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The aim of this study is to apply and evaluate the usefulness of the hybrid classifier to predict the presence of serious
coronary artery disease based on clinical data and 24-hour Holter ECG monitoring. Our approach relies on an ensemble
classifier applying the distributivity equation aggregating base classifiers accordingly. Such a method may be helpful
for physicians in the management of patients with coronary artery disease, in particular in the face of limited access to
invasive diagnostic tests, i.e., coronary angiography, or in the case of contraindications to its performance. The paper
includes results of experiments performed on medical data obtained from the Department of Internal Medicine, Jagiellonian
University Medical College, Kraków, Poland. The data set contains clinical data, data from Holter ECG (24-hour ECG
monitoring), and coronary angiography. A leave-one-out cross-validation technique is used for the performance evaluation
of the classifiers on a data set using the WEKA (Waikato Environment for Knowledge Analysis) tool. We present the
results of comparing our hybrid algorithm created from aggregation with the distributive equation of selected classification
algorithms (multilayer perceptron network, support vector machine, k-nearest neighbors, naı̈ve Bayes, and random forests)
with themselves on raw data.
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1. Introduction
Machine learning (ML), as a branch of artificial
intelligence (AI) that attempts to imitate intelligent
behavior, is one of the most promising approaches
to solving difficult decision-making problems. The
general idea is very simple: instead of modeling a
solution explicitly, a domain expert provides example data
that demonstrate the desired behavior on representative
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problem instances. The appropriate ML algorithm is then
trained on these examples to best reproduce the expert’s
solutions and generalize them to new, unobserved data. As
the field of ML develops, we are able to train the computer
to solve increasingly complex tasks. Moreover, the
higher and higher obstacles constantly stimulate further
development. One method of improving “what we already
have” is combined (known also as a hybrid, multiple, or
ensemble) classification. Ensemble (hybrid) methods are
known as learning algorithms that train a set of classifiers
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and combine them to achieve the best prediction measures
(Dietterich, 2000).

Various methods proposed over the years use
various strategies for computing this combination
(Kaczmarek-Majer and Kiersztyn, 2022; Kunapuli, 2023).
The most fundamental concepts of ensemble methods
consist of two main stages, which are the production of
multiple base classifier models and their combination
via aggregation. Aggregation functions proved to be
an effective tool in many application areas (Beliakov
et al., 2016). It simply refers to calculations performed on
a data set to get a single number that accurately represents
the underlying data. There are also many approaches
using domain knowledge and improving the quality of
data mining models (e.g., Garg, 2021). Thus, the use
of aggregation functions can be treated as a way to use
domain knowledge to improve the quality of classifiers.

A skillful selection of both, ensemble classifiers and
aggregation, can bring many benefits. Such advantages
are noted in our recently developed approach that
included the ensemble (hybrid) method applying the
distributivity law (Rak et al., 2020; Rak and Szczur,
2021). Experiments were performed on the cyber-attacks
in the military network data set obtained from the
machine learning repository UCI (Dua and Casey, 2019).
Another goal we set for ourselves was to check whether
this method also translates into medical data. Thus,
this paper continues research with a novel hybrid
approach to increase the main classification measures:
accuracy, sensitivity, and precision while minimizing
base classifiers by applying the distributivity law that
aggregates classifiers appropriately.

This paper includes results of experiments that
have been performed on medical data (clinical data
and Holter electrocardiogram (ECG) monitoring records).
From the medical point of view, the study involves
the prediction of coronary arteriosclerosis presence in
patients with stable angina. Coronary artery disease
(CAD) (also known as coronary heart disease (CHD),
coronary microvascular disease (CMD), cardiovascular
disease (CVD) or atherosclerosis, arrhythmia and arterial
thrombosis) is the most common type of heart disease.
It is the leading cause of death in all countries for both
men and women. As reported in 2021 by the World
Health Organization (WHO), cardiovascular diseases are
the cause of death for 17.9 million patients each year,
which represents nearly 32% of all deaths worldwide
(see https://www.who.int/health-topics/c
ardiovascular-diseases).

Diagnosis of CAD is made using various tests such
as an electrocardiogram or a stress test. Treatment
for CAD includes lifestyle changes, medications, and
sometimes, cardiac procedures or surgery—coronary
angiography. Prevention consists of modifying reversible

risk factors (e.g., hypercholesterolemia, hypertension,
physical inactivity, obesity, diabetes, smoking). We
propose the use of clinical data together with Holter
electrocardiogram recordings as prospective candidate
data for coronary artery stenosis prediction. The proposed
ensemble method with the use of the distributivity
law helps us to determine the management of patients
with stable angina, including the need for coronary
intervention, without performing invasive diagnostic
procedures such as angiography. To some extent, it also
works as a screening tool for all patients with CAD.
Similar considerations for other classification methods
were conducted by Bazan et al. (2020).

The comparison of classifiers and using the most
predictive classifier is very important. Each of the
classification methods shows different efficiency and
accuracy based on the kind of data sets (Kim, 2008).
Five different classification algorithms from WEKA
API (Frank et al., 2016) applying the distributivity
equation which aggregates the classifiers accordingly
were used, and their quality was compared to the
prediction measures based on the confusion matrix
obtained on raw data. Basic algorithms for the custom
aggregation method that have been investigated are
multilayer perceptron network (MLP), support vector
machine (SVM), k-nearest neighbor (kNN), naı̈ve Bayes
(NB) and random forests (RFs).

The rest of the paper is organized as follows.
Section 2 provides an overview of published articles
on CAD classification using various ML and data
mining approaches. In Section 3, notions connected
with aggregation functions and distributivity between
them are recalled. Section 4 explains the used data
set. Section 5 describes the experimental setting,
and evaluates the results of applying the ensemble
classification method based on the distributivity law (with
five selected classifiers) on the medical data set through
the classification measures for each case of coronary
artery disease. Finally, Section 6 summarizes this work.

2. Review of the literature
Modern methods of data analysis are provided by modern
multivariate statistics, where classification methods are
of particular practical importance. Supervised learning
provides a powerful tool to classify and process data
using machine language. A classification algorithm is
a procedure for selecting a hypothesis from a set of
alternatives that best fit a set of observations. Classifier
algorithms are widely utilized in data mining. They
can generate a solid prediction model based on a set of
features during the training phase. These features belong
to certain labeled classes. The generated prediction model
is used later to predict new classes.

There are many different classification techniques
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Fig. 1. Model of the human heart.

including support vector machines (SVMs) (Tanveer
et al., 2019), artificial neural networks (ANNs)
(Schmidhuber, 2015), decision trees (DTs) (Jaworski
et al., 2018), the multilayer perceptron (MLP) (Du and
Swamy, 2014) or k-nearest neighbors (kNN) (Zhang
et al., 2018). Each of these techniques has its strengths
and weaknesses. These methods have been widely
investigated in broad areas such as medical applications
(e.g., breast cancer (Kowal et al., 2021), Parkinson’s
disease (Bernardo et al., 2021) or electrocardiogram
(ECG) signals of the human heart (Patro et al., 2022)) for
purposes such as screening, risk stratification, prediction,
and assisted decision-making (Castaneda et al., 2015).

The mortality rate among various diseases is an
important factor in undertaking these studies. According
to WHO, the leading cause of death is coronary artery
disease (CAD). It occurs when there is an obstruction (of
more than 50%) in at least one of the coronary arteries
(Zipes et al., 2018). There are three major arteries of
the heart: left anterior descending artery (LAD), left
circumflex artery (LCX), and right coronary artery (RCA)
(see Fig. 1). Thus, early detection of CAD is critical to
avoid further increases in the risk. Coronary angiography
is required to conclusively diagnose CAD. However, it is
invasive and may lead to various complications, such as
artery dissection, arrhythmia, and even death. Moreover,
image-based detection techniques are costly and not
applicable for screening large populations, especially in
developing countries. Due to these shortcomings and the
life-threatening nature of angiography, researchers have
been continuously looking for noninvasive, economical,
fast, and reliable techniques for early detection of CAD.
ML algorithms are techniques used for this purpose
(Krittanawong et al., 2020; Alfaidi et al., 2022). There are
works that were published 30 years ago (see Akay, 1992).

Several indicators have been used in the literature,
including accuracy, sensitivity, specificity and the f-score
for model evaluation. However, the overall performance

of the model depends on two key factors: the data set and
the choice of the ML method. CAD detection mainly uses
supervised classification algorithms for feature processing
and decision making. The most frequently used ML
methods for CAD detection: are ANN, DTs, and SVM.
They are the most common methods, which have been
applied to almost all data sets that have been reported
in the literature to date (see the current review paper
by Alizadehsani et al. (2019)). Moreover, the most
common assessment metric for CAD detection is still only
accuracy. Relying solely on accuracy can be confusing,
especially for highly unbalanced data sets. Therefore,
accuracy should be always evaluated and interpreted in
conjunction with other metrics, including sensitivity and
precision.

We are interested in studies on three stenoses of
LAD, LCX, and RCA arteries. The best method for
diagnosing CAD is angiography, in which three main
outputs are determined: (i) whether or not the patient has
CAD (ii) which artery is stenotic, and (iii) the percentage
of the stenosis. The first output is already well considered
in the literature. In contrast, the second output is only
studied in few articles (Alizadehsani et al., 2013; 2016;
Babaoglu et al., 2009), with the highest accuracy of
86.1% for LAD stenosis diagnosis (Alizadehsani et al.,
2016). Surprisingly, there is no study that reports on
the third output. Hence, reducing or even eliminating
the use of angiography due to its costs and side effects
requires extensive research and work on the second and
third outputs of angiography. When comparing the
performance of the algorithms described by Alizadehsani
et al. (2019), “naı̈ve Bayes was unable to exceed C4.5.
Additionally, naı̈ve Bayes fared worse than SVM in all
but one. The ANN performance in all but one article was
worse than that of the SVM or fuzzy rule-based system
(FRBS).”

3. Distributivity of aggregation functions
The aggregation process is a synthesis of many numerical
data to a single value, in some way, a representative
for all of them. This type of projection method of
multidimensional space input data to one dimension is
usually carried out by the so-called aggregation functions
(also known as aggregation operators). They were
formalized forty years ago (Dombi, 1982), and since
then have been extensively investigated (Grabisch et al.,
2009; Beliakov et al., 2016). It is worth mentioning
that aggregation functions have been successfully
applied to solve many pragmatic application problems
including decision making, hierarchical information
fusion, classification, image processing, fuzzy and control
systems, etc.

The choice of the aggregation function should be
based upon properties dedicated by the framework in
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which the aggregation is performed. Of the huge number
of classes of aggregation functions, averaging functions
(means) (see, e.g., Beliakov et al., 2016, p. 55) and
triangular norms (see Klement et al., 2000, p. 6) are
usually easily applied to the classification problem (see
Table 1).

Distributivity specifies the relationship between two
binary functions, including aggregation functions.

Definition 1. (Aczél, 1966, p. 318) Let F and G be
some binary functions in a non-empty set U , where F is
symmetric. We say that F is distributive over G if for all
X,Y, Z ∈ U the following equality is fulfilled:

F (X,G(Y, Z)) = G(F (X,Y ), F (X,Z)). (1)

The lack of distributivity is a big problem in any
algebraic transformations, and therefore also in computer
modeling. In general, aggregations are not distributive
from each other. The sufficient condition under which one
aggregation function is distributive with respect to another
is the idempotency of the second aggregation. However,
the sufficient condition(s) are no longer easy to indicate,
since they are different for various classes of aggregation
functions and strictly depend on the structures of these
functions. For t-norms, t-conorms, and means, that can
be easily applied to classification and decision-making
problems, we rely on the results of Drewniak et al. (2008,
Lemmas 1 and 2) as well as Drewniak and Rak (2010,
Tables 3 and 4). Out of all pairs of aggregation functions
known so far for which the distributivity equation (1)
formally holds, we have selected (see Table 1) and used
in the elaborated algorithm the following equalities:

D1 TP (X,M∧(Y, Z)) = M∧(TP (X,Y ), TP (X,Z)),

D2 TP (X,M∨(Y, Z)) = M∨(TP (X,Y ), TP (X,Z)),

D3 TP (X,MA(Y, Z)) = MA(TP (X,Y ), TP (X,Z)),

D4 MA(X,MA(Y, Z))= MA(MA(X,Y ),MA(X,Z)),

D5 TP (X,MH(Y, Z)) = MH(TP (X,Y ), TP (X,Z)),

D6 MP (X,MP (Y, Z))= MP (MP (X,Y ),MP (X,Z)),

D7 TE(X,M∧(Y, Z)) = M∧(TE(X,Y ), TE(X,Z)),

D8 TE(X,M∨(Y, Z)) = M∨(TE(X,Y ), TE(X,Z)),

D9 TH(X,M∧(Y, Z)) = M∧(TH(X,Y ), TH(X,Z)),

D10 TH(X,M∨(Y, Z)) = M∨(TH(X,Y ), TH(X,Z)).

4. Data set
4.1. Medical background. Our approach is illustrated
using data that represent the medical treatment of patients
with stable coronary artery disease, which is a major
health problem worldwide and is one of the leading causes

of high mortality rates in industrialized countries. It is
called angina, due to one of its main symptoms—chest
pain, arising from ischemia of the heart muscle. The main
cause of CAD is artery stenosis and the consequences
of CHD depend largely on the number, degree, and
localization of artery stenosis.

The data set, collected by the Department of Internal
Medicine, Collegium Medicum, Jagiellonian University,
Kraków, Poland, relates to 152 patients subjected to
elective coronary angiography with possible percutaneous
angioplasty. The data set contains clinical data (some
of them are shown in Table 2), data from Holter ECG
(24-hour ECG monitoring), and coronary angiography.
Holter ECG study was carried out within 24 hours before
the angiography, which is the current diagnostic standard
of anatomic coronary vessel evaluation which permits the
determination of the therapeutic plan and prognosis. In
the case of an unaltered coronary flow, pharmacological
treatment is applied otherwise, revascularization is also
needed. However, coronary angiography (coronagraphy)
is a very sensitive method and has its limitations. As
an invasive investigation, it is relatively expensive, and it
carries risks including a mortality rate of approximately 1
in 2000.

It would not be appropriate or practical to
perform invasive investigations on all patients with a
coronary heart disease diagnosis. Given the high
incidence and prevalence of CAD, a non-invasive
test to reliably assess the coronary arteries would be
clinically desirable. Our experiments are therefore an
attempt to use medical data (clinical data together with
electrocardiographic Holter recordings), to construct a
classifier that allows identifying which patients with
CAD need revascularization surgery, and for whom
pharmacological treatment is sufficient because their
stenosis is small. This diagnosis is made without
coronary angiography. However, coronary angiography
was performed for all patients in the data, as its results
were used to define the binary decision attribute (see
results collected in Table 3).

4.2. Experimental data. The experimental data
contain an ECG recorded using the Holter method,
enriched with clinical data of patients with stable ischemic
heart disease with sinus rhythm in the ECG recording.
Patients were recruited from among those admitted to
the Department of Internal Medicine and Heart Diseases
for elective surgery of coronary angiography with
possible angioplasty and stent implantation. Immediately
after coronary angiography, results were subjected to
angiographic analysis, which enabled patients to be
qualified for percutaneous treatment. In patients qualified
for the above-mentioned treatment, one-time coronary
angioplasty with or without stent implantation was
performed. Before and after surgery, 24-hour Holter
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Table 1. Means and t-norms considered in this research.

Mean Name
M∧(X,Y ) = min(X,Y ) minimum
M∨(X,Y ) = max(X,Y ) maximum
MA(X,Y ) = X+Y

2 arithmetic mean

MH(X,Y ) =

{
0 if X = Y = 0
2XY
X+Y , otherwise

harmonic mean

MP (X,Y ) =
√

X2+Y 2

2 power mean

T-norm Name
TP (X,Y ) = X · Y product t-norm
TE(X,Y ) = X·Y )

2−(X+Y −X·Y ) Einstein t-norm

TH(X,Y ) =

{
0 if X = Y = 0

XY
X+Y−XY otherwise

Hamacher t-norm

Table 2. Short clinical characteristics of patients.
Feature Value
Number of patients N = 152 (100%)
Age 40–87 (68.75 ± 9.643)
Sex (M/F) 90 / 62 (59% / 41%)
Hyperlipidemia (Y/N) 44 / 108 (29% / 71%)
Obesitas (Y/N) 57 / 95 (37.5% / 62.5%)
Smoking tobacco (Y/N) 44 / 108 (29% / 71%)

ECG monitoring was performed on all patients. Each
time, after completion of the examination, the data saved
on the portable memory card of the recording set were
loaded into the memory of a desktop computer and then
subjected to an automatic analysis using the software
provided by the manufacturer of the ECG recorder. These
data include HOLTER collection, which contains data
from 152 patients collected in 2015 and 2016 using the
12-channel R12 recorder of the BTL CardioPoint-Holter
H600 v2-23 system. Angiographic data provide detailed
information on the percent stenosis for each of the
assessed coronary angiographies. Patients were selected
for the collection without complex cardiac arrhythmias,
such as supraventricular or ventricular extrasystoles,
which prevent proper ECG analysis.

Only medical data with Holter electrocardiographic
records before coronary angiography, supported by
clinical data, were used for the experiments. In particular,
it includes an accurate description of the clinical
condition of patients (age, sex, medical diagnosis),
comorbidities, pharmacological treatment, laboratory test
results (including troponin level, CRP protein, cholesterol,
LDL), and many Holter parameters concerning the
number and type of arrhythmias, changes in the PQ
interval, changes in the ST segment or heart rate
variability (HRV) in the domain of time and frequency,

Table 3. Angiographic characteristics of patients.
Holter

Result of coronary N = 152 (100%)
angiography

No significant stenosis 86 (56.5%)
in the coronary arteries

1 stenosis 32 (21%)
2 stenoses 19 (12.5%)
3 stenoses 15 (10%)

and changes in the QT interval. The 24-hour Holter
recording for each patient was aggregated into a single
row in a data table. In the aggregated data, 7 new features
were defined for each of the original attributes. The
new features were based on statistical measures like first
and last values, minimum, maximum, mean, standard
deviation and total. The values of these attributes were
calculated for each object (patient) based on the values
of their time points. Finally, the collection contains 595
attributes.

The obtained data were loaded into a database
using an importer created in the Java environment. The
data were preprocessed—textual (symbolic) features were
omitted and individual patient data were merged. The
original data set has some imbalances that may affect the
classification accuracy of the algorithm. Therefore, it was
necessary to balance the original data set.

This was accomplished with the use of the filter
weka.filters.supervised.instance.Resample-B1.0-S1-Z100.
0, where (86 + 32 + 19 + 15)/4 = 38 was the average
number of objects per class. Next, the data were exported
to a text file.
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5. Classifier aggregation method based on
the distributivity law

We recall the novel ensemble approach proposed in our
previous paper (Rak et al., 2020) to increase the accuracy
of a classification and, at the same time, minimize a group
of base classifiers by applying the distributivity law which
will aggregate classifiers accordingly (see the scheme in
Fig. 2).

The proposed algorithm was subjected to further
modifications in order to improve the accuracy of the
classification, as well as sensitivity, false positive rate
(fall-out), and precision. These are the so-called
classification quality measures based on a confusion
matrix.

The confusion matrix is a situation analysis table
for summarizing the prediction results of classification
models in ML. Here ‘actual class’ is also known as ground
truth (GT) value and ‘predicted class’ is the output of
the model. As shown in Table 4, TP is the number of
correctly predicted positive cases, FN is the number of
incorrectly predicted positive cases, FP is the number of
incorrectly predicted negative cases, and TN is the number
of correctly predicted negative cases. Our experimental
evaluation measures based on a confusion matrix are the
following:

• accuracy

ACC =
TP + TN

TP + TN + FP + FN
is one of the main model assessment parameters that
define the proportion of correct classifications;

• sensitivity (recall or true positive rate)

TPR =
TP

TP + FN
measures the proportion of correct CAD predictions
to all cases that have CAD;

• false positive rate

FPR =
FP

FP + TN
can be defined as the percentage of healthy people
that the classification model incorrectly identifies
them as not having CAD;

• precision (positive predictive value)

PPV =
TP

TP + FP
is a measure of how reliable positive predictions
are, i.e., the percentage of positive predictions that
are actually positive (the percentage of people with
a positive test result, in whom the diagnosis was
significantly confirmed).

Fig. 2. Scheme of the proposed approach.

Table 4. Confusion matrix in predicting the presence of CAD.
Actual ↓ Predicted → Positive Negative
Positive TP FN
Negative FP TN

5.1. Steps of the proposed ensemble method. Let
d0 be the decision class ”0” (no significant stenosis in
the coronary arteries) and d1, d2, d3 denote 3 degrees of
vascular disease, respectively. Moreover, ε ∈ (0, 1)
denotes the threshold for classifying an object into one of
the di classes, where (i = 1, 2, 3). The use of ε parameter
in experiments is described later in this chapter, where the
algorithm for the classification of the test object has been
placed.

The process of building classifiers and determining
decision values for test objects is given by Algorithm 1.

5.2. Experiments. The algorithm, along with the
use of five classification methods, was implemented and
tested in Java programming language (using the Weka API
library for construction of classifiers P,Ci, Pi).

The following classifiers were used for the
experiments:

• kNN (IBk) with Euclidean distance and k =
√
n,

where n is the number of objects,

• MLP with default options (500 epochs, seed = 0,
hidden layers = (attribs + classes)/2),
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Algorithm 1. Classifier aggregation based on the
distributivity law (CADL).
Input: Training and test data tables (TR and TST,
respectively)
Output: Decision value(s) for tested object(s)
Step 1. Construct the classifiers on TR data as follows:

(i) Classifier P – binary classifier used to pre-classify an
object as to whether it belongs to decision class d0 (
marked as class ‘a’) or to some other decision class
¬d0 = {d1, d2, d3} (marked as class ‘b’);

(ii) Collection of binary classifiers Ci (i = 1, 2, 3)
used to distinguish objects with decision value di
(marked as class ‘b’) from objects from other classes
¬di = {d1, d2, d3} \ {di} (marked as a class ‘a’)
without the class d0;

(iii) Collection of binary classifiers Pi (i = 1, 2, 3) used
to distinguish objects with decision value di (marked
as class ‘b’) from objects of the class d0 (marked as
class ‘a’).

For each object uj from table TST, follow Steps 2–6:
Step 2. Determine the probability of membership uj to
decision class with label ‘b’ (weight for a class marked
‘b’). Next, construct the weight table of classifiers
P,Ci, Pi for the class marked ‘b’ (classifiers as columns,
uj object as row, weights (probabilities) for class ‘b’ as
values).
Step 3. For a given distributivity law-hand satisfying
D1–D10 compute the value of its left-hand side L (as
L = P ) based on weights from Step 2 and considering
obtained classifiers X , Y , Z in the setting X = P ,
Y ∈ Ci, Z ∈ Pi.
Step 4. Fix the parameter ε ∈ (0, 1) (the same for each
tested instance uj).
Step 5. Determine the maximum for previously calculated
values of the left-hand side of the distributivity law
(maxaggr = max(D1(X,Y,Z), . . . , D10(X,Y,Z)).
Step 6. Propose a decision value for the object uj

as follows: If the maximum value of the left-hand
side (maxaggr) of distributivity was obtained for the i-th
decision (after aggregating the weights of the classifiers
P,Ci, Pi ) and maxaggr > ε, then propose the i-th decision
value for the given object (respectively 1, 2 or 3 stenoses);
otherwise, (maxaggr ≤ ε) propose a neutral decision – the
lack of stenoses (class ‘0’).

• SVM (SMO) with default options (PolyKernel,
logistic calibrator),

• NB with default options (normal distribution for
numeric attributes, no discretization),

• RFs with default options (100 iterations
(trees), attributes to randomly investigate =
log2(predictors) + 1, seed = 1).

It uses the above selected examples of pairs of
distributive aggregation functions denoted as D1-D10. We
used leave-one-out cross-validation (LOO CV) to test
the quality of classifiers. It is usually employed when
the size of a given data set is small. The LOO CV
technique involves a single object from the original data
set as validation data and the remaining observations
as training data. This is repeated in such a way that
each observation in the sample is used once as validation
data. Experiments are performed using 582 numerical
features. The following parameters were used as measures
of the success (or failure) of the classification: accuracy,
accuracy for positive examples (sensitivity), false-positive
rate, and precision for positive examples.

The original data set has a certain imbalance.
Although we have balanced data, accuracy itself cannot
measure the effective performance of the model. A
comparison of selected results of TPR, FPR, PPV and
overall ACC measurements, on the original raw data and
the newly created data using the classifier aggregation
method with five algorithms (SVM, MLP, kNN, NB,
and RFs) with a fixed ε ∈ (0, 1), due to their size, is
presented in Tables A1–A11 in Appendix. In turn, the file
constituting the full version of the results can be found on
the GitHub platform: https://github.com/Ama79
/Results_AMCS.

In addition, selected results, covered by the
aforementioned tables, are also presented in a graphical
form (see Figs. A1–A11 in Appendix).

5.3. Discussion of results. Since data sets usually
vary in the number of samples and features, it is not
easy to compare ML techniques in terms of performance.
Nevertheless, each new CAD detection method brings us
closer to solving the decision problem of whether further
in-depth (expensive and dangerous) diagnostics is really
necessary. The overall performance results of our method
for the difficult medical data set under consideration are
very promising.

Depending on the standard classification method
chosen (SVM, MLP, kNN, NB, RFs) and the adopted
distributivity equation, the experimental results obtained
from our method for predicting coronary stenosis in
coronary artery disease differ. Thus, it is difficult to
clearly determine the suitability of exactly one of the
selected standard classifiers for the hybrid method, which
seeks to obtain the best possible measures of its evaluation
in relation to raw data. It can certainly be seen that
in the cases of P = kNN, Ci = kNN, Pi = kNN and
P = NB, Ci = NB, Pi = NB there are no satisfactory
results. The use of RFs, in turn, yields good results,

https://github.com/Ama79/Results_AMCS
https://github.com/Ama79/Results_AMCS
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however, similar to those on raw data, with improvements
in sensitivity (from 86.8% to 100%), precision (from
82.5% to 100%), and overall accuracy (from 85.5% to
86.8%) in predicting the lack of arterial stenoses using
equation D1. Similar results, but covering globally all
cases of coronary artery stenosis prediction, are obtained
employing MLP and SVM with equation D8 and a fixed
ε = 0.7. However, the best results of the proposed method
are when different classifiers are combined, especially
when P = MLP, Ci = SVM, Pi = kNN using equations
D6 (with ε from 0.7 to 0.8) and D9 and D10 (with ε =
0.9).

This method in relation to raw data better identifies
patients who do not have stenosis in particular, yields it
100% precision, 100% sensitivity, and 0% false positive
rate. In turn, for patients with significant coronary
artery stenosis, the method used offers the following best
measures for assessing the diagnosis:

• 1 stenosis: 88.9% precision, 73.7% sensitivity and
1.8% false positive rate;

• 2 stenoses: 87.2% precision, 92.1% sensitivity and
3.5% false positive rate;

• 3 stenoses: 87.5% precision, 92.1% sensitivity and
4.4% false positive rate; the overall accuracy of the
proposed model is 86.8%.

It can be certainly stated that the best measures were
also influenced by the selection of aggregation functions
satisfying the distributivity equation (1). Generally,
the best results are for equations, in which there is
a combination of the product t-norm, Einstein and
Hamacher t-norm with maximum. Results obtained
justify our approach of using the idea of distributivity
of aggregation functions in the classification method.
Adapting this hybrid classification method with the
simultaneous use of, for example, MLP and SVM with
RFs instead of kNN (currently in our research phase) in
highly desirable medical decision support can bring many
benefits for effective diagnosis.

6. Conclusions
In machine learning a combination of classifiers (known
as ensemble or hybrid classification) often outperforms
individual ones. While many ensemble approaches exist,
it remains, however, a difficult task to find a suitable
ensemble configuration for a particular data set. Within
our research interests are multi-class datasets, and for
them, we are trying to develop a reasonably universal
algorithm using nonstandard mathematical tools. The
aim of this paper was to apply the ensemble method
(classifiers aggregation based on the distributivity law)
to predict the presence of serious coronary artery disease
based on clinical and ECG data. It presents a comparative

assessment for a novel ensemble construction method
that uses a variety of standard supervised classification
algorithms and applies the distributivity law which
aggregates these classifiers accordingly. The underlying
algorithms for the custom aggregation method that were
connected and compared with raw data by accuracy,
precision, TPR, and FPR measures are the multilayer
perceptron network, k-nearest neighbors, support vector
machine, naive Bayes, and random forests.

Our experimental results suggest that the hybrid
approach can generate ensembles that outperform
traditional algorithms in terms of classification precision,
sensitivity, and accuracy. With the appropriate value of
the parameter ε, we obtained results up to 15% (TPR)
40% (PPV) and 2% (ACC) better (than for raw data)
for individual decision classes. Thus, this approach can
be useful for clinicians in the management of patients
with coronary artery disease, in particular in the face of
limited access to invasive diagnostic tests, i.e., coronary
angiography or in the case of contraindications to its
performance (allergy to contrast administered during
coronary angiography, poor general condition of the
patient, other acute illnesses). The proposed method is
important for physicians who treat patients with coronary
artery disease in their daily practice.

The classification problem raised in this paper is
related to the challenge in cardiology published in
2003 (cf. Moody and Jager, 2003). At that time,
unfortunately, there was no widespread feedback. The
problem is still relevant and all attempts to support the
diagnosis of heart diseases with ML methods are very
desirable. Therefore, we would like to mention that we
have made some additions to the knowledge in support
of CAD diagnosis, meeting both the expectations and
challenges of cardiology and the recommendation of
Alizadehsani et al. (2019): “. . . Only five studies reported
the application of ML in determining which artery is
stenotic and the classification results for these studies are
poor. As we discussed above, the highest accuracy in
identifying CAD stenosis was 86.1% (Alizadehsani et al.,
2016). Hence, improvement of the algorithms in this
area is required to realize better prediction performance.
Therefore, additional research is strongly recommended.
Moreover, there is no study in which the category three
output (percentage of stenosis) is determined via ML
methods.” In future work, we will add different attribute
selection techniques to the current method or supplement
them where they are missing. In addition, we plan to test
more data sets to be able to get an even more accurate
evaluation.
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Appendix

This appendix presents tables and figures referred to in
Section 5.2.

Table A1. Results of P (KNN)-Ci(KNN)-Pi(KNN) and distributivity equation D4.

Distributivity Equation           D4 Classifiers’ Aggregation Method used P(kNN)-Ci(kNN)-Pi(kNN) 
 

 ɛ=0,1 ɛ=0,2 ɛ=0,3 ɛ=0,4 ɛ=0,5 ɛ =0,6 ɛ =0,7 ɛ =0,8 ɛ =0,9 RAW DATA 

TPR(0) 0 0,026 0,105 0,263 0,474 0,763 0,947 1 1 0,842 

FPR(0) 0 0 0 0,026 0,105 0,228 0,395 0,675 0,939 0,193 

PPV(0) 1 1 1 0,769 0,6 0,527 0,444 0,33 0,262 0,593 

TPR(1) 0,237 0,237 0,237 0,237 0,184 0,105 0,105 0,105 0 0,184 

FPR(1) 0,272 0,272 0,263 0,211 0,175 0,149 0,07 0,018 0 0,149 

PPV(1) 0,225 0,225 0,231 0,273 0,259 0,19 0,333 0,667 0 0,292 

TPR(2) 0,711 0,711 0,711 0,658 0,632 0,553 0,447 0,263 0 0,579 

FPR(2) 0,465 0,456 0,447 0,447 0,377 0,307 0,211 0,088 0,018 0,298 

PPV(2) 0,338 0,342 0,346 0,329 0,358 0,375 0,415 0,5 0 0,393 

TPR(3) 0,289 0,289 0,289 0,289 0,289 0,289 0,289 0,211 0,132 0,289 

FPR(3) 0,184 0,184 0,175 0,167 0,149 0,079 0,061 0,026 0 0,061 

PPV(3) 0,344 0,344 0,355 0,367 0,393 0,55 0,611 0,727 1 0,611 

ACC 0,309 0,316 0,336 0,362 0,395 0,428 0,447 0,395 0,283 0,474 
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Table A2. Results of P (MLP)-Ci(MLP)-Pi(MLP) and distributivity equation D6.

Distributivity Equation           D6 Classifiers’ Aggregation Method used P(MLP)-Ci(MLP)-Pi(MLP) 
 

 ɛ=0,1 ɛ=0,2 ɛ=0,3 ɛ=0,4 ɛ=0,5 ɛ =0,6 ɛ =0,7 ɛ =0,8 ɛ =0,9 RAW DATA 

TPR(0) 0,079 0,105 0,132 0,158 0,553 0,789 0,842 0,895 0,921 0,868 

FPR(0) 0 0 0 0 0 0,018 0,018 0,018 0,061 0,018 

PPV(0) 1 1 1 1 1 0,938 0,941 0,944 0,833 0,943 

TPR(1) 0,763 0,763 0,763 0,763 0,763 0,763 0,763 0,763 0,763 0,763 

FPR(1) 0,281 0,281 0,281 0,272 0,167 0,088 0,07 0,061 0,035 0,088 

PPV(1) 0,475 0,475 0,475 0,483 0,604 0,744 0,784 0,806 0,879 0,744 

TPR(2) 0,895 0,895 0,895 0,895 0,895 0,895 0,895 0,895 0,868 0,868 

FPR(2) 0,088 0,079 0,07 0,07 0,053 0,053 0,053 0,053 0,044 0,044 

PPV(2) 0,773 0,791 0,81 0,81 0,85 0,85 0,85 0,85 0,868 0,868 

TPR(3) 0,921 0,921 0,921 0,921 0,921 0,921 0,921 0,921 0,921 0,921 

FPR(3) 0,079 0,079 0,079 0,079 0,07 0,053 0,053 0,044 0,035 0,044 

PPV(3) 0,795 0,795 0,795 0,795 0,814 0,854 0,854 0,875 0,897 0,875 

ACC 0,664 0,671 0,678 0,684 0,783 0,842 0,855 0,868 0,868 0,855 

Table A3. Results of P (SVM)-Ci(SVM)-Pi(SVM) and distributivity equations D4, D6, D8.

Distributivity Equations  D4,D6,D8 Classifiers’ Aggregation Method used P(SVM)-Ci(SVM)-Pi(SVM) 
 

 ɛ=0,1 ɛ=0,2 ɛ=0,3 ɛ=0,4 ɛ=0,5 ɛ =0,6 ɛ =0,7 ɛ =0,8 ɛ =0,9 RAW DATA 

TPR(0) 0,105 0,105 0,105 0,105 0,105 0,816 0,816 0,868 0,895 0,842 

FPR(0) 0 0 0 0 0 0,018 0,018 0,018 0,044 0,026 

PPV(0) 1 1 1 1 1 0,939 0,939 0,943 0,872 0,914 

TPR(1) 0,763 0,763 0,763 0,763 0,763 0,763 0,763 0,763 0,763 0,763 

FPR(1) 0,228 0,228 0,228 0,228 0,228 0,061 0,061 0,061 0,053 0,07 

PPV(1) 0,527 0,527 0,527 0,527 0,527 0,806 0,806 0,806 0,829 0,784 

TPR(2) 0,895 0,895 0,895 0,895 0,895 0,895 0,895 0,895 0,895 0,895 

FPR(2) 0,061 0,061 0,061 0,061 0,061 0,044 0,044 0,044 0,044 0,044 

PPV(2) 0,829 0,829 0,829 0,829 0,829 0,872 0,872 0,872 0,872 0,872 

TPR(3) 0,921 0,921 0,921 0,921 0,921 0,921 0,921 0,921 0,921 0,921 

FPR(3) 0,149 0,149 0,149 0,149 0,149 0,079 0,079 0,061 0,035 0,053 

PPV(3) 0,673 0,673 0,673 0,673 0,673 0,795 0,795 0,833 0,897 0,854 

ACC 0,671 0,671 0,671 0,671 0,671 0,849 0,849 0,862 0,868 0,855 

Table A4. Results of P (NB)-Ci(NB)-Pi(NB) and distributivity equation D6.

Distributivity Equation           D6 Classifiers’ Aggregation Method used P(NB)-Ci(NB)-Pi(NB) 
 

 ɛ=0,1 ɛ=0,2 ɛ=0,3 ɛ=0,4 ɛ=0,5 ɛ =0,6 ɛ =0,7 ɛ =0,8 ɛ =0,9 RAW DATA 

TPR(0) 0,105 0,105 0,105 0,105 0,105 0,737 0,737 0,842 0,868 0,737 

FPR(0) 0,009 0,009 0,009 0,009 0,009 0,088 0,088 0,105 0,167 0,07 

PPV(0) 0,8 0,8 0,8 0,8 0,8 0,737 0,737 0,727 0,635 0,778 

TPR(1) 0,5 0,5 0,5 0,5 0,5 0,368 0,368 0,368 0,368 0,658 

FPR(1) 0,184 0,184 0,184 0,184 0,184 0,035 0,035 0,035 0,026 0,044 

PPV(1) 0,475 0,475 0,475 0,475 0,475 0,778 0,778 0,778 0,824 0,833 

TPR(2) 0,684 0,684 0,684 0,684 0,684 0,684 0,684 0,684 0,684 0,868 

FPR(2) 0,184 0,184 0,184 0,184 0,184 0,14 0,14 0,114 0,079 0,193 

PPV(2) 0,553 0,553 0,553 0,553 0,553 0,619 0,619 0,667 0,743 0,6 

TPR(3) 0,842 0,842 0,842 0,842 0,842 0,842 0,842 0,842 0,842 0,658 

FPR(3) 0,246 0,246 0,246 0,246 0,246 0,193 0,193 0,167 0,14 0,053 

PPV(3) 0,533 0,533 0,533 0,533 0,533 0,593 0,593 0,627 0,667 0,806 

ACC 0,533 0,533 0,533 0,533 0,533 0,658 0,658 0,684 0,691 0,73 
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Table A5. Results of P (RF)-Ci(RF)-Pi(RF) and distributivity equation D5.

Distributivity Equation           D5 Classifiers’ Aggregation Method used P(RF)-Ci(RF)-Pi(RF) 
 

 ɛ=0,1 ɛ=0,2 ɛ=0,3 ɛ=0,4 ɛ=0,5 ɛ =0,6 ɛ =0,7 ɛ =0,8 ɛ =0,9 RAW DATA 

TPR(0) 0,368 0,632 0,842 1 1 1 1 1 1 0,868 

FPR(0) 0 0,009 0,044 0,105 0,149 0,193 0,254 0,316 0,482 0,061 

PPV(0) 1 0,96 0,865 0,76 0,691 0,633 0,567 0,514 0,409 0,825 

TPR(1) 0,763 0,763 0,763 0,684 0,684 0,658 0,605 0,474 0,289 0,763 

FPR(1) 0,175 0,132 0,079 0,035 0,009 0 0 0 0 0,07 

PPV(1) 0,592 0,659 0,763 0,867 0,963 1 1 1 1 0,784 

TPR(2) 0,868 0,868 0,868 0,868 0,842 0,842 0,711 0,658 0,526 0,868 

FPR(2) 0,123 0,079 0,053 0,018 0,009 0 0 0 0 0,026 

PPV(2) 0,702 0,786 0,846 0,943 0,97 1 1 1 1 0,917 

TPR(3) 0,921 0,921 0,921 0,921 0,921 0,921 0,921 0,921 0,737 0,921 

FPR(3) 0,061 0,053 0,026 0,018 0,018 0 0 0 0 0,035 

PPV(3) 0,833 0,854 0,921 0,946 0,946 1 1 1 1 0,897 

ACC 0,73 0,796 0,849 0,868 0,862 0,855 0,809 0,763 0,638 0,855 

Table A6. Results of P (kNN)-Ci(MLP)-Pi(SVM) and distributivity equation D8.

Distributivity Equation           D8 Classifiers’ Aggregation Method used 
P(kNN)-Ci(MLP)-Pi(SVM) 

 ɛ=0,1 ɛ=0,2 ɛ=0,3 ɛ=0,4 ɛ=0,5 ɛ =0,6 ɛ =0,7 ɛ =0,8 ɛ =0,9 

TPR(0) 0,816 0,816 0,816 0,868 0,921 0,947 0,974 0,974 1 

FPR(0) 0 0,018 0,026 0,061 0,158 0,193 0,272 0,386 0,649 

PPV(0) 1 0,939 0,912 0,825 0,66 0,621 0,544 0,457 0,339 

TPR(1) 0,763 0,763 0,763 0,763 0,658 0,579 0,447 0,342 0,263 

FPR(1) 0,079 0,079 0,079 0,061 0,044 0,035 0,035 0,026 0,018 

PPV(1) 0,763 0,763 0,763 0,806 0,833 0,846 0,81 0,812 0,833 

TPR(2) 0,895 0,895 0,895 0,816 0,763 0,763 0,658 0,474 0,184 

FPR(2) 0,061 0,053 0,053 0,044 0,044 0,035 0,035 0,026 0,009 

PPV(2) 0,829 0,85 0,85 0,861 0,853 0,879 0,862 0,857 0,875 

TPR(3) 0,921 0,921 0,921 0,921 0,816 0,816 0,816 0,816 0,5 

FPR(3) 0,061 0,053 0,044 0,044 0,035 0,035 0,026 0,026 0,009 

PPV(3) 0,833 0,854 0,875 0,875 0,886 0,886 0,912 0,912 0,95 

ACC 0,849 0,849 0,849 0,842 0,789 0,776 0,724 0,651 0,487 

Table A7. Results of P (KNN)-Ci(SVM)-Pi(MLP) and distributivity equations D1, D8.

Distributivity Equations          D1, D8 Classifiers’ Aggregation Method used 
P(kNN)-Ci(SVM)-Pi(MLP) 

 ɛ=0,1 ɛ=0,2 ɛ=0,3 ɛ=0,4 ɛ=0,5 ɛ =0,6 ɛ =0,7 ɛ =0,8 ɛ =0,9 

TPR(0) 0,789 0,816 0,816 0,842 0,921 0,947 0,974 0,974 1 

FPR(0) 0,026 0,035 0,035 0,061 0,158 0,193 0,272 0,377 0,623 

PPV(0) 0,909 0,886 0,886 0,821 0,66 0,621 0,544 0,463 0,349 

TPR(1) 0,763 0,763 0,763 0,763 0,658 0,579 0,474 0,368 0,289 

FPR(1) 0,07 0,07 0,07 0,061 0,035 0,026 0,026 0,026 0,018 

PPV(1) 0,784 0,784 0,784 0,806 0,862 0,88 0,857 0,824 0,846 

TPR(2) 0,895 0,895 0,895 0,842 0,789 0,789 0,658 0,474 0,211 

FPR(2) 0,053 0,044 0,044 0,044 0,044 0,035 0,035 0,026 0,009 

PPV(2) 0,85 0,872 0,872 0,865 0,857 0,882 0,862 0,857 0,889 

TPR(3) 0,921 0,921 0,921 0,921 0,816 0,816 0,816 0,816 0,5 

FPR(3) 0,061 0,053 0,053 0,044 0,035 0,035 0,026 0,026 0,018 

PPV(3) 0,833 0,854 0,854 0,875 0,886 0,886 0,912 0,912 0,905 

ACC 0,842 0,849 0,849 0,842 0,796 0,783 0,73 0,658 0,5 
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Table A8. Results of P (MLP)-Ci(kNN)-Pi(SVM) and distributivity equation D5.

Distributivity Equation           D5 Classifiers’ Aggregation Method used 
P(MLP)-Ci(kNN)-Pi(SVM) 

 ɛ=0,1 ɛ=0,2 ɛ=0,3 ɛ=0,4 ɛ=0,5 ɛ =0,6 ɛ =0,7 ɛ =0,8 ɛ =0,9 

TPR(0) 0,868 0,868 0,895 0,895 0,895 0,921 0,947 0,974 1 

FPR(0) 0,018 0,018 0,018 0,079 0,123 0,246 0,526 0,833 0,982 

PPV(0) 0,943 0,943 0,944 0,791 0,708 0,556 0,375 0,28 0,253 

TPR(1) 0,395 0,395 0,395 0,395 0,368 0,289 0,132 0 0 

FPR(1) 0,07 0,07 0,061 0,061 0,061 0,061 0,009 0 0 

PPV(1) 0,652 0,652 0,682 0,682 0,667 0,611 0,833 0 0 

TPR(2) 0,842 0,842 0,842 0,842 0,842 0,842 0,658 0,263 0 

FPR(2) 0,298 0,298 0,298 0,289 0,289 0,211 0,123 0,053 0,018 

PPV(2) 0,485 0,485 0,485 0,492 0,492 0,571 0,641 0,625 0 

TPR(3) 0,5 0,5 0,5 0,395 0,289 0,289 0,211 0,079 0 

FPR(3) 0,079 0,079 0,079 0,061 0,061 0,035 0,026 0,009 0 

PPV(3) 0,679 0,679 0,679 0,682 0,611 0,733 0,727 0,75 0 

ACC 0,651 0,651 0,658 0,632 0,599 0,586 0,487 0,329 0,25 

Table A9. Results of P (MLP)-Ci(SVM)-Pi(kNN) and distributivity equations D6, D9, D10 .

Distributivity Equations          D6, D9, D10 Classifiers’ Aggregation Method used 
P(MPL)-Ci(SVM)-Pi(kNN) 

 ɛ=0,1 ɛ=0,2 ɛ=0,3 ɛ=0,4 ɛ=0,5 ɛ =0,6 ɛ =0,7 ɛ =0,8 ɛ =0,9 

TPR(0) 0,026 0,026 0,132 0,132 0,132 0,842 0,895 0,921 1 

FPR(0) 0 0 0 0 0 0,009 0,018 0,026 0,36 

PPV(0) 1 1 1 1 1 0,97 0,944 0,921 0,481 

TPR(1) 0,737 0,737 0,737 0,737 0,737 0,737 0,737 0,737 0,421 

FPR(1) 0,237 0,237 0,237 0,237 0,237 0,053 0,044 0,044 0,018 

PPV(1) 0,509 0,509 0,509 0,509 0,509 0,824 0,848 0,848 0,889 

TPR(2) 0,921 0,921 0,921 0,921 0,921 0,921 0,921 0,895 0,605 

FPR(2) 0,088 0,088 0,061 0,061 0,061 0,061 0,053 0,053 0,035 

PPV(2) 0,778 0,778 0,833 0,833 0,833 0,833 0,854 0,85 0,852 

TPR(3) 0,921 0,921 0,921 0,921 0,921 0,921 0,921 0,921 0,632 

FPR(3) 0,14 0,14 0,132 0,132 0,132 0,07 0,061 0,053 0,035 

PPV(3) 0,686 0,686 0,7 0,7 0,7 0,814 0,833 0,854 0,857 

ACC 0,651 0,651 0,678 0,678 0,678 0,855 0,868 0,868 0,664 

Table A10. Results of P (SVM)-Ci(kNN)-Pi(MLP) and distributivity equation D6.

Distributivity Equation           D6 Classifiers’ Aggregation Method used 
P(SVM)-Ci(kNN)-Pi(MPL) 

 ɛ=0,1 ɛ=0,2 ɛ=0,3 ɛ=0,4 ɛ=0,5 ɛ =0,6 ɛ =0,7 ɛ =0,8 ɛ =0,9 

TPR(0) 0 0 0,447 0,763 0,816 0,842 0,868 0,895 0,921 

FPR(0) 0 0 0,009 0,018 0,018 0,018 0,018 0,018 0,368 

PPV(0) 0 0 0,944 0,935 0,939 0,941 0,943 0,944 0,455 

TPR(1) 0,737 0,737 0,737 0,737 0,737 0,737 0,737 0,737 0,289 

FPR(1) 0,211 0,211 0,132 0,079 0,079 0,079 0,079 0,07 0,07 

PPV(1) 0,538 0,538 0,651 0,757 0,757 0,757 0,757 0,778 0,579 

TPR(2) 0,895 0,895 0,895 0,868 0,868 0,868 0,868 0,868 0,737 

FPR(2) 0,298 0,298 0,254 0,211 0,193 0,193 0,193 0,193 0,123 

PPV(2) 0,5 0,5 0,54 0,579 0,6 0,6 0,6 0,6 0,667 

TPR(3) 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,289 

FPR(3) 0,114 0,114 0,079 0,07 0,07 0,061 0,053 0,053 0,026 

PPV(3) 0,594 0,594 0,679 0,704 0,704 0,731 0,76 0,76 0,786 

ACC 0,533 0,533 0,645 0,717 0,73 0,737 0,743 0,75 0,559 
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Table A11. Results of P (SVM)-Ci(MLP)-Pi(kNN) and distributivity equation D1.

Distributivity Equation           D1 Classifiers’ Aggregation Method used 
P(SVM)-Ci(MPL)-Pi(kNN) 

 ɛ=0,1 ɛ=0,2 ɛ=0,3 ɛ=0,4 ɛ=0,5 ɛ =0,6 ɛ =0,7 ɛ =0,8 ɛ =0,9 

TPR(0) 0,895 0,895 0,921 0,947 0,974 1 1 1 1 

FPR(0) 0,026 0,044 0,167 0,289 0,307 0,465 0,605 0,833 0,939 

PPV(0) 0,919 0,872 0,648 0,522 0,514 0,418 0,355 0,286 0,262 

TPR(1) 0,737 0,737 0,658 0,5 0,5 0,211 0,132 0,026 0 

FPR(1) 0,061 0,061 0,044 0,035 0,026 0,018 0,018 0,018 0,009 

PPV(1) 0,8 0,8 0,833 0,826 0,864 0,8 0,714 0,333 0 

TPR(2) 0,868 0,816 0,658 0,658 0,658 0,553 0,368 0,105 0 

FPR(2) 0,053 0,053 0,053 0,053 0,035 0,026 0,026 0,018 0,009 

PPV(2) 0,846 0,838 0,806 0,806 0,862 0,875 0,824 0,667 0 

TPR(3) 0,921 0,921 0,842 0,632 0,632 0,632 0,474 0,211 0,132 

FPR(3) 0,053 0,053 0,044 0,044 0,044 0,026 0,026 0,018 0 

PPV(3) 0,854 0,854 0,865 0,828 0,828 0,889 0,857 0,8 1 

ACC 0,855 0,842 0,77 0,684 0,691 0,599 0,493 0,336 0,283 

Fig. A1. Results of P (kNN)-Ci(kNN)-Pi(kNN) and distributivity equation D4.

Fig. A2. Results of P (MLP)-Ci(MLP)-Pi(MLP) and distributivity equation D6.
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Fig. A3. Results of P (SVM)-Ci(SVM)-Pi(SVM) and distributivity equation D8.

Fig. A4. Results of P (NB)-Ci(NB)-Pi(NB) and distributivity equation D6.

Fig. A5. Results of P (RF)-Ci(RF)-Pi(RF) and distributivity equation D5.
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Fig. A6. Results of P (kNN)-Ci(MLP)-Pi(SVM) and distributivity equation D8.

Fig. A7. Results of P (kNN)-Ci(SVM)-Pi(MLP) and distributivity equation D8.

Fig. A8. Results of P (MLP)-Ci(kNN)-Pi(SVM) and distributivity equation D5.
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Fig. A9. Results of P (MLP)-Ci(SVM)-Pi(kNN) and distributivity equation D10.

Fig. A10. Results of P (SVM)-Ci(kNN)-Pi(MLP) and distributivity equation D6.

Fig. A11. Results of P (SVM)-Ci(MLP)-Pi(kNN) and distributivity equation D1.
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