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We show a turnpike result for problems of optimal control with possibly nonlinear systems as well as pointwise-in-time
state and control constraints. The objective functional is of integral type and contains a tracking term which penalizes the
distance to a desired steady state. In the optimal control problem, only the initial state is prescribed. We assume that a
cheap control condition holds that yields a bound for the optimal value of our optimal control problem in terms of the initial
data. We show that the solutions to the optimal control problems on the time intervals [0, T ] have a turnpike structure
in the following sense: For large T the contribution to the objective functional that comes from the subinterval [T/2, T ],
i.e., from the second half of the time interval [0, T ], is at most of the order 1/T . More generally, the result holds for
subintervals of the form [r T, T ], where r ∈ (0, 1/2) is a real number. Using this result inductively implies that the decay
of the integral on such a subinterval in the objective function is faster than the reciprocal value of a power series in T with
positive coefficients. Accordingly, the contribution to the objective value from the final part of the time interval decays
rapidly with a growing time horizon. At the end of the paper we present examples for optimal control problems where our
results are applicable.
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1. Introduction
The turnpike property was initially investigated by P.A.
Samuelson in mathematical economics in 1949 (Dorfman
et al., 1958). Ever since the turnpike phenomenon
for optimization problems has been studied in a variety
of frameworks (see, e.g., Zaslavski, 2006; 2014).
For systems with ordinary differential equations, the
exponential turnpike property was examined by Trélat
and Zuazua (2015). For optimal control problems with
partial differential equations, see the works of Grüne et al.
(2020), Porretta and Zuazua (2013), Trélat and Zhang
(2018) or Gugat and Lazar (2023). Optimal boundary
control problems are investigated, for example, by Gugat
and Hante (2019). Manifold turnpikes are studied by
Faulwasser et al. (2022). The connection of the turnpike
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property to greedy optimal control for elliptic problem is
pointed out by Hernández-Santamarı́a et al. (2019). The
turnpike phenomenon for optimal control problems with
time-discrete systems is studied by Damm et al. (2014) or
Grüne and Guglielmi (2018). In the work of Gugat (2021)
the turnpike property with interior decay is introduced.
It describes the situation where for sufficiently large
time horizons the distance between the dynamic optimal
control/state pair and the corresponding static solution
in the interior of the time interval is very small with
respect to an appropriate integral norm. In that same work
problems with both given initial states and prescribed
terminal states were studied under an exact controllability
assumption. In contrast to this, in the present paper we
study problems without terminal conditions. Hence we
also do not need an exact controllability assumption.

We study systems that are governed by an abstract
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nonlinear semigroup. The optimal control problem
concerns a process on a finite time interval [0, T ]. In the
optimal control problems, the initial state is given but no
terminal condition is prescribed. The objective function is
of integral type and penalizes the distance to the desired
steady state on the time interval [0, T ]. The solution of the
corresponding static problem is the desired steady state.

In addition to the strict dissipativity, our main
assumption is a cheap control condition, which requires
that the optimal control cost can be bounded above in
terms of the distance between the given initial state and
the desired steady state.

We show that the optimal controls have a turnpike
structure with interior decay in the following sense: The
contribution to the objective functional that is generated
from the subinterval [T/2, T ] of [0, T ] decays with the
order 1/T . Our result allows for pointwise-in-time control
constraints and pointwise-in-time state constraints. The
control constraints in our setting include switching
constraints that only admit a finite set of control values.
The result can be generalized to subintervals of the form
[r T, T ], where r ∈ (0, 1/2) is a real number.

Our turnpike results are helpful for computations,
since they imply that for large time horizons T ,
approximations of the optimal control–state pairs should
be close to the optimal steady state after the time T/2.

This paper has the following structure. In Section 1.1
the dynamic optimal control problem is defined. Section 2
contains the definition of the turnpike property with
interior decay. In Section 3 the turnpike results are
stated. The first theorem contains a sufficient condition
for the turnpike property with interior decay. The second
theorem gives a decay estimate that under additional
assumptions implies that the interior decay is faster than
any polynomial rate, see Corollary 1. For the proofs,
several auxiliary results are used. At the end of the paper,
our results are illustrated by some examples.

1.1. Definition of the optimal control problem. Let
U and Y denote Banach spaces with the norms ‖ · ‖U and
‖ · ‖Y , respectively. Let an initial state y0 ∈ Y be given.
The state y generated by the control u is denoted as

y = Φ(a, y0, u), (1)

where for a ∈ [0,∞) and t > a the mapping Φ is
continuous from {a}×Y ×L2((a, t), U) to C([a, t], Y)
with Φ(a, y0, u)(a) = y0. We assume that for any
subinterval (a1, t1) of (a, t) we have

Φ(a, y0, u)|(a1, t1)

= Φ(a1, Φ(a, y0, u)(a1), u|(a1, t1)). (2)

These properties are satisfied, for example, by strongly
continuous semigroups (see Tucsnak and Weiss, 2009).

Let u(σ) ∈ U denote a static control and let y(σ) ∈ Y
denote the corresponding static state, which is considered
as a constant function in C([a, t], Y). The static control
u(σ) is considered as a constant control in L2((a, t), U).
It satisfies

y(σ)(s) = Φ(a, y(σ), u(σ))(s), s ∈ [a, t].

Let a, b ∈ R with a < b be given. Let f0 : R ×
Y × U → [0, ∞) be continuous. By the nonnegativity
of f0, we have for states y ∈ L2((a, b), Y) and controls
u ∈ L2((a, b), U) and any subinterval (a1, b1) of (a, b)
the inequality

0 ≤
∫ b1

a1

f0(t, y|(a1, b1)(t), u|(a1, b1)(t)) dt

≤
∫ b

a

f0(t, y(t), u(t)) dt.

(3)

For states y ∈ L2((a, b), Y) and controls in u ∈
L2((a, b), U) define

J(a, b)(u, y) =

∫ b

a

f0(t, y(t), u(t)) dt (4)

where y is the system state that is generated by the control
function u. This type of objective functions has also been
considered by Trélat et al. (2018).

For y0 ∈ Y , we consider a dynamic optimal control
problem with the initial condition

y(a) = y0. (5)

LetF denote a closed subset ofY such that y(σ) ∈ F .
We define the state constraint

y(t) ∈ F, t ∈ [a, b] (6)

and the control constraint

u(t) ∈ U for t ∈ (a, b) almost everywhere, (7)

where U is a nonempty closed subset of U such that
u(σ) ∈ U .

For a, b ∈ R with b > a and an initial state y0 ∈ F
define the optimization problem

P (a, b, y0) : min
u

J(a, b)(u, y)

subject to (1), (5), (6) and (7).
(8)

Note that the existence of solutions of P (a, b, y0)
can be shown under suitable assumptions using the direct
method of the calculus of variations (see, e.g., Dacorogna,
2008); for example, if U and Y are reflexive Banach
spaces, f0 is time-independent, f0, F and U are convex
and f0 satisfies a growth condition, e.g., f0(y, u) ≥
‖u‖2U .
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Let ŷ(a, b, y0) denote an optimal state and û(a, b, y0)
denote an optimal control for P (a, b, y0) in the sense that
the constraints (1), (5), (6) and (7) are satisfied and

J(a, b)(û(a, b, y0), ŷ(a, b, y0)) = v̂(a, b, y0) (9)

where v̂(a, b, y0) denotes the optimal value for
P (a, b, y0).

For any subinterval (a1, t1) of (a, b), the assumption
(2) and relation (3) imply

v̂(a1, t1, ŷ(a, b, y0)(a1)) ≤ v̂(a, b, y0). (10)

In the subsequent analysis we need the following
lemma. It is an adaptation of Lemma 1.1 of Gugat (2021)
to the case without the terminal constraint.

Lemma 1. For any subinterval (a1, b) of (a, b), we have

J(a1, b)(û(a, b, y0)|(a1, b), ŷ(a, b, y0)|(a1, b))

= v̂(a1, b, ŷ(a, b, y0)(a1))
(11)

that is (û(a, b, y0), ŷ(a, b, y0))|(a1, b) is an optimal
control–state pair for the optimal control problem

P (a1, b, ŷ(a, b, y0)(a1)).

Proof. Since the proof is analogous to the proof of
Lemma 1.1 in the work of Gugat (2021), we omit it here.

�

2. Measure turnpike property and the
turnpike property with interior decay

Measure turnpike properties and an integral turnpike
property are considered, e.g., by Trélat et al. (2018). An
integral turnpike property for a boundary control problem
with a hyperbolic system is shown by Gugat and Hante
(2019). The measure turnpike property is defined as
follows.

Definition 1. Problem P (a, b, y0) has the measure turn-
pike property at (y(σ), u(σ)) ∈ F × U if for all ε > 0
there is a Λ(ε) > 0 such that for all b > a we have

μ {t ∈ [a, b] : ‖ŷ0(a, b, y0, )(t)− y(σ)‖Y
+ ‖û0(a, b, y0)(t)− u(σ)‖U > ε } ≤ Λ(ε),

where μ denotes the Lebesgue measure.
In the work of Trélat et al. (2018) the measure

turnpike property is shown under the following strict
dissipativity assumption.

Definition 2. Problem P (a, b, y0) is strictly dissipative
at (y(σ), u(σ)) ∈ F ×U if f0 is time-independent and for
all (y, u) ∈ F × U for the supply rate function

ω(y, u) = f0(y, u)− f0(y
(σ), u(σ)), (12)

there exists a bounded (both from below and above) stor-
age function S : F → R and a continuous and strictly
increasing function α : [0,∞) → [0, ∞) with α(0) = 0
such that for all b > a the dissipation inequality holds, that
is, for any admissible pair (y(·), u(·)) and for all τ ∈ [a, b]
we have

S(y(a)) +

∫ τ

a

ω(y(t), u(t)) dt ≥ S(y(τ))

+

∫ τ

a

α
(
‖y(t)− y(σ)‖Y + ‖u(t)− u(σ)‖U

)
dt.

(13)
Let MS denote an upper bound for |S(y)| for y ∈ F .

Remark 1. The relation between strict dissipativity and
the turnpike property is discussed by Faulwasser et al.
(2017) as well as Grüne and Müller (2016).

Note that, if (13) holds, the same inequality holds if ω
is replaced by a function ω̃(y, u) ≥ ω(y, u), for example,
by ω̃(y, u) := ω(y, u) + f0(y

(σ), u(σ)) = f0(y, u) ≥ 0.
This implies that we can assume without restriction that
ω ≥ 0.

Example 1. (Strict dissipativity) Let γ ∈ (0, 1] be given.
For f0(y, u) = ‖y − y(σ)‖2Y + γ ‖u − u(σ)‖2U , problem
P (a, b, y0) is strictly dissipative at (y(σ), u(σ)) ∈ F ×U
with S = 0 and α(z) = γ

2 |z|2.

In the work of Trélat et al. (2018) an example for a
problem of optimal distributed control of the heat equation
is given that is strictly dissipative. �

The measure turnpike property can hold even if there
exist real numbers M > 0 and Υ0 > 0 such that for all b
sufficiently large (in the sense that M < b−a

2 ) and for all
t ∈ [a+b

2 , a+b
2 +M ] the inequality

‖ŷ(a, b, y0)(t)− y(σ)‖Y
+ ‖û(a, b, y0)(t)− u(σ)‖U > Υ0 (14)

holds. Yet such a situation contradicts the typical situation
that close to the point a+b

2 in the middle of the time
interval the distance between the dynamic optimum and
the static optimum becomes very small, which holds, e.g.,
in the case of an exponential turnpike property, see also
the the discussion after Definition 3.

To exclude such a situation, the turnpike property
with interior decay is defined. Here the definition is stated
in a different way than in the work of Gugat (2021) since
we adapt it to the case where in the problem no terminal
conditions (e.g., a terminal state) are prescribed. Our
setting allows us to consider subintervals that have the
terminal time as an upper limit.

Definition 3. Problem P (a, b, y0) has the turnpike prop-
erty with interior decay at (y(σ), u(σ)) ∈ F × U if there
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exist C1 > 0 and λ1 ∈ (0, 1) such that for all b > a we
have the inequality

b∫
a+b
2 −λ1

b−a
2

υ(t) dt ≤ C1

b− a
, (15)

where

υ(t) = α
(
‖ŷ(a, b, y0)(t)− y(σ)‖Y

+‖û(a, b, y0)(t)− u(σ)‖U
)
.

If (14) is valid, the turnpike property with interior
decay cannot hold. This can be seen as follows. If (15)
holds, we have

lim
b→∞

b∫
a+b
2 −λ1

b−a
2

υ(t) dt = 0. (16)

If the inequality (14) holds, we have for b sufficiently large

a+b
2 +M∫
a+b
2

υ(t) dt ≥ M Υ0. (17)

For b sufficiently large, we have
[
a+b
2 , a+b

2 +M
] ⊂ [a+b

2 − λ1
b−a
2 , b

]
.

Hence (16) contradicts (17).
Thus the turnpike property with interior decay

provides a more detailed picture of the behavior of the the
optimal state and the optimal control in the interior of the
time interval than the measure turnpike.

Remark 2. Also an exponential turnpike property,
where the optimal state and the optimal control decay
exponentially fast in the sense that there exist C1 > 0
and μ > 0 such that for all T > 0 for all t ∈ [0, T ] we
have

α
(‖ŷ(a, b, y0)(t)− y(σ)‖Y

+ ‖û(a, b, y0)(t)− u(σ)‖U
) ≤ C2 exp(−μ t)

implies the turnpike property with interior decay.

3. Turnpike result
Throughout this section we assume that for all (a, b) ⊂
(0,∞) and all y0 ∈ F the problems P (a, b, y0) are
strictly dissipative at (y(σ), u(σ)) ∈ F × U .

For the subsequent analysis, we replace the objective
function in (4) by

J(a, b)(u, y) =

∫ b

a

ω(y(t), u(t)) dt, (18)

with ω as in (13).
We show that under the strict dissipativity and a

cheap control assumption that we define in (19) below, the
solution of problem P (a, b, y0) has the turnpike property
with interior decay. The cheap control assumption
requires that the optimal values of the control problem are
uniformly bounded with a bound that depends only on the
distance between the initial state and y(σ).

In the subsequent analysis, we need the following
lemma that adapts Lemma 3.1 of Gugat (2021) to the case
without terminal constraint.

Lemma 2. Let an interval [a1, b1] and a nonempty subin-
terval [a2, b2] ⊂ [a1, b1] be given.

Then for any optimal state ŷ(a1, b1, y0) of
P (a1, b1, y0) there exists a number t1 ∈ (a2, b2)
such that

α
(‖ŷ(a1, b1, y0)(t1)− y(σ)‖Y

+ ‖û(a1, b1, y0)(t1)− u(σ)‖U
)

≤ v̂(a1, b1, y0)−
[
S(ŷ(a1, b1, y0)(b1))− S(y0)

]
b2 − a2

.

Proof. Since the proof is similar to Lemma 3.1 in the
work of Gugat (2021), we do not state it here. �

Now we define the abstract cheap control assumption
as follows.

Definition 4. We say that the cheap control assumption
holds for P (a, b, y0), if there exist constants μ0 > 0 and
ε0 > 0 such that for all initial times a, all initial states
y0 ∈ F and for all terminal times b > a the inequality

v̂(a, b, y0) ≤ μ0 α
(
‖y0 − y(σ)‖Y

)
+ ε0

+S(ŷ(a, b, y0)(b))− S(y0)
(19)

holds.

Remark 3. A sufficient condition for (19) with ε0 = 0 is
that there exists a control function u1 ∈ L2

loc(a, ∞) such
that u1(t) ∈ U for almost every t > a, y1 = Φ(a, y0, u1)
satisfies y1(t) ∈ F for t > a, and for all t > a we have
∫ t

a

f0(y1(s), u1(s)) − f0(y
(σ), u(σ)) ds

≤ μ0‖y0 − y(σ)‖2Y ,
where the constant μ0 is independent of t. This is the case
if there exists a number tmin > a such that for t > tmin,
we have y1(t) = y(σ) and u1(t) = u(σ).

An example is a system that can be controlled exactly
to y(σ) at the time tmin with the control u1|(a,tmin) where
the state remains equal to y(σ) with a constant control
u(σ) for t ≥ tmin (see also Section 4). Thus, the exact
controllability implies that the cheap control assumption
holds.
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Now we analyze the optimal control problem
P (0, T, y0) as defined in (8). Let a real number λ ∈ (0, 1)
be given.

Consider the interval

I0(λ, T ) =
(
0, (1− λ) T

2

]
.

Then we have I0(λ, T ) ⊂ (0, T/2).
By obtaining an upper bound for the part of the

objective function (18) that comes from the subinterval
((1 − λ) T

2 , T ) = (0, T )\I0(λ, T ), we are able to obtain
the following result.

Theorem 1. Assume that for all (a, b) ⊂ (0,∞) and all
y0 ∈ F the problems P (a, b, y0) are strictly dissipative
at (y(σ), u(σ)) ∈ F × U . Assume that the cheap control
assumption (19) holds with ε0 = 0. Then for every T > 0
the problem P (0, T, y0) has the turnpike property with
interior decay and the the measure turnpike property at
(y(σ), u(σ)).

Proof. The cheap control assumption yields upper bounds
for the optimal values of the problems P (0, T, y0). The
combination of these bounds and the strict dissipation
inequality (13) implies the measure turnpike property.

To show the turnpike property with interior decay,
note that Lemma 2 implies that there exists a point t+1 ∈
I0(λ, T ) such that

α
(‖ŷ(0, T, y0)(t+1 )− y(σ)‖Y
+ ‖û(0, T, y0)(t+1 )− u(σ)‖U

)

≤ v̂(0, T, y0)− [S(ŷ(0, T, y0)(T ))− S(y0)]

(1− λ)T/2
. (20)

Define

Ξ(s) = α(‖ŷ(0, T y0)(s)− y(σ)‖Y
+ ‖û(0, T, y0)(s)− u(σ)‖U).

The strict dissipation inequality (13) implies

A0 :=

T∫

(1−λ)T
2

Ξ(s) ds

≤
∫ T

t+1

Ξ(s) ds

≤ S(ŷ(0, T, y0)(t
+
1 ))− S(ŷ(0, T, y0)(T ))

+

∫ T

t+1

ω(ŷ(0, T, y0)(t), û(0, T, y0)(t)) dt

≤ μ0 α
(
‖ŷ(0, T, y0)(t+1 )− y(σ)‖Y

)
+ ε0,

where the last inequality is a consequence of the cheap
control assumption (19). Combining the obtained bound

with (20) we finally get

A0 ≤ μ0
v̂(0, T, y0)− [S(ŷ(0, T, y0)(T ))− S(y0)]

(1− λ)T/2
+ ε0

≤ μ2
0α‖y0 − y(σ)‖Y + μ0ε0

(1− λ)T/2
+ ε0,

(21)
where in the last step we used the cheap control
assumption again.

Finally, taking into account the assumption ε0 = 0,
the definition of A0 implies the assertion. �

Now we consider the subintervals

I1(λ, T ) =
(
(1 − λ) T

2 , (1− λ2) T
2

]
,

I2(λ, T ) =
(
(1− λ2) T

2 , (1− λ3) T
2

]
and, more generally, for n ∈ {0, 1, 2, . . . }

In(λ, T ) =
(
(1− λn) T

2 , (1− λn+1) T
2

]
(22)

of [0, T ]. The interval In(λ, T ) has length (1 −
λ)λn T/2. Note that the intervals In(λ, T ) are disjoint
and

⋃∞
n=0 In(λ, T ) = (0, T/2).

We obtain upper bounds for the part of the objective
function that comes from the integral over the subintervals

(0, T )\
n⋃

k=0

Ik(λ, T ) =
(
(1− λn+1)T2 , T

)
.

Our main turnpike result for the optimal control
problem defined in (8) is stated in the following theorem.

Theorem 2. Assume that the strict dissipativity and the
cheap control assumption (19) hold for all initial states
y0 ∈ Y . Let λ ∈ (0, 1) and a natural number n ≥ 0 be
given.

For k ∈ {0, 1, 2, . . .} let μ(Ik(λ, T )) = λk(1 −
λ)T/2 denote the length of the interval Ik(λ, T ). De-
fine the real number g0 = μ0/μ(I0(λ, T )) and for k ∈
{0, 1, 2, . . .} let

gk+1 =
μ0

μ(Ik+1(λ, T ))
(gk + 1) =

g0
λk+1

(gk + 1) .

Let
υ(s) = α(‖ŷ(0, T, y0)(s)− y(σ)‖Y

+ ‖û(0, T, y0)(s) − u(σ)‖U).
Then for all real numbers T > 0 we have

An :=

T∫

(1−λn+1) T
2

υ(s) ds

≤ μn+2
0

n∏
k=0

μ(Ik(λ, T ))

α
(
‖y0 − y(σ)‖Y

)

+ ε0 (gn + 1).

(23)
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The decay estimate (23) allows us to prove the
following corollary, which states that the integral on the
time interval (T/2, T ) corresponding to An decays faster
than the reciprocal value of a power series with positive
coefficients only.

Corollary 1. Under the assumptions of Theorem 2 and
the additional assumption ε0 = 0, for T > 0 define

A∗(T ) :=

T∫
T
2

α
(
‖ŷ(0, T y0)(s)− y(σ)‖Y

+ ‖û(0, T, y0)(s)− u(σ)‖U
)
ds.

For all n ∈ {1, 2, . . .} define

Cn =
2n μn+1

0

λ
n(n−1)

2 (1− λ)n
.

Then (23) implies that

A∗(T ) ≤ Cn

T n
α
(
‖y0 − y(σ)‖Y

)
. (24)

For T > 0 define the increasing function

F (T ) =

∞∑
n=1

1

2nCn
T n.

Then for all T > 0 we have

A∗(T ) ≤
α
(‖y0 − y(σ)‖Y

)
F (T )

.

Proof. We have
n∏

k=0

μ(Ik(λ, T )) =
T n+1

2n+1
(1 − λ)n+1λ

n (n+1)
2

=
T n+1

Cn+1
μn+2
0 .

Hence (23) and the definition of Cn imply (24).
For all n ∈ {1, 2, . . .} we have

1

2n
1

A∗(T )
≥ T n

2n Cn

1

α
(‖y0 − y(σ)‖Y

) .
Since 1 =

∑∞
n=1 2

−n, this implies that we also have

1

A∗(T )
=

∞∑
n=1

1

2n
1

A∗(T )

≥
∞∑
n=1

T n

2nCn

1

α
(‖y0 − y(σ)‖Y

)

=
1

α
(‖y0 − y(σ)‖Y

) F (T ).

�
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Fig. 1. Graphs of F (T ) for μ0 = 1 and λ = 1/2 (top) and
exp(7T/100) (bottom, dotted).

Corollary 1 implies that A∗(T ) decays faster than
at any polynomial rate. Due to the fast growth of Cn

compared with n!, the decay is slower than exponential.
For μ0 = 1 and λ = 1/2 we obtain

F (T ) =

∞∑
n=1

1

2
n2+5n

2

T n.

Figure 3 shows the graph of F for this case. For
comparison, it also shows the graph of an exponential
function. Note that the exponential function finally grows
faster than F .

Remark 4. Note that for all k ≥ 0 we have gk → 0 as
T → ∞. Moreover, there exist constants Dk > 0 such
that for every T > 1 we have

|gk| ≤ Dk

T
.

Remark 5. An analogous result as in Theorem 2 can be
shown for any interval of the form [ TN , T ], where N ∈
{2, 3, . . .} is a natural number: The contribution of the
integral from T/N to T in the objective function is of the
order 1/T n, where the natural number n can be chosen
arbitrarily large.

Now we present the proof of Theorem 2.
Proof. (Theorem 2) For n = 0 we have already shown
(23) in the inequality (21). To be precise, we have shown
that for n = 0 there exist

t+n+1 ∈ ((1− λn) T
2 , (1− λn+1) T

2

)
(25)

such that

An ≤
∫ T

t+n+1

υ(s) ds

≤ v̂(t+n+1, T, ŷ(0, T, y0)(t
+
n+1))

+ S(ŷ(0, T, y0)(t
+
n+1))− S(ŷ(0, T, y0)(T ))
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≤ μn+2
0

n∏
k=0

μ(Ik(λ, T ))

α
(
‖y0 − y(σ)‖Y

)

+ ε0(gn + 1).

(26)

In addition, due to Lemma 1, the restriction of
the control–state pair (û(0, T, y0), ŷ(0, T, y0)) to the
interval (t+n+1, T ) is an optimal control–state pair for the
optimal control problem

P (t+n+1, T, ŷ(0, T, y0)(t
+
n+1)).

Now we continue inductively. Assume that for some
n ≥ 0 there exists t+n+1 ∈ In(λ, T ) such that the chain
of inequalities (26) holds and (û(0, T, y0), ŷ(0, T, y0)) is
optimal for

P (t+n+1, T, ŷ(0, T, y0)(t
+
n+1)). (27)

Due to Lemma 2, there exists a point

t+n+2 ∈ ((1 − λn+1) T
2 , (1− λn+2) T

2

)
(28)

such that
υ(t+n+2) ≤

Zn

Un
(29)

with

Zn = v̂(t+n+1, T, ŷ(0, T, y0)(t
+
n+1))

+ S(ŷ(0, T, y0)(t
+
1 ))− S(ŷ(0, T, y0)(T ))

and Un = μ(In+1(λ, T )).
Then we have t+n+2 ≥ t+n+1.
Due to Lemma 1 and our assumption on (27), the

control–state pair (û(0, T, y0), ŷ(0, T, y0)) is optimal for

P (t+n+2, T, ŷ(0, T, y0)(t
+
n+2)). (30)

Then due to the strict dissipativity and the cheap
control assumption (19) we have

An+1 =

T∫

(1−λn+2) T/2

υ(s) ds

≤
∫ T

t+n+2

υ(s) ds

≤ S(ŷ(0, T, y0)(t
+
n+2))− S(ŷ(0, T, y0)(T ))

+

∫ T

t+n+2

ω(ŷ(0, T, y0)(t), û(0, T, y0)(t)) dt

≤ μ0 α(‖ŷ(0, T, y0)(t+n+2)− y(σ)‖Y) + ε0.

(31)

Together with (29) this yields the inequality

An+1 ≤ μ0
Zn

Un
+ ε0.

Finally, our induction assumption (26) implies

An+1 ≤ μ0

μ(In+1(λ, T ))

×
(

μn+2
0

n∏
k=0

μ(Ik(λ, T ))

α
(
‖y0 − y(σ)‖Y

)

+ ε0(gn + 1)

)
+ ε0

from which the assertion follow.

4. Examples
To illustrate our results, we present examples of optimal
control problems where Theorem 2 is applicable.

Example 2. Let y0, y1 in R
n be given and f : Rn → R

n,
g : Rn → R

n×m be C2 maps with f(0) = 0. Let C ∈
R

n×n be regular and define the Hilbert space Y with the
norm

‖z‖Y =
(
z� C� Cz

)1/2
.

In the work of Sakamoto and Zuazua (2021) the following
problem with a system that is governed by an ordinary
differential equation is considered with the additional
terminal condition y(T ) = y1:

(OCP)T

⎧⎪⎪⎨
⎪⎪⎩

min
u∈L∞(0,T )

T∫
0

‖y(t)‖2Y + ‖u(t)‖2
Rm dt

subject to
y(0) = y0, y

′(t) = f(y(t)) + g(y(t))u(t).

Here the turnpike is zero, that is, y(σ) = 0 and u(σ) =
0. In this case, the cheap control assumption (19) requires
that there exist constants μ0 > 0 and ε0 ≥ 0 such that for
all y0 ∈ Y we have

v̂(a, t0, y0) ≤ μ0 ‖y0‖2Y + ε0. (32)

If the system is linear and satisfies Kalman’s
controllability rank condition, it is exactly null
controllable (see, e.g., Sontag, 1991; Rabah et al., 2017).
This implies the cheap control inequality. As in
Example 1, the strict dissipativity follows with S = 0.
Here we have y(σ) = 0 and u(σ) = 0.

Our results show that also with additional constraints,
for example, with pointwise control constraints as in the
set

U = {u ∈ L∞(0, T ) : |u(t)| ≤ 1 almost everywhere },

the solution of (OCP)T has a turnpike structure as pointed
out in Theorem 2. �
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Example 3. Let y0(x) ∈ L2(0, L) and ud ∈ R be given.
Consider the optimal control problem

min
u∈L2(0,T )

∫ T

0

|u(t)− ud|2 +
∫ L

0

|y(t, x)− ud|2 dxdt

subject to

y(0, x) = y0(x), x ∈ (0, L),

y(t, 0) = u(t), t ∈ (0, T )

and for (t, x) ∈ (0, T )× (0, L):

yt(t, x) = − exp(x) yx(t, x).

Then the state has the form y(t, x) = H(t + exp(−x))
with H(t + 1) = u(t), t ∈ (0, T ) and H(exp(−x)) =
y0(x), x ∈ (0, L).

For the optimal control we obtain u(t) = ud for all
t ∈ (0, T ). Therefore, here the state is controlled exactly
on the turnpike for all (t, x) with t+ exp(−x) > 1. This
implies that all our turnpike estimates apply. �

Example 4. Now we study a problem with quasilinear
dynamics. Let y0(x) ∈ C1(0, L) and ud ∈ R, ud ≥ 0 be
given. Assume that y0(0) ≥ ud and that y0 is increasing.
Consider the optimal control problem

min
u∈H2(0,T )

∫ T

0

|u(t)− ud|2 + |∂t u(t)|2 + |∂tt u(t)|2

+

∫ L

0

|y(t, x)− ud|2 dxdt

subject to the following constraints:

min
t∈[0,T ]

u(t) ≥ 0, y(0, x) = y0(x),

x ∈ (0, L), y(t, 0) = u(t),

t ∈ (0, T ), u(0) = y0(0),

where the control u(t) is decreasing and

yt(t, x) = −(1 + y(t, x)) yx(t, x)

for (t, x) ∈ (0, T ) × (0, L). Then the solution y is
constant along the characteristic curves that are straight
lines. For the characteristic curves that start at x for t = 0
we have ξx(s) = x + (1 + y0(x)) s for s ≥ 0. For the
characteristic curves that start at x = 0 for t ∈ (0, T ]
we have ξt(s) = 0 + (1 + u(t))(s − t) for s ≥ t. The
assumption that y0 is increasing, implies that the curves
ξx do not intersect.

As an alternative to the assumption that y0 is
increasing, we can assume that

max
x∈[0,L]

|y′0(x)| <
minx∈[0, L] |1 + y0(x)|

L

to guarantee that the curves ξx do not intersect with an
intersection point in [0, L].

The constraint that the control u(t) is decreasing
implies that the curves ξt do not intersect.

As an alternative to the assumption that u is
decreasing, we can assume that

max
t∈[0,T ]

{|u(t)|, |u′(t)|} ≤ ε,

where ε > 0 satisfies the inequality (1 + 2T ) ε < 1 and
thus

ε

1− (1 + T ) ε
<

1

T

to guarantee that the curves ξt do not intersect with an
intersection point for s ∈ [0, T ].

The compatibility condition y0(0) = u(0) implies
that ξt=0 = ξx=0 which means that the characteristic
curves that start at x = 0 and t = 0 coincide. Then
the state can be written in the form y(s, ξx(s)) = y0(x)
(s > 0), and y(s, ξt(s)) = u(t) respectively.

If y0(0) = ud, for the optimal control we obtain
u(t) = ud for all t ∈ (0, T ). Therefore, here the state
is controlled exactly on the turnpike for all (t, x) with
x < (1 + ud)t.

If y0(0) > ud, we can apply our main result. Since
the system is exactly controllable to ud in finite time, the
cheap control assumption (19) is satisfied with ε0 = 0 for
all sufficiently large time horizons. Moreover, we have
MS = 0. Therefore, the optimal control satisfies the
estimate (23) with α(z) = 1

2 z
2 for all sufficiently large

time horizons. �

Example 5. Let a length L > 0, the wave speed
c > 0 and a time T0 > 2L/c, k ∈ {1, 2, . . .} and
T = k T0 be given. Define the T0-periodic weight
function w(t) with w(t) = T0 − t for t ∈ [0, T0]. For
y ∈ C((0, T ), H1(0, L)) ∩ C1((0, T ), L2(0, L)) and
t ∈ [0, T ] let E(t) denote the energy,

E(t) =
1

2

∫ L

0

(yx(t, x))
2 +

1

c2
(yt(t, x))

2 dx. (33)

For a parameter γ ≥ 0, an initial position y0 ∈
H1(0, L) with y0(0) = 0 and an initial velocity y1 ∈
L2(0, L), we consider the following problem of optimal
Neumann control for the wave equation:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
u∈L2(0,T )

T∫
0

E(t) + γ
2 w(t)u2(t) dt

subject to
y(0, x) = y0(x), yt(0, x) = y1(x), x ∈ (0, L),
y(t, 0) = 0, yx(t, L) = u(t), t ∈ (0, T ),
ytt(t, x) = c2 yxx(t, x), (t, x) ∈ (0, T )× (0, L).

The exact controllability of the above system is well
established (e.g., Tucsnak and Weiss, 2009, Ex. 11.2.6).
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Thus, it can be steered to the desired final state of energy
zero in finite time, which in turn implies the cheap control
assumption (19) with ε0 = 0 for all sufficiently large time
horizons. Moreover, we have MS = 0. Therefore, the
optimal control satisfies the estimate (23) with α(z) =
1
2 z

2. In fact, here for all γ ≥ 0 an exponential turnpike
property occurs (see Gugat, 2022) and for γ = 0 we even
have a finite-time turnpike property. �

5. Conclusion
We have shown a turnpike theorem for a problem of
optimal control in a general framework that allows for
systems with nonlinear evolution. For strictly dissipative
systems that are cheaply controllable, the optimal control
problems enjoy the turnpike property with interior decay.
In contrast to the previous results on the turnpike property
with interior decay, in this paper we have studied problems
without a terminal condition. Our cheap controllability
assumption implies that in this case the optimal dynamic
state and the optimal dynamic control approach the
optimal static state and the optimal static control also at
the end of the time interval for sufficiently large time
horizons.

The turnpike result states that for large time horizons
T after an initial transient period of length T/2 the integral
in the objective function on the remaining part of the time
interval that is generated by the optimal controls decays at
least with an order of 1/T . In fact, by applying the result
inductively, we obtain a decay with an order 1/T n, where
n ∈ {1, 2, . . .} can be chosen arbitrarily large.

In the case of parabolic or hyperbolic PDEs, the
static problem is an elliptic problem. In 2D and 3D these
steady state optimal control problems can be solved very
efficiently.

It is interesting to study the connection with delays
in the implementation of the optimal controls (see, e.g.,
Gugat and Leugering, 2017). It is well known that
even small delays in the implementation of control laws
can have a destabilizing effect. Since close to a steady
control this effect becomes smaller, there is a natural
link to the turnpike property. Turnpike theorems for
an infinite horizon optimal control problem with time
delay have been studied by Mammadov (2014). The
investigation of the connection between delay and the
turnpike phenomenon for large finite horizon optimal
control remains an interesting open problem.
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