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A nonsmooth optimization control (NOC) based on a sandwich model with hysteresis is proposed to control a microposi-
tioning system (MPS) with a piezoelectric actuator (PEA). In this control scheme, the hysteresis phenomenon inherent in
the PEA is described by a Duhem submodel embedded between two linear dynamic submodels that describe the behavior
of the drive amplifier and the flexible hinge with load, respectively, thus constituting a sandwich model with hysteresis.
Based on this model, a nonsmooth predictor for sandwich systems with hysteresis is constructed. To avoid the complicated
online search for the optimal value of the generalized gradient at a nonsmooth point, the method of the so-called weighted
estimation of generalized gradient is proposed. In order to compensate for the model error caused by model uncertainty, a
model error compensator (MEC) is integrated into the online optimization control strategy. Afterwards, the stability of the
control system is analyzed based on Lyapunov’s theory. Finally, the proposed NOC-MEC method is verified on an MPS
with a PEA, and the corresponding experimental results are presented.
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1. Introduction
Many mechatronic systems have sandwich structures
wherein nonsmooth nonlinear components such as
dead-zone, backlash, or hysteresis are sandwiched
in between linear dynamic subblocks, which is also
called the Wiener–Hammerstein system with nonsmooth
nonlinearities (Luo et al., 2015; Dong et al., 2013;
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2016; 2017). A typical sandwich system usually has
the structure as shown in Fig. 1, where L1 is the input
linear dynamic subsystem, L2 is the output linear dynamic
subsystem and N represents the nonlinear subsystem,
respectively. In precision positioning systems, hysteresis
is usually involved in the smart materials-based actuators,
such as the actuators made by piezoelectric ceramic, shape
memory alloy and electromagnetic materials (Xue et al.,
2019; Harnischmacher and Marquardt, 2007; Oliveri
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Fig. 1. Sandwich system structure.

et al., 2019; Janaideh et al., 2008). A micropositioning
stage (MPS) with a piezoelectric actuator (PEA) can be
classified as a sandwich system with hysteresis since
the piezoelectric actuators in the stage are involved with
hysteresis.

Note that hysteresis in the PEA of an MPS
is a nonsmooth nonlinearity with a rate-dependent
characteristic, which may lead to undesired positioning
residuals, phase lag reduction and oscillation, etc.,
so that the dynamic system performance will be
deteriorated. Hence, in order to obtain accurate
positioning and satisfactory dynamic performance of
MPS, the corresponding controller should have the
capability to suppress the influence of the hysteresis.

For the control of the MPS with the PEA,
optimization based on a control strategy is one of
interesting alternatives. Nowadays, various optimized
control strategies of the nonlinear systems have been
proposed, e.g., fuzzy control with optimal design (Tong
et al., 2018), adaptive reconfiguration control (Zhang
et al., 2022) and adaptive optimizing control (Yu
et al., 2022; Li et al., 2022), etc. These control
strategies are applicable for the dynamic systems with
monotonic or smooth nonlinear factors. Note that for the
dynamic systems with nonlinear factors with nonsmooth
and multivalued characteristics such as hysteresis, new
optimization control schemes need to be studied.

For the sandwich systems with hysteresis, if the
input and output of the embedded hysteresis can be
reconstructed, then the inverse model-based control
strategy, such as internal model control (Dong et al.,
2013) and nonlinear decoupling control (Xie et al., 2013)
are applicable. The advantage of the inverse hysteresis
model-based compensation is that the hysteresis effect can
be suppressed by the inverse hysteretic model. In addition,
it can increase the bandwidth of the system and yield
fast system response. However, the obvious disadvantage
is that the existence of model uncertainty may degrade
the compensation performance. Moreover, building the
inverse hysteresis model is not an easy job. In order to
avoid building the inverse hysteresis model, Zhao and Tan
(2006) proposed a pseudoinverse hysteresis model based
adaptive neural network control method.

If the input and output of hysteresis in the
sandwich system cannot be reconstructed, then the direct
control methods such that sliding mode control strategies

(Corradini et al., 2005; Manni et al., 2008) are applied. On
the other hand, Tao et al. (2001) proposed a compound
control method and Taware et al. (2002) developed a
hybrid control method for nonsmooth sandwich systems.
In addition, Dong et al. (2008) proposed a nonsmooth
nonlinear programming based predictive control strategy
for the systems with backlash-like hysteresis.

It is noted that only the case that the rate-independent
hysteresis in the sandwich systems is considered in the
aforementioned literature. In fact, in the MPS, the
hysteresis inherent in the PEA has a rate-dependent
characteristic. Usually, the rate-dependent hysteresis
is more complex than the rate-independent case since
rate-dependent hysteresis causes the phase lag that varies
with input frequency and produces a complicated dynamic
phenomenon.

Moreover, in most of the above-mentioned schemes,
the online optimization of the control strategy is not
considered. However, it is important to consider the online
optimization solution for the control strategy to ensure
satisfactory control performance. Since the sandwich
system with hysteresis is a nonsmooth dynamic system,
conventional optimization techniques cannot be directly
applied. Therefore, inspired by the above discussion,
in this paper, an online optimization control scheme is
proposed for the sandwich systems with rate-dependent
hysteresis.

Due to the nonsmooth feature of hysteresis, the
optimization control for sandwich system with hysteresis
will face the challenge that the gradients will not exist
at nonsmooth points. Therefore, the subgradients should
be introduced to deal with this problem. Usually,
the computation of subgradients calls for an offline
method (Clarke et al., 1998). However, the real-time
control strategy needs to consider the online scheme
of nonsmooth optimization, so it is necessary to study
the online optimization control strategy based on the
subgradient technique. Note that subgradients at
nonsmooth points tend to have multiple values; therefore
subgradients can be represented as closed intervals at
nonsmooth points, which may lead to complex search
computations. If subgradient-based online optimization
is implemented, then it may become a computational
burden for real-time control. To simplify computations, a
novel method is proposed to approximate the subgradients
at nonsmooth points using smooth interpolation-based
estimates.

Subsequently, for reducing the effect of model
uncertainty to system performance, a model error
compensator (MEC) is introduced to the nonsmooth
d-step-ahead predictor based on the sandwich model
with rate-dependent hysteresis. Then, a nonsmooth
optimization control (NOC) scheme with MEC is
proposed for online optimized tuning of the control
mechanism towards the minimization of the control
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cost function. By introducing the MEC, the proposed
nonsmooth optimization control with a model error
compensator (NOC-MEC) scheme has the following
advantages:

(i) Considering robust control usually requires
conservative design by sacrificing the transient
performance of the system. The proposed
NOC-MEC method can improve the prediction
accuracy of the system by introducing the MEC.
Then, the corresponding NOC-MEC strategy does
not need to be conservatively designed to tolerate
model uncertainty.

(ii) Noting that the adaptive control scheme requires
online estimation of model parameters, updating the
parameters of a sandwich model with rate-dependent
hysteresis online is not an easy task. This is time-
consuming and results in a large computational cost.
The proposed NOC-MEC strategy does not need to
update the parameters of the system model online
and is therefore computationally simpler than the
adaptive control method.

Therefore, the main contributions of this paper are as
follows:

(i) A subgradient based nonsmooth optimization control
scheme is proposed to deal with the control
of micropositioning systems with rate-dependent
hysteresis.

(ii) A method of interpolation-based estimation is
proposed to approximate the subgradients at
nonsmooth points, which simplifies the search
process of sub-gradients.

(iii) A model error compensator is integrated in the
control scheme to suppress the effect of unknown
model mismatches.

The organization of this paper is as follows. In
Section 2, the sandwich model with hysteresis used to
describe the MPS with the PEA is briefly described.
Then, based on the sandwich model with hysteresis, the
NOC-MEC is constructed in Section 3. In Section 4,
the stability analysis of the control system is presented.
Afterward, in Section 5, the proposed NOC-MEC method
is verified on the displacement control of an MPS with a
PEA. Finally, conclusions of the paper are presented in
Section 6.

2. Sandwich model with hysteresis
In the sandwich model with hysteresis used to describe the
behavior of the micropositioning stage, the linear dynamic
subsystems L1 and L2 are used to describe the properties

of the driving circuit and the flexible hinge with load,
which can be respectively depicted by

L1 : A1(q
−1)v(k) = q−dB1(q

−1)u(k) (1)

and
L2 : A2(q

−1)y(k) = B2(q
−1)w(k), (2)

where u(k) ∈ R and y(k) ∈ R represent the input
voltage of the MPS and output displacement of the MPS,
respectively, while v(k) ∈ R and w(k) ∈ R are internal
variables of the system and cannot be measured directly.
Here q−1 is the unit back-shift operator (i.e., q−1x(k) =
x(k − 1)), as well as A1(q

−1), B1(q
−1), A2(q

−1) and
B2(q

−1) are polynomials which can be expressed as

A1(q
−1) = 1 + a11q

−1 + · · ·+ a1n1aq
−n1a ,

B1(q
−1) = b10 + b11q

−1 + · · ·+ b1n1b
q−n1b , b10 �= 0,

A2(q
−1) = 1 + a21q

−1 + · · ·+ a2n2aq
−n2a ,

B2(q
−1) = b20 + b21q

−1 + · · ·+ b2n2b
q−n2b , b20 �= 0,

respectively, where n1a, n1b, n2a and n2b are the
orders of the polynomials A1(q

−1), B1(q
−1), A2(q

−1)
and B2(q

−1), respectively; d denotes the time delay,
and a11, . . . , a1n1a , b10, . . . , b1n1b

, a21, . . . , a2n2a and
b20, . . . , b2n2b

as well as d are known coefficients.
On the other hand, to describe the characteristic of

rate-dependent hysteresis in the piezoelectric actuator of
the MPS, the Duhem model (Oh and Bernstein, 2005;
Dong et al., 2016; 2017) is employed, i.e.,

N : w(k) = w(k − 1) + α[f0 sgn(v(k − 1))

+ f1v(k − 1)− w(k − 1)]|Δv(k)|
+ g0Δv(k),

(3)

where sgn(x) is the sign function, α, f0, f1 and g0 are
known coefficients satisfying the dissipative condition,
i.e., g0 > 0 and g0 ≤ f1, as well as the stability condition:
0 < α|Δv(k)| < 2, where Δv(k) = v(k) − v(k − 1)
(Dong et al., 2017).

Hence, the corresponding sandwich model with
rate-dependent hysteresis can be described by (1), (2) and
(3).

The goal of this paper is to design the NOC-MEC
scheme for the micropositioning stage with a piezoelectric
actuator, which has a sandwich structure with
rate-dependent hysteresis, such that the cost function is
minimized and the system output can track the reference
trajectory of the system.

3. NOC-MEC strategy
In this section, the NOC-MEC strategy is developed
based on the prediction of the sandwich system with
rate-dependent hysteresis. The architecture of the system
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Fig. 2. Architecture of the proposed NOC-MEC method.

with NOC-MEC scheme is shown in Fig. 2. In this
architecture, the reference trajectory, the outputs of the
controller, the MPS with the PEA model and the MEC
are fed to form the cost function. Then, the cost function
is minimized online by the optimization mechanism to
generate the corresponding optimization control.

3.1. Prediction based on the nonsmooth sandwich
model. Because v and w are usually not measured
directly, they need to be estimated based on submodels
L1(·) and N(·). Therefore, by using the Diophantine
equation (Clarke et al., 1987), i.e.,

1 = Q(q−1)A1(q
−1) + q−dH(q−1), (4)

where

Q(q−1) = 1 + q1q
−1 + · · ·+ qd−1q

−(d−1),

H(q−1) = h0 + h1q
−1 + · · ·+ hn1a−1q

−(n1a−1)

and the coefficients of polynomials Q(q−1) and H(q−1)
are described by

qi = −
i∑

s=1

qi−sa1s, i = 1, 2, . . . , d− 1,

hj = −
d−1∑

s=0

qd−1−sa1,j+s+1, j = 0, 1, . . . , n1a − 1,

respectively, the corresponding d-step-ahead predictor is
derived by

v̂(k + d|k) = H(q−1)v(k) +R(q−1)u(k), (5)

where

R(q−1) = Q(q−1)B1(q
−1)

= r0 + r1q
−1 + · · ·+ rn1b+d−1q

−(n1b+d−1),

ri =

i∑

j=0

b1,i−jqj , i = 0, 1, . . . , n1b + d− 1.

By substituting (5) into (3), the prediction of the hysteresis
in between L1(·) and N(·) will be

N : ŵ(k + d|k)
= ŵ(k + d− 1))

+ α[f0 sgn(v̂(k + d− 1) + f1v̂(k + d− 1)

− ŵ(k + d− 1)]|Δv̂(k + d|k)|
+ g0Δv̂(k + d|k),

(6)

Then, by combining (6) and (2), the prediction of the
sandwich system with hysteresis is obtained, i.e.,

ŷ(k + d|k) =A21(q
−1)ŷ(k + d− 1)

+B2(q
−1)ŵ(k + d|k), (7)

where A21(q
−1) = −a21q−1 − · · · − a2n2aq

−(n2a−1).
Thus, (5)–(7) represent the d-step-ahead nonsmooth

predictor of the sandwich system with hysteresis.

3.2. NOC-MEC strategy. Usually, the model
uncertainty caused by modeling residuals cannot be
ignored. To compensate the impact of model uncertainty
on the control system performance, an MEC is introduced
to improve the accuracy of the system prediction, i.e.,

ȳ(k + d)

= ŷ(k + d|k) + φ(ε(k))

= A21(q
−1)ŷ(k + d− 1)

+B2(q
−1)ŵ(k + d|k) + φ(ε(k)),

(8)

where ε(k) = y(k)− ŷ(k) and

φ(ε(k)) = σ[y(k)− ŷ(k)] (9)

is the MEC, where σ > 0 is the compensation factor.
Define the cost function of the control system as

J =
1

2
[e(k + d)]2 +

λ

2
[Δu(k)]2, (10)

where λ > 0 is the weighting factor and

e(k + d) = rs(k + d)− ȳ(k + d)

= rs(k + d)− ŷ(k + d|k)− φ(ε(k))
(11)

is the prediction error, where rs denotes the reference
trajectory.

Assumption 1. Assume that the cost function (10) has at
least one extremum.

Letting 0 ∈ ∂u(k−1)J [u(k − 1)] leads to

u(k) = u(k − 1) + γe(k + d)∂u(k−1)e(k + d), (12)



Nonsmooth optimization control based on a sandwich model . . . 453

where γ = 1/λ is optimizing stepsize and the subgradient
of e(k + d) with respect to u(k − 1) is

∂u(k−1)e(k + d) = −∂u(k−1)ŷ(k + d|k)
− ∂u(k−1)φ(ε(k)),

(13)

where

∂u(k−1)ŷ(k + d|k) =∂ŵ(k+d|k)ŷ(k + d|k) · (∂v̂ŵ)k
· ∂u(k−1)v̂(k + d|k),

(14)
with (∂v̂ŵ)k = ∂v̂(k+d|k)ŵ(k + d|k). Based on (7),

∂ŵ(k+d|k)ŷ(k + d|k) = b20, (15)

and in terms of (5),

∂u(k−1)v̂(k + d|k) = r1. (16)

Moreover, for the convenience of analysis, let

F+
k =g0 + α[f0 sgn(v̂(k + d− 1))

+ f1v̂(k + d− 1)− ŵ(k + d− 1)]
(17)

and

F−
k =g0 − α[f0 sgn(v̂(k + d− 1))

+ f1v̂(k + d− 1)− ŵ(k + d− 1)].
(18)

Based on (6), (∂v̂ŵ)k in the smooth segments of
rate-dependent hysteresis is

(∂v̂ŵ)k =

{
F+
k , Δv̂(k + d|k) > 0,

F−
k , Δv̂(k + d|k) < 0.

However, at the nonsmooth points of rate-dependent
hysteresis, the gradient does not exist. In this case,
ŵ is not differentiable. Hence, the corresponding
subgradient is introduced. At a nonsmooth point, ŵ has
many subgradients. Figure 3 illustrates the subgradients
of hysteresis at the nonsmooth point A: only two
subgradients, s1 and s2, where s1 = (∂v̂1ŵ)k−i and s2 =
(∂v̂2ŵ)k−i−1 , are shown. Thus, it can be expressed as a
closed interval at nonsmooth points (Clarke et al., 1998),
i.e., (∂v̂ŵ)k = [F−

k , F
+
k ].

Since determination of the subgradient at a
nonsmooth point entails the search for all possible
gradient values in a closed interval, and then selection of
an optimal one, the computational burden of the online
optimization search may be quite high.

To simplify the online search for the subgradient at a
nonsmooth point, an approximation of the subgradient via
smooth function-based estimation is proposed.

Lemma 1. (Chen, 2012) Suppose ŵ(k+d|k) = D[v̂(k+
d|k)] is locally Lipschitz continuous andG[v̂(k+ d|k), β]
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Fig. 3. Multiple values of the subgradient at nonsmooth points.

is a smoothing function ofD(·) for any fixed β > 0. Then,
for any v̂, {

lim
v̂k→v,βk↓0

∇vD̃(v̂k, βk)
}

is nonempty, bounded and ∂D(v̂) = GD̃(v̂),where the
Clarke subdifferential ∂D(v̂) = con{v̂|∇D(z) → v̂, D
is differentiable at z, z → v̂} and the subdifferen-
tial associated with the smoothing function GD̃(v̂) =

con{v̂|∇v̂D̃(v̂k, βk) → v̂, for v̂k → v̂, βk ↓ 0}, where
con denotes the convex hull of a set.

Based on Lemma 1, interpolation between the left
and right gradients of ŵ(k + d|k) with respect to v̂(k +
d|k) approaching the extremum points is applied, i.e.,
(∂v̂ŵ)k = βkF

+
k + (1 − βk)F

−
k , where 0 < βk < 1 .

According to the above analysis, (∂v̂ŵ)k is approximated
by

(∂v̂ŵ)k

=

⎧
⎪⎨

⎪⎩

F+
k , Δv̂(k + d|k) > 0,

βkF
+
k + (1− βk)F

−
k , Δv̂(k + d|k) = 0,

F−
k , Δv̂(k + d|k) < 0.

(19)

Remark 1. In (19),

βk =
1

1 + exp(−m(∂v̂ŵ)k−1)
,

where m > 0 determines the slope of the exponential
function. Obviously, βk varies with (∂v̂ŵ)k−1. If
(∂v̂ŵ)k−1 ≥ 0, 0.5 ≤ βk < 1, in this case F+

k will
dominate the interpolation. On the other hand, when
(∂v̂ŵ)k−1 < 0, it results in 0 ≤ βk < 0.5. Therefore,
F−
k plays a major role in this case.

Then, substituting (15) and (16) into (14) yields

∂u(k−1)ŷ(k + d|k) = r1b20(∂v̂ŵ)k. (20)
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Defining ψ(k) = ∂u(k−1)e(k+d) and combining (13) and
(20) leads to

ψ(k) = r1b20(∂v̂ŵ)k − ∂u(k−1)φ(ε(k)), (21)

where the subgradient ∂u(k−1)φ(ε(k)) is approximated by
the finite difference, i.e., ∂u(k−1)φ(ε(k)) ≈ [φ(ε(k, u(k−
1) + τ)) − ε(k, u(k − 1) − τ))]/(2τ), τ > 0; here
τ is a very small positive number. Based on (12),
the corresponding NOC-MEC scheme for the sandwich
system with hysteresis described by (1)–(3) becomes

u(k) = u(k − 1) + γe(k + d)ψ(k). (22)

From the above analysis, it can be seen that the
NOC-MEC method not only considers the suppression of
hysteresis effect, but also compensates the influence of
model uncertainty.

Remark 2. In order to obtain the control strategy
(22), the generalized-gradient of the nonsmooth cost
function with respect to control input is applied. Similarly
to hysteresis phenomenon, dead-zone and backlash also
have nonsmooth nonlinear characteristics; therefore, the
proposed method can also be used for the control of
sandwich systems with dead-zone or backlash.

4. Stability analysis
In this section, the stability of the sandwich systems with
hysteresis using NOC-MEC scheme will be analyzed.

Lemma 2. If L1(·) < +∞, L2(·) < +∞ and Eqn. (3)
satisfies 0 < α|w(k)−w(k−1)| < 2 (Dong et al., 2017),
the sandwich system with hysteresis described by (1)–(3)
is a stable system with bounded input and bounded output
(BIBO).

Proof. Please refer to Appendix A. �

To investigate the properties of subgradient ψ(k)
represented by (21), we use the following result.

Lemma 3. If u(k) is bounded and |∂u(k−1)φ(ε(k))| ≤
η0, where η0 is an upper bound, then there exists ηv > 0
such that |ψ(k)| ≤ ηv , where ψ(k) is described by (21).

Proof. Please refer to Appendix B. �

Then, the stability condition can be derived based on
the following result.

Theorem 1. Assume that the NOC-MEC strategy (21)
and (22) is applied to the system described by (1)–(3).
Suppose that the factor is chosen as ρ = ρ0 + 2ψ2(k),
where ρ0 > 0 is a constant and ψ(k) is described by (21).
If the optimizing stepsize γ satisfies

0 < γ ≤ 2

ρ0 + ψ2(k)
, (23)

then the control system is stable and e(k + d, u(k)) → e∗

as k → ∞, where e∗ = mink{|e(k + d, u(k))|} → 0.

Proof. Define Lyapunov’s function of the system as

V (k) = e2(k + d, u(k)) + ρ[Δu(k)]2. (24)

Rearranging (22) leads to

Δu(k) = γψ(k)e(k + d, u(k)). (25)

Then

e(k + d, u(k)) = e(k + d, u(k − 1))

+ Δe(k + d, u(k)),
(26)

where

Δe(k + d, u(k)) ≈ ∂e(k + d, u(k)

∂u(k)
Δu(k)

= −ψ(k)Δu(k).
(27)

Thus, combining (25) and (27) results in

Δe(k + d, u(k)) = −γψ2(k)e(k + d, u(k)). (28)

Based on (25), (26) and (28), this yields

e2(k + d, u(k))− e2(k + d, u(k − 1))

= γψ2(k)[γψ2(k)e2(k + d, u(k))

− 2e(k + d, u(k − 1))e(k + d, u(k)].

(29)

Substituting (28) into (26) leads to

e(k+ d, u(k− 1)) = (1 + γψ2(k))e(k+ d, u(k)). (30)

From (29) and (30), this implies

e2(k + d, u(k))− e2(k + d, u(k − 1))

= −γψ2(k)(2 + γψ2(k))e2(k + d, u(k)).
(31)

Furthermore, based on (25) and (31), this results in

e2(k + d, u(k))− e2(k + d, u(k − 1)) + ρ[Δu(k)]2

= γψ2(k)e2(k + d, u(k))[(ρ− ψ2(k))γ − 2].
(32)

According to (24) and (32), we have

V (k)− V (k − 1)

= e2(k + d, u(k)) + ρ[Δu(k)]2

− e2(k + d, u(k − 1))− ρ[Δu(k − 1)]2

≤ γψ2(k)e2(k + d, u(k))[(ρ− ψ2(k))γ − 2].

(33)

If γ is chosen such that

0 < γ ≤ 2

ρ0 + ψ2(k)
,

where ρ = ρ0 + 2ψ2(k), ρ0 > 0, we get V (k) −
V (k − 1) ≤ 0. Thus, we have V (k) ≤ V (k − 1) ≤
· · · ≤ V (0); in other words, {V (k)} is a monotonically
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decreasing sequence. Thereby, {V (k)} converges to a
nonnegative scalar V ∗ > 0 such that limk→+∞ V (k) =
V ∗. Therefore, the control system is stable.

For e∗ = mink{|e(k + d, u(k))|}, we have
{
1− e∗

e(k+d,u(k)) = 0, e(k + d, u(k)) = e∗,

0 < 1− e∗
e(k+d,u(k)) ≤ 2, otherwise.

(34)
Subtracting e∗ from both the sides of (26) and

considering (28) yields

ẽ(k) = ẽ(k − 1)− γψ2(k)e(k + d, u(k)). (35)

where ẽ(k) = e(k + d, u(k))− e∗. Hence

ẽ2(k) = ẽ2(k − 1)− 2γψ2(k)e2(k + d, u(k))

×
[
1− e∗

e(k + d, u(k))

]

− γ2ψ4(k)e2(k + d, u(k))

≤ ẽ2(k − 1).

Thus, {ẽ2(k)} is a monotonically decreasing
sequence. Thereby, {ẽ2(k)} converges to its minimum
(ẽ∗k)

2 as k goes to infinity, that is, limk→+∞ ẽ2(k) =
(ẽ∗k)

2.
Moreover, from (34) and (35) it follows that

ẽ2(k)

ẽ2(k − 1)
=

(
1 +

γψ2(k)

1− e∗
e(k+d,u(k))

)−2

. (36)

Denote by σk the right-hand side of (36).
If e∗ �= e(k + d, u(k)), then σk ∈ (0, 1). Let σ =

maxk{σk} ∈ (0, 1). Therefore,

0 ≤ ẽ2(k) ≤ σẽ2(k − 1) ≤ · · · ≤ σkẽ2(0), (37)

where ẽ2(0) is a constant. Thus, limk→+∞ ẽ2(k) = 0 and
limk→+∞ e(k + d, u(k)) = e∗.

If e∗ = e(k+d, u(k)), this yields ẽ2(k) = ẽ2(k−1).
Based on Assumption 1, it is known that ẽ2(k) arrives at
an extremum, i.e., limk→+∞ e(k + d, u(k)) = e∗. �

Theorem 2. If the control strategy (22) is applied to
the system described by (1)–(3), the system output can
track the reference trajectory accurately in steady state,
i.e., e(k + d) → 0, as k → ∞.

Proof. Multiplying both the sides of (2) by Δ = 1 = q−1

results in

A2(q
−1)Δy(k) = B2(q

−1)Δw(k). (38)

From (3), we get

Δw(k) = (∂v̂ŵ)k|Δv(k)|. (39)

Then, in terms of (1) and (22), this leads to

A1(q
−1)v(k) = q−dB1(q

−1)Δ−1γe(k + d)ψ(k). (40)

Rearranging (40) yields

A1(q
−d)Δv(k) = q−1B1(q

−1)γe(k + d)ψ(k). (41)

Then, combining (38), (39) and (41) results in

|A1(q
−1)|A2(q

−1)Δy(k)

= B2(q
−1)(∂v̂ŵ)k

· |q−dB1(q
−1)γe(k + d)ψ(k)|.

(42)

Based on Lemma 2, for the bounded input u, y is also
bounded, i.e., for η1u > 0, |y(k)| ≤ η1u. Thus,

0 < |q−dB1(q
−1)B2(q

−1)(∂v̂ŵ)kγe(k + d)ψ2(k)|
= |A1(q

−1)A2(q
−1)Δy(k)|

≤ η1u|Δ||A1(q
−1)A2(q

−1)|.
(43)

Then, based on Lemma 3, (∂v̂ŵ)k and ψ(k) are all
bounded. In this case, taking the limit of (43) results in

0 < γ|B1(q
−1)B2(q

−1)||(∂v̂ŵ)k||ψ2(k)||e(k + d)|q−1→1

≤ lim
q−1→1

η1u|Δ||A1(q
−1)|A2(q

−1)| → 0.

(44)
Therefore, e(k + d) → 0 as k → ∞. �

5. Experimental results
The proposed NOC-MEC scheme is validated on an MPS
with a PEA as shown in Fig. 4, where a three-dimensional
micropositioning stage driven by PEA is illustrated. On
each axis, an amplifier with a filtering circuit is used to
drive the piezoelectric actuator to produce deformation,
which is amplified by the flexure hinge to drive the
load. Then, the displacement of the load is measured by
the integrated capacitive positioning sensor. In addition,
the measured displacement signal is amplified by the
conditioning circuit and then sampled by a 12-bit A/D
converter and fed to the computer. After that, the digital
control signal sent out by the computer is converted
into an analogy signal by a 12-bit D/A converter, then
amplified by the amplifier with the filtering circuit to drive
the piezoelectric actuator. In this paper, the NOC-MEC
scheme is only tested on the X-axis of the stage.

To describe the characteristic of the single-axis
system, a sandwich model with hysteresis as shown in
Fig. 1 is constructed. In this model, L1 is utilized to
describe the characteristic of the amplifier with filtering
circuit, and L2 is employed to depict the flexure hinge
with the load driven by the PEA, N is a Duhem submodel
used to describe the hysteresis feature of the PEA in the
system.
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Fig. 4. Micropositioning stage driven by the PEA.

Moreover, u is the input voltage sent to the amplifier
with the filtering circuit, v is the actuated voltage output
by the amplifier with filtering circuit, w denotes the force
of PEA, and y represents the displacement of the flexure
hinge with the load.

5.1. Sandwich model with hysteresis. In the case
when the sampling period is chosen as Ts = 0.001 ms, the
step-response of the MPS with the PEA is shown in Fig. 5.
It is shown that a time delay exists in the system and the
underdamped oscillation occurs due to the influence of
hysteresis.

Then, the sandwich model with hysteresis used to
describe the characteristics of the MPS with the PEA was
obtained by using the recursive identification method of
Dong et al. (2017). Due to the chosen sampling frequency,
the resulting time delay is d = 5. Based on the obtained
model, the input linear submodel used to describe the
characteristic of the amplifier with filtering circuit is

L1 : (1−0.7491q−1)v̂(k) = q−5(1+0.7q−1)u(k), (45)

while the output linear submodel to depict the property of
the flexure hinge with load is

L2 : (1− 1.2q−1 + 0.31q−2)ŷ(k)

= (0.05 + 0.005q−1)ŵ(k), (46)
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Fig. 5. Step response of the MPS with the PEA.
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Fig. 6. Model residual in time domain and relative the model
residual in frequency domain.

and the hysteresis feature of the piezo-actuator is modeled
by

N : ŵ(k)

= ŵ(k − 1) + 0.024[0.65 sgn(v̂(k − 1)) + 0.19v̂(k − 1)

− ŵ(k − 1)]|Δv̂(k)|+ 0.14Δv̂(k).
(47)

When the sinusoidal input with attenuated amplitude
and frequency, i.e.,

r(kTs) = 5e−20kTs sin(500πe−2kTskTs) + 5,

is fed to the piezo-actuated micropositioning stage and
the above-stated model, the corresponding response
difference between the piezo-MPS and the obtained model
is illustrated in Fig. 6. It can be seen that the system
has obvious model residuals. In addition, the amplitude
frequency curve of the relative model residual is also
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Fig. 7. Control response of the MPS via the NOC-MEC method.
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shown in Fig. 6. It can be seen that the resonance peaks
occur at about 10.2 Hz and at a higher frequency of
about 250 Hz. To deal with the displacement control
of the positioning system with model uncertainty, the
nonsmooth optimization control law represented by (21)
and (22) is applied to the control of the piezo-positioning
stage.

5.2. Reference trajectory tracking. To test the
tracking performance of the NOC-MEC method, the
reference trajectory of the MPS is a sinusoidal signal, i.e.,
r(k) = 5 sin(2πfk) + 5, f = 100 Hz. The control
parameters are selected as β = 0.5, γ = 36 and σ =
0.23, respectively. The corresponding control response
is shown in Fig. 7. It is seen that the proposed control
scheme has achieved satisfactory control performance.

Moreover, Fig. 8 demonstrates the search process
of the control system within one sampling period via
iteration. It is seen that the cost function is not smooth
due to the existence of nonsmooth hysteresis. Using the
proposed search, an optimal value of the system can be
reached.

It is known that the optimization stepsize γ in the
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Fig. 9. Influence of γ on the control response of the MPS.
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NOC-MEC control scheme has significant influence on
the control performance. By fixing σ = 0.25 and
choosing different values of γ, the comparison of the
corresponding control responses is shown in Fig. 9. From
the figure it is clear that the sluggish response is obtained
when the value of γ is chosen to be 1. However, when
γ = 2.5 , the resulting control response is fast and stable.
On the other hand, the aggressive response with overshoot
is produced as the value of γ is chosen as 5. Therefore, it
can be concluded that smaller values of γ will lead to slow
control responses and larger values of γ will speed up the
responses, but may also lead to overshoot and oscillation
of the control response.

For evaluating the effect of the compensation factor
shown in (8) and (9) on NOC-MEC control performance,
let σ be 0.01, 0.1 and 0.25, respectively, with the fixed
β = 0.5 and γ = 3.5. Figure 10 illustrates the responses
of the control scheme with the NOC-MEC when σ is
with the chosen values. When the value of σ is 0.01, the
system exhibits a sluggish response. On the other hand,
when σ equals 0.25, it results in a more aggressive and
faster response than the cases of choosing smaller values
of σ. In addition, when σ is 0.25, the overshoot occurs in
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K

N(.)
Fig. 11. Structure diagram of the pseudoinverse hysteresis sub-

model.

the system response. The results show that the overshoot
increases rapidly as the value of σ increases.

5.3. Comparing NOC-MEC with nonlinear NIMC
method. In order to evaluate the robustness of the
proposed NOC-MEC strategy, it is compared with the
nonlinear internal model control (NIMC) method, which
is a well-known robust control strategy. To design
the nonlinear internal model controller, based on (45)
and (46), the corresponding inverse submodels of L1

and L2 are described by L−1
1 (q−1) = u(k)/v̂(k) ≈

(1 − 0.7491q−1)/(1 + 0.7q−1) and L−1
2 (q−1) =

ŵ(k)/ŷ(k) ≈ (1−1.2q−1+0.31q−2)/(0.05+0.005q−1),
respectively. In addition, the inverse hysteresis submodel
is approximated based on the pseudoinverse structure
(Dong et al., 2020) as shown in Fig. 11, where v̂(k) =
Kŵ(k)/(1 + N(·)K). When gain K is chosen to let
|KN(.)| � 1, this leads to v̂(k) = N−1(·)ŵ(k)
approximately.

Thus, the corresponding NIMC strategy is designed
as

u(k) = L−1
2 (q−1)N−1(·)L−1

1 (q−1)F (q−1)eI(k), (48)

where F (q−1) is a robust filter and eI(k) = r(k) −
y(k) + ŷ(k) is the system error. In the experiment,
the parameters of the NOC-MEC method are chosen as
β = 0.5, γ = 36 and σ = 0.23. On the other hand,
based on the relative model residual shown in Fig. 6, the
robust filter of the NIMC scheme is chosen as F (q−1) =
0.0128/(1 − 0.995q−1). Moreover, the setpoint of the
micro-positioning stage is r(k) = 5 sin(200πk) + 5.
The corresponding comparisons of the controlled system
response and system error between the NOC-MEC and
NIMC methods are shown in Figs. 12 and 13, respectively.

Moreover, when the setpoint is a sawtooth wave
sequence with the frequency f = 50 Hz and amplitude
varying from 0 to 10μm, the parameters of the NOC-MEC
strategy are β = 0.5, γ = 3.5 and σ = 0.23. Then,
the robust filter of the NIMC scheme is F (q−1) =
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Fig. 12. Comparison of the positioning control response be-
tween the NIMC and NOC-MEC methods (sinusoidal
setpoint).
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Fig. 13. Comparison of the system error between the NIMC and
NOC-MEC methods.

0.0384/(1 − 0.985q−1). Figures 14 and 15 respectively
show the comparisons of control responses between the
NIMC and NOC-MEC methods and the corresponding
comparison of the controlled system errors between the
two methods.

Through those comparisons, it can be seen that the
proposed NOC-MEC method achieves a more accurate
tracking response than the NIMC method. The results
show that the NOC-MEC method has a good ability to
compensate the influence of the model uncertainty. This
is because the integrated model error compensator in
the NOC-MEC method compensates the influence of the
model error, which can improve the dynamic performance
of the system and yield faster and more accurate tracking
control performance. In addition, it can be seen that
although the NIMC method can also deal with model
uncertainty, its robust stability design of the controller
leads to a more conservative control effect and slower
tracking performance.
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Fig. 14. Comparison of the control responses between the
NIMC and NOC-MEC methods when the setpoint is
a sawtooth wave.
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Fig. 15. Comparison of the controlled system errors between
the NIMC and NOC-MEC methods when the setpoint
is sawtooth wave.

6. Conclusion

In this paper, a sandwich model with hysteresis is used to
describe the micropositioning stage with piezo- actuators.
Then the online nonsmooth optimization control method
for the sandwich systems with hysteresis is proposed. Due
to the existence of nonsmooth hysteresis, the gradients
of the cost function of the nonsmooth sandwich system
with respect to the control input do not exist at nonsmooth
points. Thus, the subgradient of the nonsmooth cost
function with respect to the control input is applied. To
avoid the complicated calculation of online search for
an optimal value of the subgradient which is, in fact, a
close interval at nonsmooth point, the estimation of the
subgradient with smooth interpolation is proposed.

To tackle the influence of model uncertainty, a model
error compensator is integrated in the control strategy.
Thus, the robust stability of the resulting NOC-MEC
strategy can be enhanced and the tracking performance

of the system can be improved. Moreover, the stability
of the control system is analyzed by Lyapunov’s method.
Compared with the NIMC strategy, the verification results
of the proposed NOC-MEC method on the MPS with the
PEA system show that the proposed scheme has achieved
much more satisfactory performance.

Because of the complexity of sandwich models, it is
very difficult to identify a specific sandwich model. In the
next step, it is very meaningful to consider how to realize
the optimal control of the model-free sandwich system.

Acknowledgment
This work was supported by the National Natural Science
Foundation of China under the grants 62171285 and
61971120.

References
Chen, X. (2012). Smoothing methods for nonsmooth, nonconvex

minimization, Mathematical Programming 134(1): 71–79.

Clarke, D.W., Mohtadi, C. and Tuffs, P.S. (1987). Generalized
predictive control. Part II: Extensions and interpretations,
Automatica 23(2): 149–160.

Clarke, F., Ledyaev, Y., Stern, R. and Wolenski, P. (1998). Non-
smooth Analysis and Control Theory, Springer, New York.

Corradini, M., Orlando, G. and Parlangeli, G. (2005). Robust
control of nonlinear uncertain systems with sandwiched
backlash, Proceedings of the 44th IEEE Conference on De-
cision and Control, Seville, Spain, pp. 8112–8117.

Dong, R., Tan, Q. and Tan, Y. (2008). A nonsmooth nonlinear
programming based predictive control for mechanical
servo systems with backlash-like hysteresis, Asian Journal
of Control 20(4): 1519–1532.

Dong, R., Tan, Y. and He, D. (2013). A non-smooth IMC method
for mechanical systems with backlash, Journal of Control
Theory Applications 11(4): 600–607.

Dong, R., Tan, Y. and Tan, Q. (2020). Mirror angle
tuning of electromagnetic micro-mirrors with oscillation
compensation, IEEE Transactions on Systems, Man and
Cybernetics: Systems 50(8): 2969–2977.

Dong, R., Tan, Y. and Xie, Y. (2016). Identification of
micropositioning stage with piezoelectric actuators, Me-
chanical Systems and Signal Processing 75: 618–630.

Dong, R., Tan, Y., Xie, Y. and Janschek, K. (2017). Recursive
identification of micropositioning stage based on sandwich
model with hysteresis, IEEE Transactions on Control Sys-
tems Technology 25(1): 317–325.

Harnischmacher, G. and Marquardt, W. (2007). Nonlinear
model predictive control of multivariable processes using
block-structured models, Control Engineering Practice
15(10): 1328–1256.

Janaideh, M., Su, C. and Rakheja, S. (2008). Development
of the rate-dependent Prandtl–Ishlinskii model for smart
actuators, Smart Materials and Structures 17(3): 035026.



460 S. Yang et al.

Li, Y., Liu, Y. and Tong, S. (2022). Observer-based
neuro-adaptive optimized control for strict-feedback
nonlinear systems with state constraints, IEEE Trans-
actions on Neural Networks and Learning Systems
33(7): 3131–3145.

Luo, N., Tan, Y. and Dong, R. (2015). Observability
and controllability analysis for sandwich systems with
backlash, International Journal of Applied Mathe-
matics and Computer Science 25(4): 803–814, DOI:
10.1515/amcs-2015-0057.

Manni, A., Parlangeli, G. and Corradini, M. (2008). Robust
stabilization of nonlinear sandwich plants containing
generalized hysteresis nonlinearities, Proceedings of the
17th World Congress of the International Federation of Au-
tomatic Control, Seoul, Korea, pp. 14409–14414.

Oh, J. and Bernstein, D. (2005). Semilinear Duhem model
for rate-independent and rate-dependent hysteresis, IEEE
Transactions on Automatic Control 50(5): 631–645.

Oliveri, A., Maselli, M., Lodi, M., Storace, M. and Cianchetti,
M. (2019). Model based compensation of rate-dependent
hysteresis in a piezoresistive strain sensor, IEEE Transac-
tions on Industrial Electronics 66(10): 8205–8213.

Tao, G., Ma, X. and Ling, Y. (2001). Optimal and nonlinear
decoupling control of system with sandwiched backlash,
Automatica 37(2): 165–176.

Taware, A., Tao, G. and Teolis, C. (2002). Design and analysis
of a hybrid control scheme for sandwich non-smooth
nonlinear systems, IEEE Transactions on Automatic Con-
trol 47(1): 145–150.

Tong, S., Sun, K. and Sui, S. (2018). Observer-based
adaptive fuzzy decentralized optimal control design for
strict feedback nonlinear large-scale systems, IEEE Trans-
actions on Fuzzy Systems 26(2): 569–584.

Xie, Y., Tan, Y. and Dong, R. (2013). Nonlinear modeling
and decoupling control of XY micropositioning stages
with piezoelectric actuators, IEEE/ASME Transactions on
Mechatronics 18(3): 821–832.

Xue, Y., Meng, D., Yin, S., Han, W., Yan, X., Shu, Z. and
Diao, L. (2019). Vector-based model predictive hysteresis
current control for asynchronous motor, IEEE Transac-
tions on Industrial Electronics 66(11): 8703–8712.

Yu, D., Long, J., Chen, C.L.P. and Wang, Z. (2022). Adaptive
swarm control within saturated input based on nonlinear
coupling degree, IEEE Transactions on Systems, Man, and
Cybernetics: Systems 52(8): 4900–4911.

Zhang, Z., Yang, Z., Liu, S., Chen, S. and Zhang, X. (2022).
A multi-model based adaptive reconfiguration control
scheme for an electro-hydraulic position servo system, In-
ternational Journal of Applied Mathematics and Computer
Science 32(2): 185–196, DOI: 10.34768/amcs-2022-0014.

Zhao, X. and Tan, Y. (2006). Neural adaptive control of dynamic
sandwich systems with hysteresis, Proceedings of 2006
IEEE International Symposium on Intelligent Control, Mu-
nich, Germany, pp. 82–87.

Sen Yang obtained his MS degree in mathemat-
ics in 2008 from the Xi’an University of Archi-
tecture and Technology, China. From 2007 to
2016, he was a lecturer at the Henan University
of Science and Technology, Luoyang, China. At
present, he is a PhD candidate at the College of
Mathematics and Science, Shanghai Normal Uni-
versity, China. His research interests are in opti-
mization, control and state estimation of nonlin-
ear dynamic systems.

Yonghong Tan received his PhD degree in elec-
trical engineering in 1996 from the University
of Ghent, Belgium. He was a postdoctoral fel-
low at Simon Fraser University, Vancouver, BC,
Canada, from 1996 to 1998. He is currently a
professor in the College of Information, Mechan-
ical and Electrical Engineering, Shanghai Nor-
mal University, China. Doctor Tan had held pro-
fessorships at the Guilin University of Electronic
Technology and the University of Electronic Sci-

ence and Technology of China. His research interests are in modeling
and control of nonlinear systems, mechatronics, signal processing and
fault diagnosis of micro/nano systems.

Ruili Dong received her PhD degree from Shang-
hai Jiaotong University, China, in 2009. She was
a visiting scholar with the University of Illinois at
Chicago, USA, from 2012 to 2013. From 2014 to
2016, she was a post-doctoral fellow at the Dres-
den University of Technology, Germany. She was
a research fellow at the University of Windsor,
ON, Canada, from 2016 to 2017. Presently, she is
a professor at the College of Information Science
and Technology, Donghua University, Shanghai,

China. Her research interests are in identification and control of nonlin-
ear systems and micro/nano mechatronic systems.

Qingyuan Tan received his BEng degree in in-
strumentation and control science from Shang-
hai Jiao Tong University, China, in 2010, his MS
degree in mechanical engineering from the Uni-
versity of Toronto, ON, Canada, in 2013, and
his PhD degree in electrical engineering from
the University of Windsor, ON, Canada, in 2018.
His research interests are in modeling and con-
trol of mechatronic systems, powertrain control
systems, and intelligent vehicle control.

Appendix A

Proof of Lemma 2

For a given ηu > 0, we have |u(k)| ≤ ηu. Based on
Assumption 1, |L1(·)| < +∞ and |L2(·)| < +∞, which
leads to

|v(k)| ≤ |L1(·)|ηu. (A1)

Then, according to Lemma 1, defining μ �
α|Δv(k)| − 1 results in 0 < μ < 1. Obviously,
1/|1 + μq−1| is bounded, i.e., for a given ημ > 0, we
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have 1/|1 + μq−1| ≤ ημ. Rearranging (3) yields

|w(k)| =
|α||[f0 sgn(v(k − 1)) + f1v(k − 1)]|Δv(k)|+ g0Δv(k)|

|1 + (αΔv(k) − 1)q−1|
≤ 2(|f0 sgn(v(k − 1)) + f1v(k − 1)|+ |g0|/|α|)

|1 + (αΔv(k) − 1)q−1|
≤ 2ημ(|f0|+ |f1||L1(·)|ημ +

|g0|
|α| ).

(A2)
Define

ηw = 2ημ

(
|f0|+ |f1||L1(·)|ημ +

|g0|
|α|

)
. (A3)

Thus, |w(k)| ≤ ηw, i.e.,w(k) is also bounded. Based
on Assumption 1, it can be seen that

|y(k)| ≤ |L2(·)||w(k)|. (A4)

Since |L2(·)| < +∞ and |w(k)| ≤ ηw, y(k) is also
bounded.

Appendix B
Proof of Lemma 3

In terms of Assumption 1, (5) and (A1), v̂(k + 1|k) is
bounded for the bounded input u(k). From (6), (A2), (A3)
and Lemma 1, ŵ(k) is also bounded.

Hence, F+
k described by (18) and F−

k described by
(19) are all bounded; in other words, there exists a positive
constant ηv, which leads to

|F+
k | = |g0 + α[f0 sgn(v̂(k)) + f1v̂(k)− ŵ(k)]|

≤ |g0|+ |α|(|f0|+ |f1||L1(·)||ηu|+ |ηw|).
(B1)

Defining η1 = |g0|+|α|(|f0|+|f1||L1(·)||ηu|+|ηw|)
yields

|F+
k | ≤ η1. (B2)

Similarly, we also get

|F−
k | ≤ η1. (B3)

Then

|βF+
k + (1− β)F−

k |
≤ β|F+

k |+ (1− β)|F−
k | ≤ η1. (B4)

Based on (20) and (B2)–(B4), this leads to

|(∂v̂ŵ)k| ≤ η1. (B5)

Since |∂u(k−1)φ(ε(k))| ≤ η0, defining ηv =
|r1b20|η1 + η0 leads to

|ψ(k)| = |r1b20(∂v̂ŵ)k + ∂u(k−1)φ(ε(k))|
≤ |r1b20||(∂v̂ŵ)k|+ |∂u(k−1)φ(ε(k))|
≤ |r1b20|η1 + η0 = ηv.

(B6)
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