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The work studies the well-known map-based model of neuronal dynamics introduced in 2007 by Courbage, Nekorkin and
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1. Introduction
Courbage et al. (2007) proposed the following
two-dimensional discrete neuron model:

xn+1 = f1(xn, yn)

= xn + F (xn)− yn − βH(xn − d), (1a)
yn+1 = f2(xn, yn) = yn + ε(xn − J). (1b)

The variables x and y stand, respectively, for the
membrane potential of the neuron and the so-called
recovery variable, aggregating the dynamics of all
outward ionic currents (xn and yn describe the values
of x and y, respectively, at consecutive time instances).
Parameter J can be considered as a constant external
stimulus and ε > 0 sets the time scale of the recovery
variable. Parameters β > 0 and d > 0, in turn, control the
threshold properties of oscillations. The function H(x) is
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the usual Heaviside step function:

H(x) =

{
1 if x ≥ 0,
0 if x < 0,

and F (x) is a piecewise linear continuous function
defined as follows:

F (x) =

⎧⎪⎨
⎪⎩
−m0x if x ≤ Jmin,

m1(x− a) if Jmin ≤ x ≤ Jmax,

−m0(x − 1) if x ≥ Jmax,

(2)

where m0,m1 > 0, 1 > a > 0, Jmin = am1/(m0 +m1)
and Jmax = (m0 + am1)/(m0 +m1).

The following assumptions are considered: m0 < 1

and hence det ∂(f1,f2)
∂(x,y) = 1 + F ′(x) + ε > 0 for any

ε ≥ 0, which guarantees the map to be one to one; lastly,
the region of study is restricted to 0 < J < d, Jmin < d <
Jmax resulting in F ′(d) > 0 that is crucial in order to form
chaotic behavior of the map.
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It may be worth pointing out that in the later
alternative version of the model (Courbage and Nekorkin,
2010), the piecewise linear function F is replaced with a
cubic-shape function (e.g., F (x) = x(x − a)(1 − x)). It
is due to the fact that the model is actually based on the
FitzHugh–Nagumo model (FitzHugh, 1955) given by two
ODEs with a third-degree polynomial in the first equation.
The Courbage–Nekorkin–Vdovin (CNV for short) model
is an example of so-called map-based (or discrete) models
since it is given by the iterates of some map f : R2 → R

2,
f(x, y) = (f1(x, y), f2(x, y)) (see also the review articles
by Courbage and Nekorkin (2010) or Ibarz et al. (2011)).

The CNV model appeared in many theoretical
and data-based later studies. Its relative simplicity
makes it possible to analytically or partially analytically
study small ensembles of interacting neurons when each
neuron is modelled by the CNV system. For instance,
Courbage et al. (2012) consider two-interacting neurons
of the type 1. However, such small networks can also
represent larger ensembles of neurons with synchronized
subpopulations as in the modelling of respiratory neural
networks, reproducing some key experimental findings.
See, for example, the work of Hess et al. (2013), where
a mathematical model of respiratory rhytmogenesis is
studied with the use of the piecewise linear CNV model
refined to incorporate post-inhibitory rebound bursting
oscillations.

One of the prominent applications of the CNV
model in medical sciences is the work of Yu et al.
(2016) on examining and modelling the interplay between
the brainstem automatic network and cortical voluntary
command on controlling the breathing process, relevant
in numerous respiratory diseases, including the chronic
obstructive pulmonary disease. In this study hypotheses
drawn from the functional MRI imaging of patients
were mathematically validated on the model of a neural
network with the piecewise linear CNV model for each
neural cluster. In turn, the work by Maslennikov
and Nekorkin (2012) builds a discrete model of the
olivo-cerebellar system based on the CNV model with
cubic F (x).

Apart from numerous applications, the model
is still very challenging and attractive for analytical
studies. In particular, Maslennikov and Nekorkin (2013)
analyze the boundary crisis and transient chaos in the
one-dimensional model (1a) with the cubic function F (x)
and a slowly varying control parameter yn: yn+1 = yn+ε.
Transient chaos in a version of the one-dimensional model
with periodic forcing is described by Maslennikov et al.
(2018). In turn Yue et al. (2017) study a two-dimensional
piecewise linear model with time-varying (pulse) external
stimulus and claim that the CNV model could capture
fundamental behaviours of the information processing of
most conductance-based models.

For system (1), it turns out that the map describing

the dynamics of the voltage variable x while the second
variable y is kept constant (which we denote later by
g in (6)) is a Lorenz-like map for a large range of
parameter values of interest. Therefore, the first sections
of the paper recall and develop some essential results on
Lorenz-like maps which will be further applied directly
to this model and its one-dimensional reduction. This
shows how advanced results in discrete low-dimensional
dynamical systems might be used for studying map-based
neuron models. Another example in this vein is our
recent work (Llovera-Trujillo et al., 2023) on the Chialvo
model which takes advantage of the theory of S-unimodal
interval maps.

Apart from understanding and modelling biological
neurons, another important field of research which
develops rapidly in recent decades are artificial neural
networks where the dynamics of single neurons is simple
but the architecture of the network allows us to solve
complex computational tasks and model dynamics of real
systems (Korbicz et al., 1999; Patan et al., 2008).

The paper is organized as follows. Sections 2 and 3
contain basic definitions and facts on Lorenz maps and
rotation theory. In turn, in Section 4 we present key
properties of finite unions of periodic orbits. Sections 5
and 6 are devoted to the study of chaotic properties of
Lorenz maps and β-transformations. In Section 7 we
introduce the one-dimensional CNV model. Our main
results concerning the plCNV model (piecewise linear
case) are stated and proved in Sections 8. Finally,
Sections 9 and 10 contain interpretation of our results in
terms of spiking patterns and implications of the model
for neuron behaviour.

2. Lorenz-like and expanding Lorenz maps
2.1. Chaos and its components. Let (X, d) be a
compact metric space and f : X → X a function (not
necessarily continuous). As the condition will recur,
a set U ⊂ X will be called opene when it is open and
nonempty. Recall that f is called

• transitive if for every two opene sets U, V ⊂ X there
is n ∈ N such that fn(U) ∩ V �= ∅,

• mixing if for every two opene sets U, V ⊂ X there is
N ∈ N such that for every n ≥ N we have fn(U) ∩
V �= ∅,

• sensitive if there exists δ > 0 such that for every
x ∈ X and every neighbourhoodU of x, there exists
y ∈ U and n ∈ N such that d(fn(x), fn(y)) > δ,

• expansive if there exists δ > 0 such that for any
x, y ∈ X , x �= y, there exists n ∈ N such that
d(fn(x), fn(y)) > δ.

Remark 1. By definition, mixing implies transitivity and
expansiveness implies sensitivity.
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A function f : X → X is called chaotic in the sense
of Devaney on X if

1. f is transitive,

2. the set of periodic points of f is dense in X ,

3. f is sensitive.

For notational simplicity, we will formulate the
definitions and results below for the unit interval [0, 1].
However, all definitions make sense and all results still
hold if we replace the unit interval by [a, b] for fixed a
and b. Namely, consider the linear change of variables
(conjugacy)h : [0, 1] → [a, b] given by h(t) = a+t(b−a)

and define f̃ using the following diagram:

[0, 1]
f−−−−→ [0, 1]

h

⏐⏐	 ⏐⏐	h

[a, b]
˜f−−−−→ [a, b]

(3)

Note that the condition f(t) = x translates to
f̃(h(t)) = h(x). Moreover, f ′(t) = f̃ ′(h(t)) if f is
differentiable at t ∈ [0, 1] and, in consequence, both
monotonicity and slope are preserved by h. Finally,
if f is a Lorenz-like map (expanding Lorenz map,
β-transformation) according to the definitions given
below then so is f̃ and vice versa.

2.2. Topological entropy. For a piecewise continuous
piecewise monotone map f : [0, 1] → [0, 1] we usually
define topological entropy using the formula

h(f) = lim
n→∞

1

n
ln cn(f),

where cn(f) denotes the number of laps of fn. Recall
that the lap of f is the maximal interval, on which f is
simultaneously monotone and continuous.

2.3. Lorenz-like maps. A Lorenz-like map is a map f
of an interval [0, 1] to itself, for which there exists a point
c ∈ (0, 1) such that

• f is continuous and increasing (not necessarily
strictly) on [0, c) and on (c, 1],

• limx→c− f(x) = 1 and limx→c+ f(x) = f(c) = 0.

Set IL = [0, c) and IR = [c, 1]. If f(0) > f(1), that
is, f(IL) ∩ f(IR) = ∅, the Lorenz-like map f is called
nonoverlapping. If f(0) ≤ f(1), that is, f(IL)∩f(IR) �=
∅, the map is called overlapping.

2.4. Expanding Lorenz maps. An expanding Lorenz
map is a map f : [0, 1] → [0, 1] satisfying the following
three conditions:

• there is a critical point c ∈ (0, 1) such that f is
continuous and strictly increasing on [0, c) and (c, 1],

• limx→c− f(x) = 1 and limx→c+ f(x) = f(c) = 0,

• f is differentiable for all points not belonging
to a finite set Ω ⊂ [0, 1] and such that
inf {f ′(x) | x ∈ [0, 1] \ Ω} > 1.

By definition, expanding Lorenz maps are overlapping
Lorenz-like. Moreover, the assumption on the derivative
yields expansiveness.

Proposition 1. Every expanding Lorenz map is expansive.

Proof. Let f be an expanding Lorenz map and β =
inf {f ′(x) | x ∈ [0, 1] \ Ω} > 1. By definition, there
exists δ1 > 0 such that f(x) > 2/3 for all x ∈ [c− δ1, c)
and f(x) < 1/3 for all x ∈ [c, c + δ1]. Let δ =
min{1/3, δ1}. Assume that x �= y and |x− y| < δ. Now
suppose, contrary to our claim, that for all n ∈ N we have

dn := |fn(x) − fn(y)| ≤ δ. (4)

Consider two cases:

• If fn(x), fn(y) ∈ IL or fn(x), fn(y) ∈ IR for
all n ∈ N, then, by the mean value theorem, dn ≥
βdn−1 ≥ βn |x− y|, which contradicts (4).

• If fn(x) ∈ IL and fn(y) ∈ IR for some
n ∈ N (or vice versa), then fn(x) ∈
[c − δ1, c) and fn(x) ∈ [c, c + δ1] and, in
consequence,

∣∣fn+1(x)− fn+1(y)
∣∣ > 1/3, which

also contradicts (4). �

3. Rotation number and interval
In this and the next section we mainly recall essential
definitions and results of Geller and Misiurewicz (2018),
which we will use in our analysis of the CNV model. Let
f be a Lorenz-like map.

Definition 1. For a point x ∈ [0, 1] and a positive integer
n we will denote by R(x, n) the number of integers i ∈
{0, . . . , n− 1} such that f i(x) ∈ IR. If the limit

ρ(x) = lim
n→∞

R(x, n)

n

exists, we will call it the rotation number of x.

Remark 2. By definition, 0 ≤ ρ(x) ≤ 1 if it exists.
Observe that it is extremely easy to compute the

rotation number of a periodic point.

Proposition 2. If x is a periodic point of f of period p
then ρ(x) exists and is equal to R(x, p)/p.
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The following classical result characterizes the
uniqueness of the pointwise rotation number.

Theorem 1. (Rhodes–Thompson) If f(0) ≥ f(1) (in par-
ticular, if the map is nonoverlapping), then all points have
the same rotation number.

In that case we will denote it by ρ(f).
Let f be a Lorenz-like map. If t ∈ f(IL) ∩ f(IR),

then we define the water map at level t by

ft(x) =

{
max(t, f(x)) if x ∈ IL,

min(t, f(x)) if x ∈ IR.

It is obvious that this map is also Lorenz-like and ft(0) =
ft(1). Consequently, for fixed t, all points have the
same rotation number ρ(ft) for it. It is known that
ρ(ft) is an increasing continuous function of t, and if
f(0) ≤ f(1), then the set of rotation numbers for
f of all points having rotation number is equal to the
interval

[
ρ(ff(0)), ρ(ff(1))

]
(for details, see, e.g., Alsedà

et al., 1989). We will call it the rotation interval of f and
denote it by Rot(f).

4. Finite unions of periodic orbits and
Farey–Lorenz permutations

Let f be a Lorenz-like map. Below we summarize
important properties of Farey–Lorenz permutations that
allow us to deduce about the existence of periodic orbits
with given itineraries. By the itinerary of a periodic orbit
{x, f(x), . . . , f q−1(x)} we mean a sequence of symbols
L and R of length q such that the i-th element of this
sequence (i = 1, . . . , q) is L if f i(x) ∈ IL and R
otherwise (the sequence is given up to cyclic permutation).
Proofs of Proposition 3 as well as Theorems 2 and 3 can
be found in the work of Geller and Misiurewicz (2018).

4.1. Finite unions of periodic orbits (fupos). A finite
union of periodic orbits of f is called, by acronym, a fupo.
For each fupo we will consider its permutation, that is, if
a fupo P consists of points x1 < · · · < xn, and f(xi) =
xσ(i) for i = 1, . . . , n, then σ is the permutation of P .

4.2. L-permutations. Permutations of fupos of
Lorenz-like maps have a specific form. Namely, if
a fupo has n > 1 elements, then there exists k ∈
{1, . . . , n−1} such that σ is increasing on {1, . . . , k} and
on {k + 1, . . . , n}. We will call such permutations (and
the permutation of {1}) L-permutations. If our fupo is a
periodic orbit, then its rotation number is (n− k)/n.

For every L-permutation σ there exists a Lorenz-like
map f with the fupo P such that P has permutation σ.
A canonical model can be built as the “connect the
dots” map with the dots being the points (x, f(x)) with
coordinates as in Table 1.

Among L-permutations there are some special ones,
which look like cyclic permutations for circle rotations.
A cyclic L-permutation σ of {1, . . . , n} will be called a
twist permutation if σ(1) > σ(n). Similarly, a periodic
orbit with such a permutation will be called a twist orbit.
It is easy to describe explicitly a twist permutation of
{1, . . . , n} with rotation number j/n. Namely,

σ(i) = i+ j mod n.

4.3. Farey–Lorenz permutations. An L-permutation
σ of {1, . . . , p+q} will be called a Farey–Lorenz permuta-
tion (or FL-permutation) if σ consists of two cycles, both
of them twist, of period p and q, with rotation numbers
a/p and b/q respectively, and a/p < b/q are Farey
neighbours, that is, bp = aq+1. An example of a fupo of
FL-type (similar to those occurring in the plCNV model)
is presented in Fig. 1.

Let us assume that σ is an FL-permutation with
cycles of rotation numbers a/p and b/q, where a/p < b/q
are Farey neighbours and p < q. We will call those
cycles slow and fast, respectively. Note that (Geller and
Misiurewicz, 2018):

• the slow cycle contains 1, and the fast cycle contains
p+ q,

• the fast cycle contains 2.

We will refer to P as the slow orbit and Q as the fast orbit.
Let the points of P be x1 < x2 < · · · < xp and the points
of Q, y1 < y2 < · · · < yq. Write J1 = [x1, y1] and
Jj = [yj−1, yj] for j = 2, . . . , q.

Proposition 3. With the notation we adopted,

f(xi) = xi+a mod p and f(yj) = yj+b mod q.

The relative order of the points of the orbits P and Q
is given by the following rule: x1 < y1; then for i =
1, . . . , p − 1, if j = 1 + ia mod p and l = ib mod q,
then yl−1 < xj < yl.

Theorem 2. Let g be a Lorenz-like map. If a number r/s
is in the rotation interval of g, and r, s are coprime, then g
has a twist periodic orbit of period s and rotation number
r/s.

Proposition 4. If g is an expanding Lorenz map and S is a
periodic L-R sequence, then there is at most one periodic
orbit with itinerary S.

Proof. Assume we have two distinct q-periodic orbits
{x1 < · · · < xq} and {y1 < · · · < yq} with the
same itinerary. Hence, by the mean value theorem,
|f q(x1)− f q(y1)| > |x1 − y1|, a contradiction. �
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Table 1. “Connect the dots” map.

x 0 1
n+1 · · · k

n+1

k+ 1
2

n+1

k+ 1
2

n+1
k+1
n+1 · · · n

n+1 1

f(x) σ(1)
n+1

σ(1)
n+1 · · · σ(k)

n+1 1 0 σ(k+1)
n+1 · · · σ(n)

n+1
σ(n)
n+1
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Fig. 1. Fupo of FL-type
(
2
5
< 3

7

)
.

Corollary 1. If g is an expanding Lorenz map and r/s is
in the rotation interval of g (r and s coprime) then there
is only one twist periodic orbit with rotation number r/s.

Corollary 2. If g is an expanding Lorenz map, then there
is at most

(
q
p

)
/q periodic orbits with rotation number p/q

(q, p coprime).
Theorem 3 below follows from Theorem 2 of Geller

and Misiurewicz (2018) and considerations in the second
paragraph of Section 5 therein.

Theorem 3. Let g be a Lorenz-like map. Assume that
the rotation interval of g contains the interval [a/p, b/q],
where a/p < b/q are Farey neighbours, and p < q.
Then g has a twist periodic P orbit of period p and ro-
tation number a/p and a twist periodic orbit Q of period
q and rotation number b/q. The union of these orbits
forms a fupo with the FL-permutation. Moreover, there
exist periodic orbits with itineraries being concatenations
of finitely many periodic itineraries (starting at x1 or y1)
of P and Q.

5. Lorenz maps and chaos
We say that a map f : [0, 1] → [0, 1] is strongly transitive
if for every nonempty open subinterval J ⊂ (0, 1) there

exists n ∈ N such that
⋃n

i=0 f
n(J) ⊃ (0, 1). Note that

strong transitivity implies transitivity.
The following three results, which are essential for

our considerations, can be found in the work of Oprocha
et al. (2019, Thms. 4.5, 4.6, 4.7, 4.8), Kameyama (2002,
Thm. 3) or Afraimovich and Hsu (2002, Thm. 3.1.1),
respectively. Let

f1(x) =
√
2x+

2−√
2

2
(mod 1),

f2(x) =
3
√
2x+

2 + 3
√
4− 2 3

√
2

2
(mod 1),

f3(x) =
3
√
2x+

2− 3
√
4

2
(mod 1).

for x ∈ [0, 1].

Theorem 4. Let f be an expanding Lorenz map and β =
inf {f ′(x) | x ∈ [0, 1] \ Ω}. If

•
√
2 ≤ β ≤ 2 and f �= f1 or

• 3
√
2 ≤ β <

√
2 and f(0) ≥ 1

1+β and f �= f2 or

• 3
√
2 ≤ β <

√
2 and f(1) ≤ 1− 1

1+β and f �= f3,

then f is mixing. Moreover, the maps f1, f2 and f3 are
transitive but not mixing.

Theorem 5. Assume that f : [0, 1] → [0, 1] is piecewise
continuous piecewise strictly monotone. If f is transitive
then it is strongly transitive.

Theorem 6. If an expanding Lorenz map is strongly tran-
sitive then the set of its periodic points is dense in [0, 1].

Remark 3. Theorem 6 has been originally formulated for
the so-called Lorenz-type maps, but it is easy to check that
expanding Lorenz maps are also Lorenz-type.

It is well known that for continuous maps on intervals
transitivity implies chaos. As we see below, a similar
result holds for expanding Lorenz maps.

Proposition 5. An expanding Lorenz map is transitive if
and only if it is chaotic in the sense of Devaney on [0, 1].

Proof. Chaos obviously implies transitivity, so we
only need to show the opposite implication. By
Theorem 5, each transitive expanding Lorenz map is
strongly transitive. Hence, by Theorem 6, the set of its
periodic points is dense in [0, 1]. It remains to prove
the sensitive dependence on initials conditions, but, by
Proposition 1, our map is even expansive. �
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The following result provides a sufficient condition
for Devaney’s chaos for expanding Lorenz maps.

Theorem 7. Let f be an expanding Lorenz map and
β = inf {f ′(x) | x ∈ [0, 1] \ Ω}. If one of the following
conditions is satisfied:

(i)
√
2 ≤ β ≤ 2,

(ii) 3
√
2 ≤ β <

√
2 and f(0) ≥ 1

1+β ,

(iii) 3
√
2 ≤ β <

√
2 and f(1) ≤ 1− 1

1+β ,

then f is chaotic in the sense of Devaney on the interval
[0, 1]. Moreover,

• f is strongly transitive and expansive,

• if f �= f1 and f �= f2 and f �= f3 then f is mixing.

Proof. It is an immediate consequence of Theorem 4 and
Proposition 5. Strong transitivity and expansiveness can
be concluded from the proof of Proposition 5. �

6. β-transformations
6.1. Definition. Let 1 < β ≤ 2, α ≥ 0 and α+ β ≤ 2.
The map T : [0, 1] → [0, 1] of the form

T (x) = βx + α (mod 1)

is called a β-transformation.

Remark 4. Every β-transformation has a point of
discontinuity at c = (1 − α)/β and T (c) = 0.
Moreover, T (0) = α and T (1) = α + β − 1. Note
that β-transformations are expanding Lorenz maps and
Lorenz-like of a constant slope.

6.2. Acip. Here we summarize some metric
(measure-theoretic) properties of β-transformations from
Theorem 3 of Hofbauer (1979) and Theorem 2 of
Hofbauer (1981).

Theorem 8. The β-transformation T has topological en-
tropy h(T ) = lnβ and unique T -invariant probability
measure (acip for short) μ with maximal entropy, i.e., such
that the metric entropy hμ(T ) is equal to the topological
entropy h(T ). The measure μ is absolutely continuous
with respect to Lebesgue measure. The density of μ is
given by the formula

K
∞∑

n=0

β−n
(
χ[0,Tn(1)](x) − χ[0,Tn(0)](x)

)
,

where K is a normalizing factor. Moreover, the support of
μ is a finite union of intervals and it is the whole interval
[0, 1] if

(i)
√
2 ≤ β ≤ 2 or

(ii) 1 < β <
√
2 and 0 ≤ α ≤ 1− 1/β or

(iii) 1 < β <
√
2 and 1− β + 1/β ≤ α ≤ 2− β.

Remark 5. Assume 1 < β ≤ 2. Observe that the acip μ
of T is equivalent to the Lebesgue measure if and only if
supp(μ) = [0, 1] (see the proof of Lemma 4.1 in the work
of Ding et al. (2010)). Moreover, Parry (1979) proved that
if 1 < β <

√
2 and c = 1/2 (or equivalentlyα = 1−β/2)

then μ is not equivalent to the Lebesgue measure. Since
the measure μ is unique, the β-transformationT is ergodic
with respect to μ, i.e., if T−1B = B for some Borel set
B ⊂ [0, 1] then μ(B) = 0 or μ(B) = 1. Under some
assumptions on β and α, the transformation T has even
stronger metric properties (for details, see Palmer, 1979),
but we will not study and use them in this paper.

6.3. Transitivity and chaos. The following result by
Ding et al. (2010, Lem. 4.1.) provides a nice metric
characterization of topological transitivity.

Proposition 6. Let 1 < β ≤ 2 and μ be the acip of the
β-transformation T . Then T is transitive if and only if
supp(μ) = [0, 1].

The following result concerning β-transformations
of Oprocha et al. (2019, Thm. 7.1.) corresponds to
Theorem 4 proven by the same authors for expanding
Lorenz maps. However, it is worth pointing out that
Theorem 4 gives a sufficient condition for mixing in a
broader class of functions (expanding Lorenz maps) while
Theorem 9 gives a necessary and sufficient condition for
mixing in a narrower class (β-transformations).

Theorem 9. Let T be a β-transformation and 3
√
2 ≤ β ≤

2. Then T is mixing if and only if one of the following
conditions is satisfied:

•
√
2 ≤ β ≤ 2 and f �= f1 or

• 3
√
2 ≤ β <

√
2 and (α < 1

β(1+β) or 2−β− 1
β(1+β) <

α) and f �= f2 and f �= f3.

Let us present the complete characterization of chaos
parameters for β-transformations in the parameter region
3
√
2 ≤ β ≤ 2 and 0 ≤ α ≤ 2− β.

Theorem 10. Assume that T is a β-transformation and
3
√
2 ≤ β ≤ 2. Then T is chaotic in the sense of Devaney

on the interval [0, 1] if and only if one of the following
conditions is satisfied:

(i)
√
2 ≤ β ≤ 2,

(ii) 3
√
2 ≤ β <

√
2 and (α < 1

β(1+β) or 2 − β −
1

β(1+β) < α).

Moreover, under these assumptions

• T is strongly transitive and expansive,

• if T �= f1, T �= f2 and T �= f3 then T is mixing.
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Proof. Our claim can be shown in the same manner
as Theorem 7 using Theorem 4, Proposition 5 and
Theorem 9. �

In the case 1 < β < 3
√
2 we can formulate a

sufficient condition for chaos for β-transformations.

Theorem 11. Let T be a β-transformation with 1 < β <
3
√
2. Then T is chaotic in the sense of Devaney on the

interval [0, 1] if

• 0 ≤ α ≤ 1− 1/β or

• 1− β + 1/β ≤ α ≤ 2− β.

Proof. By Theorem 8, our assumptions guarantee that
supp(μ) = [0, 1], which is equivalent to transitivity of T
from Proposition 6. Finally, by Proposition 5, transitivity
implies chaos. �

6.4. Fixed and periodic points. The simplicity of
the formula defining β-transformation allows us to easily
derive the following two results concerning fixed points
and 2-periodic orbits.

Lemma 1. β-transformation T (x) admits fixed points
only when α = 0 or when α + β = 2. In the first case,
i.e., α = 0, there is a fixed point xf1 = 0 and the ro-
tation interval Rot(T ) contains 0. In the second case,
α + β = 2, there is a fixed point xf2 = 1 and the rota-
tion interval contains 1. In particular, Rot(T ) = [0, 1]
only when α = 0 and β = 2, in which case T (x) = 2x
(mod 1) is a standard chaotic dyadic transformation.

The above lemma is a simple observation and does
not require a proof. On the other hand, some short
calculations lead to the following result.

Lemma 2. Suppose that α > 0 and α+ β < 2. If

β̃ < β < min
{
2− α,

1− α

α

}
, (5)

where

β̃ :=
1− α+

√
(α− 1)(α− 5)

2
,

then T admits a 2-periodic orbit and 2 is minimal among
periods of periodic points of T . In particular, under these
assumptions 1/2 ∈ Rot(T ) and {0, 1} ∩ Rot(T ) = ∅.

Proof. Note that the requirements β < (1 − α)/α and
1 < β imply that α < 1/2 and consequently, that β̃ > 1.
Further, under these conditions none of the points 0, c and
1 acts as a fixed point of T and thus the map T does not
have fixed points. If suffices to show that under (5) there
exists a period-two point z ∈ (0, c), i.e.,

0 < z < c and T 2(z) = z,

which is equivalent to

0 < z <
1− α

β
and β2z + βα+ α− 1 = z.
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Fig. 2. Plot of the plCNV function and the invariant interval.

Solving the last equality for z gives

z :=
1

β − 1

( 1

β + 1
− α

)
.

Now, it remains to solve with respect to β the following
double inequality

0 <
1

β − 1

( 1

β + 1
− α

)
<

1− α

β
.

As β > 1, this yields

β <
1− α

α
and β2 + β(α − 1) + α− 1 > 0.

The first inequality gives the upper bound for β in (5). On
the other hand, since the discriminant Δ = (α − 1)(α −
5) in the second inequality is positive, this inequality is
satisfied (considering the assumption β > 1) if

β >
1− α+

√
(α− 1)(α− 5)

2
.

�
We have now obtained a picture of periodic and

chaotic properties for Lorenz maps. At the end of
this theoretical part, let us mention that in their recent
works Cholewa and Oprocha (2021a; 2021b) developed
the theory of limit sets and renormalization for Lorenz
maps.

7. One-dimensional
Courbage–Nekorkin–Vdovin model

Now we will analyze more closely the 1D CNV model.
When the variable y = y0 is assumed to be constant, 0 <
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J < d and Jmin < d < Jmax, the CNV model can be
reduced to a one-dimensional map g : R → R given by

g(x) = x+ F (x) − y0 − βH(x − d). (6)

In general, in the above function we will vary the
parameters β and/or y0 keeping all other parameters fixed.
One can consider two versions of the 1D CNV model:

• a piecewise linear case (plCNV for short), when F is
defined by Eqn. (2),

• a nonlinear case (nlCNV for short), when F (x) =
μx(x − a)(1− x) with 0 < a < 1 and μ ≥ 1.

Observe that in both the cases the function g is
discontinuous at d and the plot of F has the shape of
the upside down reversed N letter. Moreover, both maps
exhibit quite similar dynamics. For that reason we will
mainly focus on the piecewise linear map.

Let us have a more detailed look at the 1D plCNV
model, which is our main object of interest in this paper.
Note that in the piecewise linear case the map g can be
re-written explicitly as

g(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(1−m0)x− y0 if x ≤ Jmin,

qx− y0 − am1 if Jmin < x < d,

qx− y0 − am1 − β if d ≤ x ≤ Jmax,

(1−m0)x− y0 +m0 − β if x ≥ Jmax,

where q = 1 +m1. Recall that Jmin = am1/(m0 +m1)
and Jmax = (m0 + am1)/(m0 + m1). Let us assume
that the parameters a, d,m0,m1 are fixed and satisfy the
following conditions:

1. 0 < a < 1,

2. Jmin < d < Jmax,

3. 0 < m0 < 1,

4. 0 < m1 ≤ 1.

The first condition means that a is a zero of F , which
lies between Jmin and Jmax. The second one means that
the discontinuity point of g also lies between these two
points. The third and fourth conditions guarantee that two
of the four possible fixed points of g are stable while the
other two are unstable (if they exist). An illustrative plot
of the function g involved in the plCNV model is provided
in Fig. 2.

8. Periodicity and chaos in the 1D plCNV
model

The main goal of this section is to study the dynamics of
the plCNV map in the parameter plane (β, y0). We work
with the assumptions from Section 7. However, the further
restriction of the parameter region allows us to obtain
interesting dynamical properties of the plCNV map.
Namely, we list the following additional assumptions:

Assumption A1: β > β0 = F (Jmax)− F (Jmin),

Assumption A2: β ≤ β1 = min{Jmax − d, d− Jmin},

Assumption A3: y0 > F (d)− β,

Assumption A4: y0 < F (d),

Assumption A5: y0 ≥ F (d)− β/q,

Assumption A6: y0 ≤ F (d)− β(q − 1)/q,

Assumption A7: y0 > F (Jmin),

Assumption A8: y0 < F (Jmax)− β.

Let us explain thoroughly the geometric meaning of these
assumptions. A special role in our considerations is
played by an interval I = [b, c] ⊂ R, where

b = lim
x→d+

g(x) = g(d) = qd− y0 − am1 − β,

c = lim
x→d−

g(x) = qd− y0 − am1.

Note that if β is positive then I is well defined and its
length is equal to β.

Assumption A1 guarantees that β > 0 and that for a
fixed β satisfying this condition there is a nonempty open
interval (F (Jmax)− β, F (Jmin)) of values of y0 for which
the map g has no fixed points.

Assumption A3 reads b < d and Assumption A4
reads d < c, so they both imply that the discontinuity
point d lies inside [b, c]. Assume for a moment that
Assumptions A3 and A4 hold. Now Assumption A2
implies that Jmin ≤ b and Jmax ≥ c. Namely, then
d − b ≤ c − b = β ≤ d − Jmin and, in consequence,
Jmin ≤ b. Similarly, we justify that Jmax ≥ c. This means
that g restricted to [b, c] is a constant slope map with the
slope q.

Observe that, by the definitions of b and c, the
interval [b, c] is invariant, i.e., g

(
[b, c]

)
= [b, c] if and only

if g(b) ≥ b and g(c) ≤ c. This is true if Assumptions
A2–A6 are satisfied. Namely, then g(b) − b = g(b) −
g(d) = q(b − d) + β = q(F (d) − y0 − β(q − 1)/q) ≥ 0
and, analogously, g(c)− c = q(F (d) − y0 − β/q) ≤ 0.

Furthermore, Assumption A5 (resp. A6) means that
an unstable fixed point on the right (resp., left) branch
of the plot of g is outside the interval [b, c]. Finally,
Assumptions A7 and A8 are related to the existence of
a stable fixed point for g (see Theorem 12 below).

The following summary result is an immediate
consequence of the above considerations and simple
calculations.

Theorem 12. (Fixed points)

• Under Assumption A7 g has a stable fixed point xls =
−y0/m0 on the left branch of the plot.

• Under Assumption A4 and A7 g has an unstable fixed
point xlu = a+ y0/m1 on the left branch of the plot.
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• Under Assumption A8 g has a stable fixed point xrs =
1− (y0 + β)/m0 on the right branch of the plot.

• Under Assumptions A3 and A8 g has an unstable
fixed point xru = a+(y0+β)/m1 on the right branch
of the plot.

• Under Assumption F (Jmax) − β < y0 < F (Jmin),
g has no fixed points in R.

Remark 6. Moreover, observe that

• the existence of an unstable fixed point always
implies the existence of a stable fixed point for g;

• if Assumption A1 is met, then the fixed points on the
left branch of the plot of g cannot coexist with the
fixed points on the right branch of the plot;

• if y0 = F (Jmin) (resp. y0 = F (Jmax) − β) then
Jmin (resp. Jmax) is a semistable fixed point and a
fold bifurcation occurs at this parameter value;

• if y0 = F (d)−β/q (resp. y0 = F (d)−β(q − 1)/q)
then the unstable fixed point on right (resp. left)
branch of the plot coincides with the right (resp. left)
end of the interval [b, c].
For the rest of this section we make Assumptions

A1–A6. Let G denote g restricted to [b, c]. Observe
that G governs the dynamics of the 1D plCNV on the
invariant interval [b, c]. The next proposition is an easy
consequence of our assumptions.

Proposition 7. (β-transformation) The map G : [b, c] →
[b, c]

• is a well-defined β-transformation with slope q and
point of discontinuity d,

• has no fixed points in (b, c).

Figure 3 presents a plot of the map G for the
following choice of parameters in the plCNV model: a =
0.2, d = 0.4, m0 = 0.864, m1 = 0.65, β = 0.35 and
y0 = −0.05. These parameter values are exemplary but
in the range considered by Courbage et al. (2007).

Now let us formulate the main results, which explain
the behaviour of the 1D plCNV model in the invariant
interval [b, c]. Recall that, by definition, G(b) = qb −
y0 − am1 and G(c) = qc − y0 − am1 − β. Our first
result provides the conditions for Devaney’s chaos in the
1D plCNV model.

Theorem 13. (Chaos)

1. Assume that 3
√
2 ≤ q ≤ 2. Then G is chaotic in the

sense of Devaney on the interval [b, c] if and only if
one of the following conditions is satisfied:

(i)
√
2 ≤ q ≤ 2,

(ii) 3
√
2 ≤ q <

√
2 and (G(b) < b + c−b

q(1+q) or

c− c−b
q(1+q) < G(c)).

0.25 0.3 0.35 0.4 0.45 0.5 0.55

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Fig. 3. Restriction of the plCNV function as a β-transformation.

2. Assume that 1 < q < 3
√
2. Then G is chaotic in the

sense of Devaney on the interval [b, c] if one of the
following conditions is satisfied:

(i) G(b) ≤ c− c−b
q ,

(ii) b+ c−b
q ≤ G(c).

Proof. Theorem 10 implies (1). Similarly, Theorem 11
implies (2). �

The next result summarizes the metric properties of
the restricted 1D plCNV model.

Theorem 14. (acip) The map G has topological entropy
h(G) = ln q and unique G-invariant probability measure
μ with maximal entropy. The measure μ is absolutely con-
tinuous with respect to the Lebesgue measure. Moreover,
the support of μ is a finite union of intervals and it is the
whole interval [b, c], which means that μ is equivalent to
the Lebesgue measure, if

(i)
√
2 ≤ q ≤ 2 or

(ii) 1 < q <
√
2 and G(b) ≤ c− c−b

q or

(iii) 1 < q <
√
2 and b+ c−b

q ≤ G(c).
Proof. It is an immediate consequence of Theorem 8. �

Finally, the parameter regions of the existence and
stability of fixed points and chaos are depicted in Fig. 4.

9. Interpretation of orbit itineraries in
terms of spiking patterns

Characterizing itineraries of periodic orbits is not only
an interesting and challenging mathematical problem
but it is also meaningful from the point of view of
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Fig. 4. Regions of different dynamics of the plCNV model.

classifying spike patterns generated by a neuron. Below
we summarize some important observations that apply
to both the 1D plCNV and nlCNV models. However, a
similar interpretation holds also in the 2D case and can be
formulated with respect to itineraries of the projection of
2D periodic orbits to their x-coordinate.

Firstly observe that, by definition, periodic orbits
with rotation number 1/q or (q − 1)/q are always twist
and have periodic itineraries of the form LL . . .LR and
LRR . . .R, respectively (with q − 1 repetitions of the
same corresponding symbol). Therefore, as follows from
Corollary 1 (and independently from Corollary 2), if
rational numbers of this form are in the rotation interval,
then there are unique periodic orbits which realize them.
Thus the spike trains corresponding to these rotation
numbers are also unique.

Corollary 3. Suppose that the number 1/q is in the ro-
tation interval of the expanding Lorenz map describing
the 1D CNV model. Then there is a unique initial voltage
condition x0 (in the invariant interval) which gives rise to
the periodic spiking pattern where q− 1 time instances of
the increase in the membrane voltage x are followed by
one rapid decrease in the membrane voltage. The period
of this periodic pattern consists of q time instances, with
exactly one spike in each period.

The same holds for the rotation number (q − 1)/q,
with the difference that now an increase in the voltage per
one period of length q occurs for 1 time unit and is fol-
lowed by q − 1 time instances of voltage decrease.

Note that a periodic orbit with the rotation number
1/q corresponds to the situation where the consecutive
increase in the membrane potential (depolarization) for

q − 1 time instances is followed by quite a rapid decrease
(repolarization) which indeed reminds a spike. In this case
all the spikes along the same spike train look exactly the
same (in particular they have the same amplitude).

On the other hand, the spiking pattern corresponding
to the rotation number (q − 1)/q consists of one rapid
increase of the membrane voltage followed by consecutive
q − 1 time instances in repolarization. Thus in this case
the decrease in the membrane voltage following a spike is
milder than in the case of rotation number 1/q.

Similarly, one can obtain easily the following result.

Corollary 4.
• A periodic orbit with rotation number 1/q results in

a q-periodic voltage-train with q − p time instances
at which the membrane voltage increases and p time
instances of the decrease in the voltage. Moreover, if
p/q (p and q coprime) is in the rotation interval (of
the expanding Lorenz map of the plCNV or nlCNV
model), then there are at most

(
q
p

)
/q corresponding

periodic orbits, among which exactly one periodic
orbit is twist but each of these orbits has a different
itinerary.

• Identifying itineraries with periodic spike-trains pro-
duced by the corresponding periodic orbit, we con-
clude that every periodic orbit of the expanding
Lorenz map of plCNV or nlCNV model gives rise to
the unique spike-train.

Thus the rotation number 
 of a given periodic orbit
together with its itinerary is directly related to the periodic
spiking pattern generated by this orbit. In particular,
one might assume than any occurrence of the word LR
in the orbit itinerary might be interpreted as a spike.
However, here (except for the case 
 = 1/q and 
 =
(q − 1)/q) the amplitude of the spike might be different
for each occurrence of the word LR in the q-length
periodic sequence of L and R symbols (see Example 2
and Fig. 5). Thus, hypothetically (depending on the
purpose) one can consider introducing some threshold
value θ such that “spikes” with the amplitude above
this threshold indeed count as spikes whereas “spikes”
with the amplitude below θ might be rather interpreted
as subthreshold oscillations. With this interpretation,
knowing the itinerary of the periodic orbit might not be
enough to fully describe the resulting spiking pattern as
one might need a precise location of points of the orbit,
not only the continuity interval in which they appear.

Corollary 5. If p/q (p and q coprime) is in the rotation
interval of the expanding Lorenz map of the 1D plCNV or
nlCNV model then there exists a unique q-periodic spiking
pattern of the form (x̃1, x̃2, . . . , x̃q) (where x̃i ∈ {L,R})
such that x̃i = L if and only if 1 + (i − 1)p mod q ≤
q−p (with L-symbols corresponding to the increase in the
neuron’s membrane potential and R with the decrease).
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If the occurrence of the word LR is interpreted as
a spike, then this spike train features n spikes in each q-
cycle, where

n := #{1 < j < q | 1 + (j − 1)p mod q ≤ q − p

and 1 + jp mod q > q − p}

(with the convention that q mod q = q).

Proof. It is not hard to guess that the spike train concerned
in the above corollary corresponds in fact to a twist
periodic orbit with rotation number p/q. Such a twist
periodic orbit exists and is unique for the expanding
Lorenz map. Thus let {x1 < x2 < . . . < xq} denote the
set of points of this orbit arranged in the increasing order
of their values. If (z1, z2, . . . , zq) is the ordering of the
orbit such that G(zi) = zi+1 (where G is the map of the
1D model), which corresponds to the spike train observed,
then from the definition of the twist periodic orbit we have
that

z1 := x1 ∈ IL,

z2 = G(z1) = G(x1) = x1+p mod q,

...
zi = G(zi−1) = x1+(i−1)p mod q,

...
zq = G(zq−1) = x1+(q−1)p mod q = xq−p+1 ∈ IR,

where

zi ∈ IL ⇐⇒ (1 + (i− 1)p) mod q ≤ q − p

as follows from the ordering {x1 < x2 < . . . < xq}
and the fact that the orbit with rotation number p/q has
exactly p points in the right continuity interval IR and q−
p points in the left interval IL. The corresponding spike
train (x̃1, x̃2, . . . , x̃q) can be encoded with the sequence of
symbols {L,R}q where x̃i = L if and only if 1+(j−1)p
mod q ≤ q− p and the rest of the statement follows. �

Example 1. Under the assumptions of Corollary 5,
assume that p/q = 4/5 is in the rotation interval of
the corresponding 1D model. Then there is a unique
5-periodic spike train of the form LRRRR. The
spike-train, visualized in Figs. 5(a) and (b) together with
the associated periodic orbit, features one spike in each
cycle of length 5. �

Example 2. Similarly, assume that p/q = 7/9. Then
there is a unique 9-periodic spike train of the form
LRRRLRRRR. The spike-train features two spikes in
each cycle of length 9 and these spikes are of different
amplitude, as seen in Fig. 5(d). The corresponding
periodic trajectory is depicted in Fig. 5(c). �

10. Conclusions
Our work, although devoted to a particular neuron model,
might serve also as a review of the theory of Lorenz-like
maps for which we have provided a couple of noteworthy
extensions. Namely, for expanding Lorenz maps we have
justified the expansiveness (Proposition 1), the uniqueness
of periodic orbits with a given itinerary (Proposition 4),
existence and uniqueness of twist periodic orbits with a
given rotation number (Corollary 1), an upper estimate
of the number of periodic orbits with the same rotation
number (Corollary 2), the equivalence of transitivity and
Devaney chaos on the whole interval (Proposition 5) and
precise conditions for Devaney chaos (Theorem 7).

All these results can be applied to both linear and
nonlinear CNV models. On the other hand, we also
proved more particular results on β-transformations that
apply in the linear case (Theorems 10 and 11 as well as
Lemmas 1 and 2).

These mathematical results can be naturally applied
for the study of the CNV model, mainly in its 1D
reduction but partially also in its full 2D version, as
we have shown in Sections 8 and 9. It has been
rigorously shown how the theory of Lorenz-like maps
and β transformation can be used for studying the CNV
model, especially by identifying regions of chaotic and
periodic behaviour in the model.

In particular, we have established the direct
connection between periodic spiking patterns and periodic
orbits of the voltage map in the CNV model and next,
with the use of very recent findings on Farey-Lorenz
permutations for Lorenz maps, we have provided a
combinatorial description of the periodic spiking patterns.
The rotation interval and the corresponding set of fupos
might be viewed here as a complexity measure of the
system under study.

The CNV model is useful in modelling and validating
results of clinical relevance as exemplified in Introduction.
Furthermore, since Lorenz-like maps appear also in
hybrid neural models (see, e.g., Rubin et al., 2017) and
in various other models of physiological and biological
phenomena (see, e.g., the work of Derks et al. (2021)
and the references therein), as well as in numerous other
applications, the methods presented and developed in this
work might be adapted in multiple fields.
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Alsedà, L., Llibre, J., Misiurewicz, M. and Tresser, C.
(1989). Periods and entropy for Lorenz-like maps, Annales
de l’Institut Fourier (Grenoble) 39(4): 929–952, DOI:
10.5802/aif.1195.

Cholewa, Ł. and Oprocha, P. (2021a). On α-limit sets in Lorenz
maps, Entropy 23(9): 1153. DOI: 10.3390/e23091153.

Cholewa, Ł. and Oprocha, P. (2021b). Renormalization in
Lorenz maps—Completely invariant sets and periodic
orbits. arXiv: 2104.00110[math.DS].

Courbage, M., Maslennikov, O.V. and Nekorkin, V.I. (2012).
Synchronization in time-discrete model of two electrically



Spike patterns and chaos in a map-based neuron model 407

coupled spike-bursting neurons, Chaos, Solitons, Fractals
45(05): 645–659, DOI: 10.1016/j.chaos.2011.12.018.

Courbage, M. and Nekorkin, V.I. (2010). Map based
models in neurodynamics, International Journal of Bifur-
cation and Chaos in Applied Sciences and Engineering
20(06): 1631–1651, DOI: 10.1142/S0218127410026733.

Courbage, M., Nekorkin, V.I. and Vdovin, L.V. (2007). Chaotic
oscillations in a map-based model of neural activity, Chaos
17(4): 043109, DOI: 10.1063/1.2795435.

Derks, G., Glendinning, P.A. and Skeldon, A.C. (2021).
Creation of discontinuities in circle maps, Proceed-
ings of the Royal Society A: Mathematical, Physical
and Engineering Sciences 477(2251): 20200872, DOI:
10.1098/rspa.2020.0872.

Ding, Y.M., Fan, A.H. and Yu, J.H. (2010). Absolutely
continuous invariant measures of piecewise linear Lorenz
maps. arXiv: 1001.3014 [math.DS].

FitzHugh, R. (1955). Mathematical models of the threshold
phenomena in the nerve membrane, The Bulletin
of Mathematical Biophysics 17: 257–278, DOI:
10.1007/BF02477753.

Geller, W. and Misiurewicz, M. (2018). Farey–Lorenz
permutations for interval maps, International Jour-
nal of Bifurcation and Chaos 28(02): 1850021, DOI:
10.1142/S0218127418500219.

Hess, A., Yu, L., Klein, I., Mazancourt, M.D., Jebrak, G.
and Mal, H. (2013). Neural mechanisms underlying
breathing complexity, PLoS ONE 8(10): e75740, DOI:
10.1371/journal.pone.0075740.

Hofbauer, F. (1979). Maximal measures for piecewise
monotonically increasing transformations on [0,1], in
M. Denker and K. Jacobs (Eds), Ergodic Theory, Springer,
Berlin/Heidelberg, pp. 66–77.

Hofbauer, F. (1981). The maximal measure for linear mod. one
transformations, Journal of the London Mathematical So-
ciety s2–23(1): 92–112, DOI: 10.1112/jlms/s2-23.1.92.

Ibarz, B., Casado, J.M. and Sanjuán, M.A.F. (2011).
Map-based models in neuronal dynamics, Physics Reports
501(1–2): 1–74, DOI: 10.1016/j.physrep.2010.12.003.

Kameyama, A. (2002). Topological transitivity and strong
transitivity, Acta Mathematica Universitatis Comenianae
71(2): 139–145.

Korbicz, J., Patan, K. and Obuchowicz, A. (1999). Dynamic
neural networks for process modelling in fault detection
and isolation systems, International Journal of Applied
Mathematics and Computer Science 9(3): 519–546.

Llovera-Trujillo, F., Signerska-Rynkowska, J. and
Bartłomiejczyk, P. (2023). Periodic and chaotic dynamics
in a map-based neuron model, Mathematical Methods in
the Applied Sciences 46(11): 11906–11931.

Maslennikov, O.V. and Nekorkin, V.I. (2012). Discrete model of
the olivo-cerebellar system: Structure and dynamics, Ra-
diophysics and Quantum Electronics 55(3): 198–214, DOI:
10.1007/s11141-012-9360-6.

Maslennikov, O.V. and Nekorkin, V.I. (2013). Dynamic
boundary crisis in the Lorenz-type map, Chaos
23(2): 023129, DOI: 10.1063/1.4811545.

Maslennikov, O.V., Nekorkin, V.I. and Kurths, J. (2018).
Transient chaos in the Lorenz-type map with periodic
forcing, Chaos 28(3): 033107, DOI:10.1063/1.5018265.

Oprocha, P., Potorski, P. and Raith, P. (2019). Mixing properties
in expanding Lorenz maps, Advances in Mathematics.
343: 712–755, DOI: 10.1016/j.aim.2018.11.015.

Palmer, R. (1979). On the Classification of Measure Preserv-
ing Transformations of Lebesgue Spaces, PhD thesis,
University of Warwick, Warwick, https://wrap.war
wick.ac.uk/88796/1/WRAP_Theses_Palmer_
2016.pdf.

Parry, W. (1979). The Lorenz attractor and a related population
model, in M. Denker and K. Jacobs (eds), Ergodic The-
ory, Springer, Berlin/Heidelberg, pp. 169–187, DOI:
10.1007/BFb0063293.

Patan, K., Witczak, M. and Korbicz, J. (2008). Towards
robustness in neural network based fault diagnosis,
International Journal of Applied Mathematics
and Computer Science 18(4): 443–454, DOI:
10.2478/v10006-008-0039-2.

Rubin, J.E., Touboul, J.D., Signerska-Rynkowska, J. and Vidal,
A. (2017). Wild oscillations in a nonlinear neuron model
with resets. II: Mixed-mode oscillations, Discrete and
Continuous Dynamical Systems B 22(10): 4003–4039,
DOI: 10.3934/dcdsb.2017205.

Yu, L., Mazancourt, M.D. and Hess, A. (2016). Functional
connectivity and information flow of the respiratory
neural network in chronic obstructive pulmonary
disease, Human Brain Mapping 37(8): 2736–2754,
DOI: 10.1002/hbm.23205.

Yue, Y., Liu, Y.J., Song, Y.L., Chen, Y. and Yu,
L. (2017). Information capacity and transmission
in a Courbage–Nekorkin–Vdovin map-based neuron
model, Chinese Physics Letters 34(4): 048701, DOI:
10.1088/0256-307x/34/4/048701.

Piotr Bartłomiejczyk is a mathematician, whose
research interests focus on nonlinear analysis
(topological degree theory), dynamical systems
(Conley index theory), homotopy theory (search
for new homotopy invariants), and, recently,
mathematical modelling in neuroscience. In
2000 he was awarded a PhD degree by the In-
stitute of Mathematics of the Polish Academy of
Sciences in Warsaw, and in 2016 a DSc degree by
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of Technology since 2020. His scientific interests
include dynamical systems, chaos and its appli-
cations, neuronal networks and data science.

Justyna Signerska-Rynkowska received her
PhD in mathematics in 2013 from the Institute
of Mathematics of the Polish Academy of Sci-
ences (IM PAN). Then, after a postdoctoral fel-
lowship at the INRIA Paris Research Centre, she
obtained the position of an assistant professor at
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