems are shown
in Appendix.

2. Related works
Hopfield (1982) proposed an autoassociative model of
bipolar patterns. This network learns through Hebb’s
rule considering that, on the main diagonal of the weight
matrix, its entries are equal to zero. The network
recursively recalls patterns until it converges to a local
minimum. It has been shown that the number of perfectly
stored patterns that are recalling without error by the
Hopfield memory of n neurons is asymptotically less than
or equal to n/(4 logn) as n → ∞ (McEliece et al., 1987).
By modifying the Hopfield network with a hysteresis
activation function, it converges much faster and shows
better performance (Xia et al., 2004).

In a chaotic element network model each element is
updated in time according to a function called a logistic
map, and its elements are coupled with each other, either
globally or by the nearest neighbor. Based on this
type of model, Ishi et al. (1996) introduced one with a
cubic function that generates a symmetric map (S-GCM),
which implies that the map has at most two periodic
orbits that attract each other and the bistability of the
function is controlled by the evolution of a parameter
α. The learning method uses the conventional covariance
matrix and the recovery uses the global coupling of the
symmetric function, which recursively converges to a
local minimum. Other models derived from the S-GCM
model are the new parameter control method for S-GCM
proposed by Zheng and Tang (2005), which shows that
the introduction of a new control parameter α increases
the speed of the model; the globally coupled map using
the sine map presented by Wang et al. (2012) replaces the
cubic function of the S-GCM by a sinusoidal function,
which introduces a control parameter μ; the globally
coupled map using cubic logistic map exposed by Wang
and Jia (2017) exhibits a new cubic function different from
that of S-GCM, which controls its bistability through a
parameter μ. Lee and Farhat (2001) presented two chaotic
neural network models named parametrically coupled sine
map networks, which use the bistability of the sinusoidal
function map to encode binary patterns. Both models
in their learning phase use Hebb’s rule to determine the
weight matrix and for its recovery the coupling of the
maps is employed. The first one uses the amplitude of the
sinusoidal function as a bifurcation parameter to control

bistability, while the other uses an offset parameter of
the sinusoidal function. These models operate recursively
until convergence to either of the two attracting points on
the map to determine the output.

Based on fuzzy set theory, Kosko (1991) introduced
one of the first models of fuzzy associative memories,
which stores in its learning matrix the fuzzy rules that
associate patterns; however, this model has storage
limitations because it uses a matrix to store each fuzzy
rule, which means that all fuzzy outputs generated by
each matrix are combined for pattern recalling. To reduce
this limitation, Zhang et al. (1993) proposed an improved
model of optical fuzzy associative memory through the
computation of a single weight matrix combining all
fuzzy rules, for which he designed a learning algorithm
based on the adoption of Gödel’s fuzzy implication
operators and the superposition of minima. Similarly, the
fuzzy relational memories proposed by Chung and Lee
(1994) combine all fuzzy rules in a single weight matrix;
however, unlike in Zhang’s model, a max-t composition
is used for pattern encoding, where t is a triangular
norm. Xiao et al. (1997) proposed a max-min encoding
learning algorithm for a fuzzy max-multiplication model,
which uses a max-min implication operator in the learning
algorithm to determine the weight matrix, while the
max-multiplication operator is used in pattern recalling.
The max-min fuzzy neural network with a threshold
proposed by Liu (1999) increases the storage capacity
by adding a threshold to each network node, i.e., one
threshold for input layer and another for output.

Another type of associative memory includes those
that base their framework on lattice algebra. Ritter et al.
(1998) introduced morphological associative memories,
which replace the operations of the field (R,+,×) of
the classical models by semirings (R±∞,∨,∧,+, +́).
These memories exhibit better capabilities, such as
convergence in a single step, greater tolerance to noisy
inputs, better storage capacity and, in the autoassociative
mode, unlimited capacity and perfect recall for the
training set. Wang and Lu (2004) proposed a new fuzzy
morphological associative memory which replaces the
operations used in the morphological memories of +
by × and +́ by ÷, while Feng et al. (2015) proposed
a logarithmic and exponential morphological associative
memory which similarly replaces the operations of + and
+́ for the logarithm and exponential, respectively; both
memories retain the main characteristics of morphological
memories. Feng et al. (2009) presented a new method
to obtain morphological associative memories, which
consists in exchanging the order of the operations used
in the learning and recalling phases of morphological
memories, while Feng and Yao (2016) substituted
the operations used in the new method to obtain
morphological associative memories by the operations
of division and multiplication, naming this model
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no rounding reverse fuzzy morphological associative
memory; these two memory models show in some
cases better performance than morphological memories
in the heteroassociative mode. Sussner and Valle
(2006) developed implicative fuzzy associative memories;
this model uses the Gödel, Goguen, and Lukasiewicz
R-implications for learning and their dual operations in
pattern recall.

3. Associative memory concepts
An associative memory M expresses an input–output
patterns relations represented symbolically by x → M →
y. The purpose of the memory is to recall a pattern from
a complete input or its distorted version (Hassoun, 1993).
Considering that the patterns are binary, an input vector
is represented by xξ ∈ An and an output vector by
yξ ∈ Am, where A = {0, 1}, ξ ∈ {1, . . . , k} is an
index and k is the number of pairs of binary input–output
vectors that are stored in the associative memory, n and
m are the dimensions of the input and output vectors,
respectively, and the j-th element of the vectors xξ and
yξ , is represented by xξ

j and yξj . Let X =
(
x1, . . . ,xk

)

be a matrix of dimension n × k with its (i, j)-th element
denoted by xij or xj

i , and Y =
(
y1, . . . ,yk

)
be a matrix

of dimension m × k with its (i, j)-th element denoted
by yij or yji ; then, M is the associative memory that
stores the k binary input–output vectors (X,Y). If xξ =
yξ ∀ξ = 1, . . . , k, then M is said to be an autoassocia-
tive memory; otherwise, it is a heteroassociative memory.

A memory provides perfect recall when it is
presented with an input vector xξ or a distorted version
of it, x̃ξ , and the result is equal to the corresponding
output vector yξ . Let I = {1, . . . , n}; then, the distorted
version x̃ξ of the vector xξ ∈ An is caused by three types
of noise (Urcid and Ritter, 2007): additive if x̃ξ ≥ xξ,
i.e., x̃ξ

i ≥ xξ
i ∀i ∈ I; subtractive if x̃ξ ≤ xξ , i.e.,

x̃ξ
i ≤ xξ

i ∀i ∈ I; and mixed, composed of additive and
subtractive noise at the same time, i.e., x̃ξ

i > xξ
i ∀i ∈ G

and x̃ξ
i < xξ

i ∀i ∈ L, where L,G ⊂ I are two nonempty
subsets of indices and disjoint from each other.

The similarity between two arbitrary vectors of equal
size n, a = (a1, . . . , an) and b = (b1, . . . , bn), in this
paper will be determined by the Gamma binary similarity
distance (Mustafa, 2018)

γ(a,b) =
∣
∣1− 2

n

n∑

i=1

|ai − bi|
∣
∣, (1)

where the vectors are said to be distinct if 0 ≤ γ ≤ 0.01,
or to have minimal similarity if 0.01 < γ ≤ 0.2, low
similarity if 0.2 < γ ≤ 0.4, medium similarity if 0.4 <
γ < 0.6, good similarity if 0.6 ≤ γ < 0.8, high similarity
if 0.8 ≤ γ < 1, and similar if γ = 1. This last value
represents perfect recall, and memory performance can be

evaluated with the perfect recall rate, which represents
the number of training patterns perfectly stored in the
memory.

Let the maximum and minimum operations be
represented by the symbols ∨ and ∧, respectively. We
introduce the max matrix product C ∨ D and the min
matrix product C ∧ D of two matrices C and D, of
dimensions m× p and p× n, respectively, given by

(C∨D)ij =

p∨

k=1

(cik · dkj)

∀i ∈ {1, . . . ,m} and ∀j ∈ {1, . . . , n} , (2a)

(C∧D)ij =

p∧

k=1

(cik · dkj)

∀i ∈ {1, . . . ,m} and ∀j ∈ {1, . . . , n} , (2b)

where · is a binary operation, for example, addition.
The design of associative memory consists of learn-

ing and recalling phases (Rani et al., 2018). The former
presents the operations and conditions to generate an
algorithm that allows the storage of input–output matrices
(X,Y) in memory M, while the latter contains the
operations and conditions to obtain an algorithm that
allows perfect recall, i.e., when an input vector xξ or a
distorted version of it is presented to memory, the obtained
result corresponds to its associated output vector yξ .

4. Method for obtaining associative
memories with complemented operations

In this section the proposed model is presented, which
operates in heteroassociative and autoassociative modes.
New operations and their properties are defined, which
support the framework of the construction methods of the
memory and recalling of a vector, and the type of noise
supported by the memories is characterized.

4.1. Theoretical basis. In this paper, A = {0, 1} ⊂
N is a binary subset, B = {00, 01, 10} ⊂ N, C =
{01, 10, 11} ⊂ N and D = {00, 01, 10, 11} ⊂ N are
nonnegative subsets of integers expressed in the two-bit
binary number system and (A,≤) is the well-ordered
set. The variables x, y, z ∈ A and, depending on the
associative memory used, u, v ∈ B or u, v ∈ C.

Definition 1. Let A = {0, 1}, B = {00, 01, 10} ⊂ N

and x ∈ A; then, the binary operator ◦ : A × A → B is
defined in Table 1.

The complement of an element x ∈ A, represented
by x, is defined by 0 = 1 and 1 = 0. This concept is
extended to elements that are expressed by more than one
bit, replacing zeros by ones and vice versa; for example,
01 = 10. Applying the elemental complement to the
operation in Table 1, its complement is defined.
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Table 1. Binary operator ◦.
x y x ◦ y
0 0 01
0 1 00
1 0 10
1 1 01

Table 2. Complemented binary operator ◦.
x y x ◦ y
0 0 10
0 1 11
1 0 01
1 1 10

Table 3. Projection operator ↓.
u u↓

00 0
01 0
10 1
11 1

Definition 2. Let A = {0, 1}, C = {01, 10, 11} and
x ∈ A; then, the binary operator ◦ : A × A → C is
defined in Table 2.

With the operation given in Definition 1, the method
to build robust memories to additive noise in binary
images will be developed, while using its complement
(Definition 2), memories that have better tolerance to
subtractive noise will be obtained.

Definition 3. Let A = {0, 1}, D = {00, 01, 10, 11},
x ∈ A and u ∈ D; then, the unary projection operator
↓ : B → A is defined in Table 3.

The form in which the operations ◦, ◦ are constructed
together with the operator ↓ allows sufficient properties
to be fulfilled to characterize the results concerning the
associative memory model proposed for recalling binary
images, namely, increasing in relation to ≤, distributive
with respect to the maximum or minimum, and inverse to
each other. The operator ↓ is applied to the result obtained
by the associative memory to ensure that the values are
congruent to binary elements. Let x, y, z ∈ A, ↓ be
the projection operator and ∨,∧ be the maximum and
minimum operations, respectively; then, the operator ◦
and its complement exhibit the properties of Table 4.

Given u, v ∈ B in the case of the operation ◦ or
u, v ∈ C for its complement, the projection operator ↓ and
the maximum and minimum operations∨,∧, respectively,
the following relations hold:

0 ≤ u↓ ∧ v↓ ≤ (u ∧ v)↓ ≤ u↓ ∨ v↓ ≤ 1,

0 ≤ u↓ ∧ v↓ ≤ (u ∨ v)↓ ≤ u↓ ∨ v↓ ≤ 1.
(3)

In addition to the properties shown in Table 4, from
Eqn. (2), new matrix operations ∨ and ∧ are introduced
by replacing the binary operation · by one of the new
operations ◦ or ◦. In this article, to refer to a matrix

operation using the operator ◦ or ◦, the terminology
◦∨, ◦∧

or
◦∨, ◦∧, respectively, will be used.

4.2. Heteroassociative memory. Assume that x =
(x1, . . . , xn)

T and y = (y1, . . . , ym)T are binary patterns
of dimensions n and m, respectively, where T represents
the transposed vector; then, the memories M and W that
associate the pair of binary input–output vectors (x,y) are
obtained by

M = y
◦∨ (x)T , W = y

◦∨ (x)T . (4)

Therefore, the memories are determined by

M =

⎛

⎜
⎝

y1 ◦ x1 · · · y1 ◦ xn

...
. . .

...
ym ◦ x1 · · · ym ◦ xn

⎞

⎟
⎠ , (5)

W =

⎛

⎜
⎝

y1 ◦x1 · · · y1 ◦xn

...
. . .

...
ym ◦x1 · · · ym ◦xn

⎞

⎟
⎠ .

These memories for recalling a binary vector satisfy
the conditions

(
M↓ ◦∨ x

)↓
=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

n∨

j=1

(
(y1 ◦ xj)

↓ ◦ xj

)

...
n∨

j=1

(
(ym ◦ xj)

↓ ◦ xj

)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

↓

= y,

(
W↓ ◦∨ x

)↓
=

⎛

⎜
⎜⎜
⎜
⎜
⎝

n∨

j=1

(
(y1 ◦xj)

↓ ◦xj

)

...
n∨

j=1

(
(ym ◦xj)

↓ ◦xj

)

⎞

⎟
⎟⎟
⎟
⎟
⎠

↓

= y.

(6)
From Eqn. (6), it is observed that the projection

operation is applied to the resulting vector as a threshold
that allows obtaining binary vectors in the associative
memory output.

4.2.1. Learning and recalling. Let A = {0, 1} and
(X,Y) be the matrices with k pairs of binary input–output
vectors; then, the learning phase is determined by
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Table 4. Properties of complemented operations.
Property Operator ◦ Operator ◦
1. Incresing x ≤ y ↔ x ◦ z ≤ y ◦ z x ≤ y ↔ y ◦ z ≤ x ◦ z

x ≤ y ↔ z ◦ y ≤ z ◦ x x ≤ y ↔ z ◦x ≤ z ◦ y
2. Distributive over ∨ (x ∨ y) ◦ z = (x ◦ z) ∨ (y ◦ z) z ◦ (x ∨ y) = (z ◦x) ∨ (z ◦ y)
3. Distributive over ∧ (x ∧ y) ◦ z = (x ◦ z) ∧ (y ◦ z) z ◦ (x ∧ y) = (z ◦x) ∧ (z ◦ y)
4. Associative [(x ◦ y)↓ ◦ z]↓ = [x ◦ (y ◦ z)↓]↓ [(x ◦ y)↓ ◦ z]↓ = [x ◦ (y ◦ z)↓]↓
5. Commutative (x ◦ y)↓ = (y ◦ x)↓ (x ◦ y)↓ = (y ◦x)↓
6. Inverse [(x ◦ y)↓ ◦ y]↓ = x [(x ◦ y)↓ ◦ y]↓ = x

[(x ◦ y)↓ ◦ x]↓ = y [(x ◦ y)↓ ◦ x]↓ = y

7. Equalities z ◦ (x ∨ y) = (z ◦ x) ∧ (z ◦ y) (x ∨ y) ◦ z = (x ◦ z) ∧ (y ◦ z)
z ◦ (x ∧ y) = (z ◦ x) ∨ (z ◦ y) (x ∧ y) ◦ z = (x ◦ z) ∨ (y ◦ z)

memories MXY and WXY defined in

MXY =
k∨

ξ=1

(
yξ

◦∨ (xξ)T
)
,

WXY =

k∨

ξ=1

(
yξ

◦∨ (xξ)T
)
,

(7)

and their (i, j)-th elements are given by

(MXY)ij = mij =

k∨

ξ=1

(
yξi ◦ xξ

j

)
,

(WXY)ij = wij =

k∨

ξ=1

(
yξi ◦xξ

j

)
,

(8)

respectively.
The recalling phase, when presented with an input

vector xλ, is determined by

(
(MXY)

↓ ◦∨ xλ
)↓

and
(
(WXY)

↓ ◦∨ xλ
)↓

, (9)

where the i-th elements of the resulting vectors are
obtained by

(
(MXY)

↓ ◦∨ xλ
)↓

i
=

( n∨

j=1

((
mij

)↓
◦ xλ

j

))↓

=
( n∨

j=1

(( k∨

ξ=1

(
yξi ◦ xξ

j

))↓
◦ xλ

j

))↓
,

(
(WXY)↓

◦∨ xλ
)↓

i
=

( n∨

j=1

(
(wij)

↓ ◦xλ
j

))↓

=
( n∨

j=1

(( k∨

ξ=1

(
yξi ◦xξ

j

))↓
◦xλ

j

))↓
.

(10)
Memories MXY are robust to the presence of input

vectors distorted by additive noise and WXY memories

by subtractive noise. It is observed that the learning
and recalling of memories MXY are determined by the
operation ◦, while in the case of memories WXY by their
complemented operation ◦. For this reason, it has been
decided to name them associative memories with comple-
mented operations.

Definition 4. A matrixC is said to be a
◦∨-perfect recalling

memory for (X,Y) if and only if (C↓ ◦∨ X)↓ = Y.

The matrix C is said to be a
◦∨-perfect recall memory for

(X,Y) if and only if (C↓ ◦∨X)↓ = Y.

Definition 4 implies that (C↓ ◦∨ xξ)↓ = yξ and

(C↓ ◦∨ xξ)↓ = yξ ∀ξ = 1, . . . , k.

Theorem 1 shows the conditions that the memories must
satisfy to exhibit perfect recovery, while Theorem 2 is the
matrix representation of these conditions.

Theorem 1. MXY is a
◦∨-perfect recall memory for

(X,Y) if and only if for each row index i = 1, . . . ,m
and each ξ ∈ {1, . . . , k} there exist column indices j0 ∈
{1, . . . , n}, which depend on both ξ and i, such that

mij0 = yξi ◦ xξ
j0

∀ξ = 1, . . . , k. (11)

Similarly, WXY is a
◦∨-perfect recall memory for (X,Y)

if and only if for each row index i = 1 . . . ,m and each ξ ∈
{1, . . . , k} there exist column indices j0 ∈ {1, . . . , n},
which depend on both ξ and i, such that

wij0 = yξi ◦xξ
j0

∀ξ = 1, . . . , k. (12)

Theorem 2. MXY is a
◦∨-perfect recall memory for

(X,Y) if and only if, for each ξ = 1, . . . , k, each row

of matrix MXY − yξ
◦∨ (xξ)T contains a zero element.

Similarly, WXY is a
◦∨-perfect recall memory for (X,Y)

if, and only if for each ξ = 1, . . . , k, each row of matrix

yξ
◦∨ (xξ)T −WXY contains a zero element.
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From Theorem 2, it follows that (M↓
XY

◦∨ xξ)↓ =
yξ ∀ξ = 1, . . . , k if and only if, for each index ξ and
each row index i, there exists a column index j (which
depends on ξ and i) such that mij =

(
yξ

◦∨ (xξ)T
)

ij
.

Similarly, that is expressed for WXY.

Corollary 1. ((MXY)↓
◦∨X)↓ = Y if and only if, for

each row index i = 1, . . . ,m and each λ ∈ {1, . . . , k},
there exists a column index j ∈ {1, . . . , n} (as a function
of i and λ) such that

xλ
j =

(( k∨

ξ=1

(yξi ◦ xξ
j)
)↓

◦ yλi
)↓

. (13)

Similarly, ((WXY)↓
◦∨X)↓ = Y if, and only if for each

row index i = 1, . . . ,m and each λ ∈ {1, . . . , k}, there
exists a column index j ∈ {1, . . . , n} (as a function of i
and λ) such that

xλ
j =

(( k∨

ξ=1

(yξi ◦xξ
j)
)↓

◦ yλi
)↓

. (14)

The proposed associative memory model is able
to provide perfect recall from noise-distorted versions.
Theorem 3 shows the conditions under which memories
MXY tolerate additive noise and memories WXY

subtractive noise.

Theorem 3. Let x̃λ be a distorted version with additive
noise of xλ; then, ((MXY)↓

◦∨ x̃λ)↓ = yλ if and only
if for each row index i = 1, . . . ,m there exists a column
index j0 ∈ {1, . . . , n} which depends on both λ and i,
such that

mij0 = yλi ◦ x̃λ
j0 . (15)

Similarly, let x̃λ be a distorted version with subtractive

noise of xλ; then, ((WXY)↓
◦∨ x̃λ)↓ = yλ if and only

if for each row index i = 1, . . . ,m there exists a column
index j0 ∈ {1, . . . , n} which depends on both λ and i,
such that

mij0 = yλi ◦ x̃λ
j0 . (16)

4.3. Autoassociative memory. A reference of
autoassociative memories is the Hopfield model, whose
storage capacity in a network of n neurons is no greater
than n/(4 logn). The storage capacity is infinite in
the proposed autoassociative model, i.e., there are no
restrictions on the number of input–output patterns pairs
to be stored, and in the absence of noise the model
provides perfect recall for all patterns stored in memory.
This is proven in Theorem 4.

Theorem 4. We have
((
MXX

)↓ ◦∨ X
)↓

= X and
((
WXX

)↓ ◦∨X
)↓

= X.

Another characteristic of the proposed model is
shown in Theorem 5, in which it is observed that the
memory does not present convergence problems in the
recalling phase; therefore, the processing time is reduced
because it is not necessary to iterate the output operations
until a stability point is reached.

Theorem 5. If
(
(MXX)↓

◦∨ z
)↓

= u, then we have
(
(MXX)

↓ ◦∨u
)↓

= u. Similarly, if
(
(WXX)

↓ ◦∨ z
)↓

=

u, then
(
(WXX)

↓ ◦∨ u
)↓

= u.

5. Experiments
In this section the performance report of the proposed
memories is presented in comparison with other models.

5.1. Numerical results. Numerical examples show
how the proposed memories perfectly recall both the
training set and a distorted version.

Example 1. Let

x1 =

⎛

⎜
⎜⎜
⎜
⎝

1
0
0
1
1

⎞

⎟
⎟⎟
⎟
⎠

, y1 =

⎛

⎜⎜
⎝

1
1
1
0

⎞

⎟⎟
⎠ ,

x2 =

⎛

⎜
⎜
⎜
⎜
⎝

1
1
0
0
1

⎞

⎟
⎟
⎟
⎟
⎠

, y2 =

⎛

⎜
⎜
⎝

1
0
1
1

⎞

⎟
⎟
⎠ ,

x3 =

⎛

⎜
⎜
⎜
⎜
⎝

1
0
0
0
1

⎞

⎟
⎟
⎟
⎟
⎠

, y3 =

⎛

⎜
⎜
⎝

1
0
1
0

⎞

⎟
⎟
⎠ ,

x4 =

⎛

⎜⎜
⎜
⎜
⎝

0
1
0
1
0

⎞

⎟⎟
⎟
⎟
⎠

, y4 =

⎛

⎜
⎜
⎝

0
1
1
1

⎞

⎟
⎟
⎠ ,

x5 =

⎛

⎜
⎜
⎜⎜
⎝

0
0
1
1
0

⎞

⎟
⎟
⎟⎟
⎠

, y5 =

⎛

⎜
⎜
⎝

0
1
1
0

⎞

⎟
⎟
⎠ .

(17)

Then WXY memoriesMXY are given by Eqns. (18)
and (19), respectively.

It can be verified that MXY and WXY exhibit
perfect recall for X. This is shown in Eqns. (20) and (21).
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MXY =
5∨

ξ=1

(
yξ

◦∨ (xξ)T
)
=

⎛

⎜
⎜
⎝

01 01 00 00 01
10 10 01 01 10
10 10 01 01 10
01 01 00 00 01

⎞

⎟
⎟
⎠ ∨

⎛

⎜
⎜
⎝

01 01 10 10 01
00 00 01 01 00
01 01 10 10 01
01 01 10 10 01

⎞

⎟
⎟
⎠

∨

⎛

⎜
⎜
⎝

01 10 10 10 01
00 01 01 01 00
01 10 10 10 01
00 01 01 01 00

⎞

⎟
⎟
⎠ ∨

⎛

⎜
⎜
⎝

01 00 01 00 01
10 01 10 01 10
10 01 10 01 10
10 01 10 01 10

⎞

⎟
⎟
⎠ ∨

⎛

⎜
⎜
⎝

01 01 00 00 01
10 10 01 01 10
10 10 01 01 10
01 01 00 00 01

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

01 10 10 10 01
10 10 10 01 10
10 10 10 10 10
10 01 10 10 10

⎞

⎟
⎟
⎠ ,

(18)

WXY =
5∨

ξ=1

(
yξ

◦∨ (xξ)T
)

=

⎛

⎜
⎜
⎝

10 10 11 11 10
01 01 10 10 01
01 01 10 10 01
10 10 11 11 10

⎞

⎟
⎟
⎠ ∨

⎛

⎜
⎜
⎝

10 10 01 01 10
11 11 10 10 11
10 10 01 01 10
10 10 01 01 10

⎞

⎟
⎟
⎠

∨

⎛

⎜⎜
⎝

10 10 01 01 10
11 10 10 10 11
10 01 01 01 10
11 10 10 10 11

⎞

⎟⎟
⎠ ∨

⎛

⎜⎜
⎝

10 11 10 11 10
01 10 01 10 01
01 10 01 10 01
01 10 01 10 10

⎞

⎟⎟
⎠ ∨

⎛

⎜⎜
⎝

10 10 11 11 10
01 01 10 10 01
01 01 10 10 01
10 10 11 11 10

⎞

⎟⎟
⎠

=

⎛

⎜
⎜
⎝

10 11 11 11 10
11 11 10 10 11
10 10 10 10 10
11 10 11 11 11

⎞

⎟
⎟
⎠ .

(19)

The memories satisfy the conditions of Theorem 1
for perfect recall. For example, for ξ = 1,

m11 = y11 ◦ x1
1 = 1 ◦ 1 = 01,

w15 = y11 ◦x1
5 = 1 ◦ 1 = 10,

m23 = y12 ◦ x1
3 = 1 ◦ 0 = 10,

w24 = y12 ◦x1
4 = 1 ◦ 1 = 10,

m33 = y13 ◦ x1
3 = 1 ◦ 0 = 10,

w31 = y13 ◦x1
1 = 1 ◦ 1 = 10,

m42 = y14 ◦ x1
2 = 0 ◦ 0 = 01,

w45 = y14 ◦x1
5 = 0 ◦ 1 = 11.

(22)

�

Example 2. Suppose that X̃A and X̃S represent a
distorted version of X with additive and subtractive noise,
respectively:

X̃A =

⎛

⎜
⎜
⎜
⎜
⎝

1 1 1 1 1
0 1 0 1 0
1 1 1 1 1
1 0 0 1 1
1 1 1 0 0

⎞

⎟
⎟
⎟
⎟
⎠

,

X̃S =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 1 0 0
0 1 0 1 0
0 0 0 0 1
1 0 0 1 0
0 1 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

. (23)

Then memories MXY and WXY are both capable of
providing perfect recall when presented with inputs X̃A

and X̃S , i.e., they are robust to additive and subtractive
noise, respectively; cf. (24) and (25). �

5.2. Simulation results. Experiments with binary
images were performed to test noise tolerance of
associative memory models. This set of 7 × 7
pixels corresponds to the uppercase letters of the
alphabet (Fig. 1), where a pixel in black represents the
value of 1 and that in white represents the value of
0. Simulations were implemented using the Python
programming language on a computer with 8 GB of
installed RAM memory and an Intel® CoreTM i5-7200U
processor with a 64-bit Kaby Lake architecture and a base
frequency speed of 2.5 GHz. The source code of the
simulation is published in the public repository of GitHub
(Gamino-Carranza, 2022).

5.2.1. Experiment 1: Pairs of letters (I, T), (F, E) and
(C, G). Consider heteroassociative mode with pairs of
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(
(MXY)

↓ ◦∨X
)↓

=

⎛

⎜⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎝

01 10 10 10 01
10 10 10 01 10
10 10 10 10 10
10 01 10 10 10

⎞

⎟
⎟
⎠

↓

◦∨

⎛

⎜⎜
⎜
⎜
⎝

1 1 1 0 0
0 1 0 1 0
0 0 0 0 1
1 0 0 1 1
1 1 1 0 0

⎞

⎟⎟
⎟
⎟
⎠

⎞

⎟⎟
⎟
⎟
⎠

↓

=

⎛

⎜
⎜⎜
⎜
⎝

⎛

⎜⎜
⎝

1 0 0 0 1
0 0 0 1 0
0 0 0 0 0
0 1 0 0 0

⎞

⎟⎟
⎠

◦∨

⎛

⎜
⎜⎜
⎜
⎝

1 1 1 0 0
0 1 0 1 0
0 0 0 0 1
1 0 0 1 1
1 1 1 0 0

⎞

⎟
⎟⎟
⎟
⎠

⎞

⎟
⎟⎟
⎟
⎠

↓

=

⎛

⎜
⎜
⎝

01 01 01 10 10
01 10 10 01 01
01 01 01 01 01
10 01 10 01 10

⎞

⎟
⎟
⎠

↓

=

⎛

⎜
⎜
⎝

1 1 1 0 0
1 0 0 1 1
1 1 1 1 1
0 1 0 1 0

⎞

⎟
⎟
⎠ = Y,

(20)

(
(WXY)

↓ ◦∨X

)↓
=

⎛

⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎝

10 11 11 11 10
11 11 10 10 11
10 10 10 10 10
11 10 11 11 11

⎞

⎟
⎟
⎠

↓

◦∨

⎛

⎜
⎜
⎜
⎜
⎝

1 1 1 0 0
0 1 0 1 0
0 0 0 0 1
1 0 0 1 1
1 1 1 0 0

⎞

⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎠

↓

=

⎛

⎜⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎝

0 1 1 1 0
1 1 0 0 1
0 0 0 0 0
1 0 1 1 1

⎞

⎟
⎟
⎠

◦∨

⎛

⎜⎜
⎜
⎜
⎝

1 1 1 0 0
0 1 0 1 0
0 0 0 0 1
1 0 0 1 1
1 1 1 0 0

⎞

⎟⎟
⎟
⎟
⎠

⎞

⎟⎟
⎟
⎟
⎠

↓

=

⎛

⎜
⎜
⎝

11 11 11 10 10
11 10 10 11 11
11 11 11 11 11
10 11 10 11 10

⎞

⎟
⎟
⎠

↓

=

⎛

⎜
⎜
⎝

1 1 1 0 0
1 0 0 1 1
1 1 1 1 1
0 1 0 1 0

⎞

⎟
⎟
⎠ = Y.

(21)

letters (I, T), (F, E) and (C, G) from Fig. 1. Note that for
each pair the first one is a subset of the other. Therefore,
the second one can be treated as an additively noised first
one or the first one as a subtractively noised second one.

Figure 2 shows the recall for the training set and
distorted patterns with additive and subtractive noise (in
both cases, 10 and 17 noisy pixels). Although in each
pair the first one is a subset of the other, we observe
that MXY is robust to additive noise but sensitive to
subtractive noise, while WXY is robust to subtractive
noise and additive noise destroys the recall patterns.

5.2.2. Experiment 2: Uppercase letters of the
alphabet. Three simulations were carried out with
additive, subtractive and mixed noise at the input (Fig. 3).
In simulations, autoassociative operating mode of the
memories was used, and the results presented were
calculated from the average of 500 trials. The
proposed memories in simulations were compared with
the following models:

• based on lattice algebra: morphological associative

Algorithm 1. Learning phase.
Require: {pξ|ξ = 1, . . . , k} {training set}
Ensure: MXX ∈ B,WXX ∈ C {associative memory}

1: MXX := 00
WXX := 01 {memories initialization}

2: for ξ = 1 to k do

3: xξ
7(i−1)+j :=

{
1 if pξ(i, j) is black
0 if pξ(i, j) is white

{image to

vector}
4: MXX := MXX ∨

(
xξ

◦∨ (xξ)T
)

WXX := WXX ∨
(
xξ

◦∨ (xξ)T
)

{adjust the

weights}
5: end for
6: return MXX,WXX {associative memories}

memories (MAMs), logarithmic and exponential
morphological associative memory (LEMAM),
new fuzzy morphological associative memory
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(
(MXY)

↓ ◦∨ X̃A

)↓
=

⎛

⎜⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎝

01 10 10 10 01
10 10 10 01 10
10 10 10 10 10
10 01 10 10 10

⎞

⎟
⎟
⎠

↓

◦∨

⎛

⎜⎜
⎜
⎜
⎝

1 1 1 1 1
0 1 0 1 0
1 1 1 1 1
1 0 0 1 1
1 1 1 0 0

⎞

⎟⎟
⎟
⎟
⎠

⎞

⎟⎟
⎟
⎟
⎠

↓

=

⎛

⎜
⎜⎜
⎜
⎝

⎛

⎜⎜
⎝

1 0 0 0 1
0 0 0 1 0
0 0 0 0 0
0 1 0 0 0

⎞

⎟⎟
⎠

◦∨

⎛

⎜
⎜⎜
⎜
⎝

1 1 1 1 1
0 1 0 1 0
1 1 1 1 1
1 0 0 1 1
1 1 1 0 0

⎞

⎟
⎟⎟
⎟
⎠

⎞

⎟
⎟⎟
⎟
⎠

↓

=

⎛

⎜
⎜
⎝

01 01 01 10 10
01 10 10 01 01
01 01 01 01 01
10 01 10 01 10

⎞

⎟
⎟
⎠

↓

=

⎛

⎜
⎜
⎝

1 1 1 0 0
1 0 0 1 1
1 1 1 1 1
0 1 0 1 0

⎞

⎟
⎟
⎠ = Y,

(24)

(
(WXY)

↓ ◦∨ X̃S

)↓
=

⎛

⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎝

10 11 11 11 10
11 11 10 10 11
10 10 10 10 10
11 10 11 11 11

⎞

⎟
⎟
⎠

↓

◦∨

⎛

⎜
⎜
⎜
⎜
⎝

1 0 1 0 0
0 1 0 1 0
0 0 0 0 1
1 0 0 1 0
0 1 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎠

↓

=

⎛

⎜⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎝

0 1 1 1 0
1 1 0 0 1
0 0 0 0 0
1 0 1 1 1

⎞

⎟
⎟
⎠

◦∨

⎛

⎜⎜
⎜
⎜
⎝

1 0 1 0 0
0 1 0 1 0
0 0 0 0 1
1 0 0 1 0
0 1 0 0 0

⎞

⎟⎟
⎟
⎟
⎠

⎞

⎟⎟
⎟
⎟
⎠

↓

=

⎛

⎜
⎜
⎝

11 11 11 10 10
11 10 10 11 11
11 11 11 11 11
10 11 10 11 10

⎞

⎟
⎟
⎠

↓

=

⎛

⎜
⎜
⎝

1 1 1 0 0
1 0 0 1 1
1 1 1 1 1
0 1 0 1 0

⎞

⎟
⎟
⎠ = Y.

(25)

Fig. 1. Training set {pξ|ξ = 1, . . . , 26}. Numbering goes from
left to right and from top to bottom.

(NFMAM), implicative fuzzy associative memory
(IFAM), a new method of morphological associative
memory (NMMAM) and no rounding reverse fuzzy
morphological associative memory (NR2FMAM);

• based on fuzzy logic: fuzzy relational memory
(FRM), an improved model of optical fuzzy
associative memory (IMOFAM), a max-min
encoding learning algorithm for fuzzy
max-multiplication (max-min ELAFMM) and a
max-min fuzzy neural network with threshold
(max-min FNNT);

• based on chaotic: a globally coupled map using
the symmetric map (S-GCM), the new parameter

control method for S-GCM (new S-GCM), a
globally coupled map using the cubic logistic map
(CL-GCM), globally coupled map using the sine
map (SI-GCM), a parametrically coupled sine map
network 1 (PCSMN 1) and a parametrically coupled
sine map network 2 (PCSMN 2);

• based on the Hopfield network: the Hopfield network
(Hopfield) and Hopfield with hysteresis (Hopfield
hysteresis).

In the case of the proposed memories and those based
on lattice algebra, max type memories M and min type
memoriesW were used for additive and subtractive noise,
respectively. In the third simulation, the comparison
was made with the kernel method for morphological
associative memory.

The code used for programming the learning and
recalling phases of the proposed associative memories is
shown in Algorithms 1 and 2. The first one describes
the procedure to obtain memories M and W, while
the other details the calculation of memory performance
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Fig. 2. Recall of the proposed memories for pairs of letters: (I,
T), (F, E) and (C, G).

(a) distorted letter “S” with additive noise

(b) distorted letter “F” with subtractive noise

(c) distorted letter “X” with mixed noise

Fig. 3. Examples of different versions of letters distorted by
noise. From left to right in each subfigure the number
of noisy pixels varies from 1 to 10.

in recalling binary input patterns, which are distorted
with additive and subtractive noise. By modifying the
operations and rules used to determine memories and the
recall of output vectors in the two algorithms, the other
associative memories models used in the simulations can
be determined.

Simulation with additive noise in Fig. 4 shows that
the proposed associative memories, morphological and
their variant exhibit the same performance. As the number
of distorted pixels in the binary image increases, the
memories exhibit higher tolerance than other associative
memory models. In the absence of noise, in addition
to these memories, fuzzy memories also present perfect
recall of the training set patterns, i.e., for the 26 binary
images, there is a similarity γ = 1. Table 5 shows similar
results with the number of training patterns perfectly
stored by associative memories (perfect recall ratio),
i.e., the proposed associative memories, morphological
and their variant, continue exhibiting better performance
compared to the other associative memories.

Algorithm 2. Recalling phase.
Require: {pξ|ξ = 1, . . . , k} {training set}

{xξ ∈ A|ξ = 1, . . . , k} {training vector set}
σ {number of noisy pixel}
varNoise {type of noise}
fA(r,x) where r is number of pixels to be altered and
x is a binary vector {additive noise function}
fS(r,x) where r is number of pixels to be altered and
x is a binary vector {subtractive noise function}

Ensure: qξ
r(i, j), d(ξ, r) {recalled pattern data}

1: R := {0, 0} {results array initialization}
2: for r = 1 to σ do
3: for ξ = 1 to k do
4: if varNoise == additive then
5: x̃ξ := fA(r,x

ξ) {additive noise vector}
6: y :=

(
(MXX)

↓ ◦∨ x̃ξ
)↓

{recall vector}
7: else if varNoise == sutractive then
8: x̃ξ := fS(r,x

ξ) {subtractive noise vector}
9: y :=

(
(WXX)

↓ ◦∨ x̃ξ
)↓

{recall vector}
10: end if
11: d(ξ, r) := γ

(
xξ,y

) {similarity}

12: qξ
r(i, j) :=

{
black if y7(i−1)+j = 1

white if y7(i−1)+j = 0
{vector

to image}
13: Rξ

r := {qξ
r(i, j), d(ξ, r)} {save results}

14: end for
15: end for
16: return R {recalled pattern data}

For simulation with subtractive noise, similar
performance and noise tolerance comments are provided
for the proposed associative memories, morphological and
their variant; however, according to Fig. 4 and Table 6,
the max-min fuzzy neural network with a threshold also
exhibits similar results as these memories.

Although the outcomes suggest that the proposed
associative memories, morphological and their variant,
exhibit superior performance with respect to most
memories, it is pertinent to consider the following aspects:

• According to Theorem 5 the proposed associative
memories converges in a single step, while the
Hopfield network, chaotic memories based on the
S-GCM model and the parametrically coupled sine
map networks require several iterations to converge
to a local minimum; therefore, the processing time
required by the proposed associative memories is
smaller with respect to the memories mentioned.

• Operations used for logarithmic and exponential
morphological associatives require more processing
time than the proposed associative memories, and
the same occurs for the new fuzzy morphological
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Table 5. Perfect recall rate [%] of associative memories with pixels inputs training patterns distorted by additive noise. The number of
perfectly recalled patterns divided by that of stored training patterns.

Associative memory Additive noisy pixels
0 1 2 3 4 5 6 7 8 9 10

Proposed memories, MAM, LEMAM, NFMAM,
IFAM 100 47.6 26.1 15.5 9.5 6.1 4 2.6 1.8 1.2 0.7

max-min FNNT, FRM, IMOFAM, max-min
ELAFMM 100 0 0 0 0 0 0 0 0 0 0

CL-GCM 90.5 0 0 0 0 0 0 0 0 0 0
PCSMN 1 23.1 14.1 8.8 6.1 4.5 3.2 2.4 1.5 1.2 0.7 0.4
Hopfield hysteresis 7.7 4.7 4.7 4.6 4.5 4.3 4.1 4.1 3.9 3.7 3.5
new S-GCM 7.7 7 6.5 6.6 6.5 6.2 5.8 5.4 4.4 3.7 3
S-GCM 7.5 7 6.3 6.1 5.9 5.7 5.4 5.1 4.7 4.2 3.5
SI-GCM 5.6 3.4 3 2.1 1.9 1.5 1.4 1.2 1 1 0.8
PCSMN 2 3.8 2.1 1.2 0.9 0.6 0.3 0.2 0 0.1 0.1 0
Hopfield, NMMAM, NR2FMAM 0 0 0 0 0 0 0 0 0 0 0
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IFAM max-min ELAFMM FRM IMOFAM
max-min FNNT CL-GCM PCSMN 1 new S-GCM
SI-GCM S-GCM Hopfield hysteresis PCSMN 2
Hopfield NMMAM NR2FMAM

Fig. 4. Performance of associative memories using gamma bi-
nary distance averaging when pixels training input pat-
terns are distorted by noise.
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Fig. 5. Digital logic gates implementation of associative mem-
ories operations (τ represents propagation delay time in
the logic gate).

associative memory that uses the division and
multiplication operations.

• Figure 5 shows that the implementation of
morphological associative memories operations
requires a higher number of digital logic gates than
the proposed memories. In addition, morphological
memories implement two different circuits, one
for learning and another for recalling, while the
proposed memories implement the same digital
logic circuit in both phases. Finally, if we suppose
the delay time through the digital gate is τ , then the
measure of how long it takes for the digital logic
circuit to shift to the final state is less in the proposed
memories than in morphological memories. A
similar remark is applicable to implicative fuzzy
associative memories.

In the last simulation, input patterns were distorted
with mixed noise, and the kernel method proposed by
Ritter et al. (1998) was used, which consists of defining
a matrix Z =

(
z1, . . . , zk

)
such that

((
WZX

)↓ ◦∨
((

MZZ

)↓ ◦∨X
)↓)↓

= X,

and it follows that zλ � xξ , zλ ∧ xξ = 0 ∀λ �= ξ, where
� denotes that the vector zλ contains more entries with
zero values than xξ and 0 is the vector whose all entries
are zero (Sussner, 2000). To determine kernel vectors of
proposed associative memories, an algorithm developed
by Hattori et al. (2002) was adapted. The kernel vectors
for morphological associative memories were determined
by the conventional trial-and-error method. Figure 6
shows the kernel vectors used for the simulation. It
is observed that vectors z for morphological associative
memories do not contain a majority of inputs with zero
values; however, this set of kernel vectors in the absence
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Table 6. Perfect recall rate [%] of associative memories with pixels inputs training patterns distorted by subtractive noise. The number
of perfectly recalled patterns divided by that of stored training patterns.

Associative memory Subtractive noisy pixels
0 1 2 3 4 5 6 7 8 9 10

Proposed memories, MAM, LEMAM, NFMAM,
IFAM, max-min FNNT 100 47.2 22.2 10.8 5.5 2.8 1.5 0.8 0.4 0.2 0.1

FRM, IMOFAM 100 12.3 8.8 5.7 3.2 1.6 0.7 0.2 0.1 0 0
max-min ELAFMM 100 0 0 0 0 0 0 0 0 0 0
CL-GCM 88.1 0 0 0 0 0 0 0 0 0 0
PCSMN 1 23.1 0 0 0 0 0 0 0 0 0 0
Hopfield hysteresis 7.7 5.4 4.2 3.5 3.3 2.9 2.7 2.5 2.4 2.1 1.9
new S-GCM 7.5 6.9 7 6.7 6.4 6 5.1 4.6 4.2 3.5 3.1
S-GCM 7.5 6.7 6.3 5.8 5.4 5 4.4 3.9 3.5 2.8 2.3
SI-GCM 5.3 3.7 2.6 1.9 1.6 1.2 0.9 0.8 0.8 0.7 0.5
PCSMN 2 3.8 2.9 2.3 2.4 2.6 2.6 2.5 2.6 2.3 2.3 2
Hopfield, NMMAM, NR2FMAM 0 0 0 0 0 0 0 0 0 0 0

(a) proposed associative memories

(b) morphological associative memories

Fig. 6. Kernel patterns {zξ |ξ = 1, . . . , 26}. In each subfigure
the numbering starts from left to right and from top to
bottom.

0 1 2 3 4 5 6 7 8 9 10
0.1

1

10

100

Noisy pixels

Pe
rf

ec
tr

ec
al

lr
at

e
[%

]

proposed associative memories morphological associative memories

Fig. 7. Number of perfectly recalled patterns divided by that of
stored training patterns when pixel input training pat-
terns are distorted by mixed noise.

of noise in the input guarantees a perfect recall from the
training set.

The perfect recall rate indicator (Fig. 7) shows
that the proposed associative memories exhibit better
performance than morphological memories using their
associated kernel vectors from Fig. 6. Because
the performance curve of morphological associative
memories decreases very fast, the representation on a
graph is semilogarithmic.

The numerical and computer simulation results
indicate that the proposed associative memories are a
competent model in efficient recall of binary images
and, in general, in applications of artificial intelligence;
therefore, these memories are an alternative for obtaining
an associative memory model.

6. Conclusions
In this paper, a new associative memory model derived
from lattice algebra-based memories was proposed. The
new learning and recalling methods are based on the
design of a binary operation ◦, its complement ◦ and
a unary threshold operator ↓ named projection. The
proposed model has the following characteristics:

• an associative memory M, whose learning method
is based on the superposition of maxima of the
partial results of the operation ◦ between the input
and output vectors, while in the recalling phase, the
memory uses the superposition of maxima of the
results of the same operation ◦ between M and the
input vector presented to memory;

• an associative memory W, which is obtained by
changing the operation ◦ by its complement;

• M and W implement the same digital circuit for
learning and recalling phases;

• the convergence of the associative memories is
performed in a single step;

• memoriesM andW operate in heteroassociative and
autoassociative modes; in the last mode, the memory
storage capacity is unlimited, and there is perfect
recall for the training set;

• memory M exhibits better tolerance to the presence
of significant amounts of additive noise, while
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memory W exhibits better tolerance to subtractive
noise; in the case of mixed noise, the kernel method
was used to combine memories M and W.

In future works, we intend to implement these
associative memories in specialized hardware embedded
systems such as FPGAs and to explore some structural
decomposition method that reduces the chip area occupied
by the logic circuits that define associative memory
(Barkalov et al., 2022). Another important feature is the
application of new probabilistic approaches that improve
the performance of the proposed memory in the presence
of distorted inputs with mixed noise (Salgado-Ramı́rez
et al., 2022). Also, we intend to investigate grayscale
image decomposition techniques to apply the proposed
associative memories on each binary layer resulting from
the decomposition.
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Appendix

A1. Proof of Theorem 1
By Definition 4, MXY is a

◦∨-perfect recalling memory if
and only if

((
MXY

)↓ ◦∨ xξ
)↓

i
=

( n∨

j=1

((
mij

)↓
◦ xξ

j

))↓

i
= yξi

∀ξ = 1, . . . , k and ∀i = 1, . . . ,m.

Let i ∈ {1, . . . ,m} and λ ∈ {1, . . . , k} be arbitrarily
selected; then

(
(MXY)↓

◦∨ xλ
)

i
=

n∨

j=1

(
(mij)

↓ ◦ xλ
j

)
. (A1)

Selecting an arbitrary j = j0; we get

n∨

j=1

(
(mij)

↓ ◦ xλ
j

)
≥ (mij0 )

↓ ◦ xλ
j0 . (A2)

By hypothesis mij0 = yλi ◦ xλ
j0

, which implies

((
MXY

)↓ ◦∨ xλ
)

i
≥

(
yλi ◦ xλ

j0

)↓
◦ xλ

j0 . (A3)

To prove the converse, let i ∈ {1, . . . ,m} and j ∈
{1, . . . , n}; then, from Eqn. (8), we have that

mij =

k∨

ξ=1

(
yξi ◦ xξ

j

)
. (A4)

Therefore,

(mij)
↓
=

( k∨

ξ=1

(
yξi ◦ xξ

j

))↓

⇔
( k∨

ξ=1

(
yξi ◦ xξ

j

))↓
≥

k∧

ξ=1

(
yξi ◦ xξ

j

)↓
. (A5)

Let λ ∈ {1, . . . , k} such that

k∧

ξ=1

(
yξi ◦ xξ

j

)↓
=

(
yλi ◦ xλ

j

)↓
.

Then,

( k∨

ξ=1

(
yξi ◦ xξ

j

))↓
≥ (

yλi ◦ xλ
j

)↓

⇔
( k∨

ξ=1

(
yξi ◦ xξ

j

))↓
◦ xλ

j ≤ (
yλi ◦ xλ

j

)↓ ◦ xλ
j

⇔
n∨

j=1

(( k∨

ξ=1

(
yξi ◦ xξ

j

))↓
◦ xλ

j

)

≤
n∨

j=1

( (
yλi ◦ xλ

j

)↓ ◦ xλ
j

)
.

(A6)

Let j0 ∈ {1, . . . , n} such that

n∨

j=1

((
yλi ◦ xλ

j

)↓ ◦ xλ
j

)
=

(
yλi ◦ xλ

j0

)↓ ◦ xλ
j0 .
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Then

n∨

j=1

(( k∨

ξ=1

(
yξi ◦xξ

j

))↓
◦xλ

j

)
≤

(
yλi ◦xλ

j0

)↓
◦xλ

j0 . (A7)

This last inequality implies that

(
(MXY)

↓ ◦∨ xλ
)

i
≤ (

yλi ◦ xλ
j0

)↓ ◦ xλ
j0

and, according to Eqn. (A3), it is concluded that

(
(MXY)↓

◦∨ xλ
)

i
=

(
yλi ◦ xλ

j0

)↓ ◦ xλ
j0

(
(MXY)

↓ ◦∨ xλ
)↓

i
=

((
yλi ◦ xλ

j0

)↓ ◦ xλ
j0

)↓
= yλi .

(A8)
In a similar we argue for WXY.

A2. Proof of Theorem 2

According to Theorem 1, if MXY is a
◦∨-perfect recalling

memory for (X,Y), then, for each row index i =
1, . . . ,m and each λ ∈ {1, . . . , k}, there exist columns
indices j0 ∈ {1, . . . , n} such that mij0 = yλi ◦ xλ

j0 . From
Eqns. (7) and (8) it follows that

yλi ◦ xλ
j0 = (yλ

◦∨ (xλ)T )ij0 (A9)

and
mij0 = (MXY)ij0 .

Then mij0 = yλi ◦ xλ
j0

is equivalent to

(MXY)ij0 = (yλ
◦∨ (xλ)T )ij0 ,

(MXY)ij0 − (yλ
◦∨ (xλ)T )ij0 = 0,

(
MXY − (yλ

◦∨ (xλ)T )
)

ij0
= 0.

(A10)

This last equation shows that each row of matrix

MXY−(yλ
◦∨(xλ)T ) contains an entry with zero element.

In a similar way we can argue for WXY.

A3. Proof of Corollary 1
According to Theorem 2,

((
MXY

)↓ ◦∨ xξ
)↓

= yξ ∀ξ = 1, . . . , k

if and only if, for each λ ∈ {1, . . . , k} and each row
index i, there exists a column index j ∈ {1, . . . , n} (which
depends on both λ and j) such that

mij = (yλ
◦∨ (xλ)T )ij = yλi ◦ xλ

j . (A11)

From Eqns. (8) and (A11) it follows that

yλi ◦ xλ
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yξi ◦ xξ

j

)
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j
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j

))↓
◦ yλi ,

((
yλi ◦ xλ

j

)↓ ◦ yλi
)↓

=
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ξ=1

(
yξi ◦ xξ

j

))↓
◦ yλi

)↓

xλ
j =

(( k∨

ξ=1

(
yξi ◦ xξ

j

))↓
◦ yλi

)↓
.

(A12)
In a similar way we can argue for WXY.

A4. Proof of Theorem 3
Let i ∈ {1, . . . ,m} be arbitrarily selected; then,

(
(MXY)↓

◦∨ x̃λ
)

i
=

n∨

j=1

(
(mij)

↓ ◦ x̃λ
j

)
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)

i
≥ (mij0 )

↓ ◦ x̃λ
j0 .

(A13)

Since x̃λ is a distorted vector with additive noise of
xλ, we have

x̃λ
j ≥ xλ

j ∀j = 1, . . . , n

⇔(mij)
↓ ◦ x̃λ

j ≤ (mij)
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⇔
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)
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(A14)

Let j0 ∈ {1, . . . , n} such that
n∨

j=1

(
(mij)

↓ ◦ xλ
j

)
= (mij0 )

↓ ◦ xλ
j0 .

Therefore,
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j0 .

(A15)

Let λ ∈ {1, . . . , k} be an index. According to
Eqn. (5) there exists mij0

= yλi ◦ xλ
j0

, but, by hypothesis,
mij0

= yλi ◦x̃λ
j0

, which implies that xλ
j0

= x̃λ
j0

. Therefore,
based on Eqns. (A13) and (A15), we have that

(
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In a similar we can argue for WXY.

A5. Proof of Theorem 4
Since mii = (xξ

◦∨ (xξ)T )ii = (xξ
i ◦ xξ

i ) = 01 for
each i = 1, . . . , n and ∀ξ = 1, . . . , k; then, each row of

MXX−
(
xξ

◦∨(xξ)T
)

contains a zero element. According

to Theorem 2, MXX is a
◦∨-perfect recalling memory for

(X,X). A similar argument can be applied to WXX.

A6. Proof of Theorem 5

Suppose that
(
(MXX)

↓ ◦∨ z
)↓

= u; then, by Theorem 4,
mii = 01 for each i = 1, . . . , n and ∀ξ = 1, . . . , k.
Therefore
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(A17)
For the last inequality, if ui = 0, then 1 ◦ ui = 10

and the result of Eqn. (A17) is equal to (10)↓ = (1 ◦ ui)
↓.

However, if ui = 1, then 1 ◦ ui = 01 and the result of
Eqn. (A17) is equal to (01)↓ or (10)↓. Both results are
less than or equal to (1 ◦ ui)

↓. From the above, it follows
that

(
(MXX)

↓ ◦∨u
)↓

i
≤ (1 ◦ ui)

↓ = ui, (A18)

i.e.,

u ≥
(
(MXX)↓

◦∨u
)↓

. (A19)

We now will demonstrate the opposite. Let i, j, l ∈
{1, . . . , n}. Then

mil =

k∨

ξ=1

(
xξ
i ◦ xξ

l

)
=

(
xλ
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l
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j

)
(A20)

for λ ∈ {1, . . . , k} and λ equal to maximum, which
implies that,

(mil)
↓ =

(
xλ
i ◦ xλ

l

)↓
(A21)

for λ ∈ {1, . . . , k} and λ equal to maximum,

(mlj)
↓
=

(
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j

)↓
(A22)

for λ ∈ {1, . . . , k} and λ equal to maximum.

Let
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(A23)

For this last inequality, we have that for i = 1, . . . , n
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The above holds true if

( n∨

j=1

((
mij

)↓ ◦ zj
))↓

=
( n∨

j=1

((
mil

)↓ ◦ ((mlj

)↓ ◦ zj
)))↓

∀l = 1, . . . , n,

( n∨

j=1

((
mij

)↓ ◦ zj
))↓

=
((

mil

)↓ ◦ (
n∧

j=1

((
mij

)↓ ◦ zj
)↓))↓

∀l = 1, . . . , n,

( n∨

j=1

((
mij

)↓ ◦ zj
))↓

≤
((

mil

)↓ ◦ (
n∨

j=1

((
mij

)↓ ◦ zj
))↓)↓

∀l = 1, . . . , n,

ui ≤
((
mil

)↓ ◦ ul

)↓ ∀l = 1, . . . , n,

ui ≤
n∧

l=1

(((
mil

)↓ ◦ ul

)↓)
,

ui ≤
( n∨

l=1

((
mil

)↓ ◦ ul

))↓
=

((
MXX

)↓ ◦∨ u
)↓
i
.

(A25)

This demonstrates that

u ≤ ((
MXX

)↓ ◦∨u
)↓
. (A26)

By Eqns. (A19) and (A26) u =
((
MXX

)↓ ◦∨u
)↓. In

similar way we can argue for WXX.
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