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Controllability, observability and the transfer matrix of the discrete 2-D Roesser model are analyzed. It is shown that
the controllability of the Roesser model is invariant under state feedbacks and the observability under output feedbacks.
Sufficient conditions are established for the zeroing of the transfer matrix of the Roesser model.
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1. Introduction

In 2D linear systems the inputs, outputs and state variables
are functions of two independent variables (Fornasini and
Marchesini, 1978; Kaczorek, 1993; 1985; Kaczorek and
Rogowski, 2015). Various types of models of 2-D linear
systems have been proposed (Kaczorek, 1985). In the
paper by Roesser (1975) a 2-D discrete-time Roesser
model has been presented. The Roesser model is a
particular case of the second Fornasini–Marchesini model
(Fornasini and Marchesini, 1978; Kaczorek, 1985). A
general model of 2-D linear discrete-time systems was
set forth by Kurek (1985). Generalized (descriptor) 2-D
linear systems were analyzed by Kaczorek (1993). The
general response formula for CFD pseudo-fractional 2D
continuous linear systems described by the Roesser model
was given by Rogowski (2020). Stability of discrete-time
fractional systems with delays was investigated by
Ruszewski (2019) and that of descriptor fractional
discrete-time system with two different fractional orders
by Sajewski (2016).

In this paper, controllability, observability and the
transfer matrix of the discrete-time 2-D Roesser model
will be analyzed and sufficient conditions for zeroing the
transfer matrix will be established.

The paper is organized as follows. In Section 2 basic
definitions and theorems concerning controllability,
observability and the transfer matrix of linear

discrete-time systems are recalled. Necessary and
sufficient conditions for the controllability and
observability of the 2-D Roesser model are given in
Section 3. The controllability and observability of the
2-D Roesser model with state and output feedbacks are
investigated in Section 4. The decompositions of the
2-D Roesser model into controllable and uncontrollable
parts and into observable and unobservable parts are
analyzed in Section 5. Conditions for the zeroing of the
transfer matrix of the 2-D Roesser model are established.
Concluding remarks are given in Section 6.

The following notation will be used: R is the set
of real numbers, Rn×m stands for the set of n × m real
matrices and R

n = R
n×1, Rn×m

+ means the set of n×m

real matrices with nonnegative entries and R
n
+ = R

n×1
+ ,

In signifies the n× n identity matrix C.

2. Preliminaries
Consider the linear discrete-time system

xi+1 = Axi +Bui, (1a)
yi = Cxi, (1b)

where xi ∈ R
n, ui ∈ R

m, yi ∈ R
p are the state, input and

output vectors, respectively, and A ∈ R
n×n, B ∈ R

n×m,
C ∈ R

p×n.

Definition 1. (Kaczorek, 1989; 1993; 1985; Kaczorek
and Rogowski, 2015; Kalman, 1960; Klamka, 1991) The
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system (1) (the pair (A,B)) is called controllable if for
any given initial state x(0) ∈ R

n and any given final state
xf ∈ R

n there exists an input u(t) for t ∈ [0, tf ] which
steers the system from x(0) ∈ R

n to x(tf ) = xf .

Theorem 1. (Kaczorek, 1989; 1993; 1985; Kaczorek and
Rogowski; 2015; Kalman, 1960; Klamka 1991) The sys-
tem (1) (the pair (A,B)) is controllable if and only if one
of the following equivalent conditions is satisfied:

rank[ B AB . . . An−1B ] = n, (2a)

rank[ Inz −A B ] = n ∀z ∈ C. (2b)

Definition 2. (Kaczorek, 1989; 1993; 1985; Kaczorek
and Rogowski; 2015; Kalman, 1960; Klamka 1991) The
system (1) (the pair (A,B)) is called observable if knowing
the input u(t) and output y(t) of the system (1) for t ∈
[0, tf ] it is possible to find its initial state x(0).

Theorem 2. (Kaczorek, 1989; 1993;1985; Kaczorek and
Rogowski; 2015; Kalman, 1960; Klamka 1991) The sys-
tem (1) is observable if and only if one of the following
equivalent conditions is satisfied:

rank

⎡
⎢⎢⎢⎣

C
CA

...
CAn−1

⎤
⎥⎥⎥⎦ = n, (3a)

rank

[
Inz −A

C

]
= n, ∀z ∈ C (3b)

It is well known that if the pair (A, B) is
uncontrollable and the pair (A, C) is unobservable
then, according to the Kalman theorem (Kaczorek, 1993;
Kalman, 1960; Klamka, 1991), the system (1) can be
decomposed in the four independent parts

A = P−1AP =

⎡
⎢⎢⎣

A11 A12 A13 A14

0 A22 0 A24

0 0 A33 A34

0 0 0 A44

⎤
⎥⎥⎦ ,

B = P−1B =

⎡
⎢⎢⎣

B1

B2

0
0

⎤
⎥⎥⎦ ,

C = CP =
[
0 C2 0 C4

]
,

(4)

where Ai,j ∈ R
ni×ni , Bj ∈ R

nj×m, Ci ∈ R
p×ni , n =

n1 + · · · + n4 and P ∈ R
n×n is nonsingular similarity

transformation matrix such that

• (A11, B1) and (A22, B2) are the controllable parts
of the system,

• (A33, 0) and (A44, 0) are the uncontrollable parts
of the system,

• (A11, 0) and (A22, 0) are the unobservable parts of
the system,

• (A22, C2) and (A44, C4) are observable parts of the
system.

Theorem 3. (Kaczorek, 1993; Kalman, 1960; Klamka,
1991) The transfer matrix of the system (1) is equal to the
transfer matrix of its controllable and observable parts,

T (z) = C[Inz −A]−1B = C2[In2z −A22]
−1B2. (5)

3. Roesser model and its controllability and
observability

The Roesser model of a 2-D linear discrete-time system
has the form

[
xh
i+1,j

xv
i,j+1

]
=

[
A11 A12

A21 A22

] [
xh
ij

xv
ij

]

+

[
B1

B2

]
uij , (6a)

yij = C

[
xh
ij

xv
ij

]
, (6b)

where xh
ij ∈ R

n1 and xv
ij ∈ R

n2 are the horizontal and
vertical state vectors, respectively, uij ∈ R

m is the input
vector and yij ∈ R

p is the output vector, and

A11 ∈ R
n1×n1 , A12 ∈ R

n1×n2 ,

A21 ∈ R
n2×n1 , A22 ∈ R

n2×n2 ,

B1 ∈ R
n1×m, B1 ∈ R

n2×m,

C ∈ R
p×(n1+n2).

The boundary conditions for the model (6) in the
rectangle [(0, 0), (r1, r2)] have the form

xh
0j ∈ R

n1 , j = 0, 1, . . . , r1,

xv
i0 ∈ R

n2 , i = 0, 1, . . . , r2. (6c)

The solution of (6a) for given boundary conditions
(6c) has the form

[
xh
ij

xv
ij

]
=

i∑
p=0

Ti−p,j

[
0
xv
p0

]
+

j∑
q=0

Ti,j−q

[
xh
0q

0

]

+

i−1∑
p=0

j∑
q=0

Ti−p−1,j−q

[
B1

0

]
upq

+

i∑
p=0

j−1∑
q=0

Ti−p,j−q−1

[
0
B2

]
upq, (7a)
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and the transition matrix of the model is defined as
(Roesser, 1975)

Tij =

{
In for i = j = 0,

A10Ti−1,j +A01Ti,j−1 otherwise,

A10 =

[
A11 A12

0 0

]
,

A01 =

[
0 0

A21 A22

]
. (7b)

The matrix transfer function of the Roesser model
has the form (Kaczorek, 1993)

T (z1, z2) = C

[
In1z1 −A11 −A12

−A21 In2z2 −A22

]−1

×
[

B1

B2

]
.

(8)

Definition 3. (Roesser, 1975; Kaczorek, 1985; 1993) The
Roesser model (6) is called controllable in the rectangle
[r1, r2] = [0 ≤ i ≤ r1, 0 ≤ j ≤ r2] if for any boundary
conditions x[0, j], j ∈ [0, r2], x[l, 0], l ∈ [r1, 0] and
every vector xf ∈ R

n there exists a sequence of inputs
u(l, j) ∈ R

m, (0, 0) ≤ (l, j) < (r1, r2) such that
x(r1, r2) = xf .

Theorem 4. The Roesser model (6) is controllable in the
rectangle [r1r2], if and only if

rank CR = n, (9a)

where

CR = CR(r1, r2)

= [M(0, 1), M(1, 0), . . . ,

M(l, j), . . . , M(r1, r2)],

M(i, j) = T (i− 1, j)B + T (i, j − 1)B,

i = 0, 1, . . . , r1, j = 0, 1, . . . , r2 (9b)

rank

[
In1z1 −A11 −A12 B1

−A21 In2z2 −A22 B2

]
= n,

z1, z2 ∈ C. (9c)

The proof is given by Roesser (1975) and Kaczorek (1985;
1993).

Definition 4. The Roesser model (6) is called (locally)
observable in the rectangle [r1, r2] if there is no local
initial state x(0, 0) �= 0 such that for zero inputs u(l, j) =
0, (0, 0) ≤ (l, j) < (r1, r2) and zero boundary
conditions xh(0, j) = 0, j ∈ [1, r2], x

v(i, 0) = 0,
l ∈ [1, r1] the output is also zero y(l, j) = 0 for
(0, 0) ≤ (i, j) < (r1, r2).

Roesser model
uij

K = [K1 K2]

vij yij

[
xh
ij

xv
ij

]
−

Fig. 1. Roesser model with state feedback.

Theorem 5. The Roesser model (6) is observable in the
rectangle [r1, r2] if and only if

rankOR = n, (10a)

where

OR =

⎡
⎢⎢⎢⎢⎢⎣

C
CT10

CT01

...
CTr1r2

⎤
⎥⎥⎥⎥⎥⎦
, (10b)

rank

⎡
⎣

In1z1 −A11 −A12

−A21 In2z2 −A22

C1 C2

⎤
⎦ = n,

∀z1, z2 ∈ C, (10c)

where C = [ C1 C2 ] ∈ R
p×n, C1 ∈ R

p×n1 , C2 ∈
R

p×n2 .

4. Controllability and observability of the
Roesser model with feedbacks

Consider the Roesser model (6) (Fig. 1) with the state
feedbacks

uij = vij −K1x
h
ij −K2x

v
ij , (11)

where vij ∈ R
m, K1 ∈ R

m×n1 , K2 ∈ R
m×n2 .

Substituting (11) into (6a), we obtain
[

xh
i+1,j

xv
i,j+1

]
=

[
A11 A12

A21 A22

] [
xh
ij

xv
ij

]

+

[
B1

B2

](
vij −K

[
xh
ij

xv
ij

])

= Ac

[
xh
ij

xv
ij

]
+

[
B1

B2

]
vij , (12a)

where

Ac =

[
A11 −B1K1 A12 −B1K2

A21 −B2K1 A22 −B2K2

]
. (12b)
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Roesser model

F

vij uij yij

−

Fig. 2. Roesser model with output feedback.

Theorem 6. The Roesser model with state feedbacks
(12) is controllable if and only if the Roesser model (6a)
is controllable.

Proof. By Theorem 4 the Roesser model with feedback
(12) is controllable if and only if

rank

[
In1z1 −A11 +B1K1

−A21 +B2K1

−A12 +B1K2 B1

In2z2 −A22 +B2K2 B2

]

= n, z1, z2 ∈ C. (13)

Note that
[

In1z1 −A11 +B1K1 −A12 +B1K2 B1

−A21 +B2K1 In2z2 −A22 +B2K2 B2

]

=

[
In1z1 −A11 −A12 B1

−A21 In2z2 −A22 B2

]

×
⎡
⎣

In1 0 0
0 In2 0
K1 K2 Im

⎤
⎦ .

(14)

From (14) it follows that the Roesser model with
feedbacks (12) is controllable if and only if the Roesser
model (6a) is controllable since the matrix

⎡
⎣

In1 0 0
0 In2 0
K1 K2 Im

⎤
⎦ (15)

is nonsingular for any K1 and K2. �

Now let us consider the Roesser model (6) (Fig. 2)
with the output feedbacks

uij = vij − Fyij , (16)

where F ∈ R
m×p.

Substituting (6b) into (12), we obtain

uij = vij − FC

[
xh
ij

xv
ij

]
, (17)

and the substituting (17) into (6a), we get

[
xh
i+1,j

xv
i,j+1

]
=

[
A11 A12

A21 A22

] [
xh
ij

xv
ij

]

+

[
B1

B2

](
vij − FC

[
xh
ij

xv
ij

])

= Āc

[
xh
ij

xv
ij

]
+

[
B1

B2

]
vij , (18a)

where

Āc =

[
A11 −B1FC1 A12 −B1FC2

A21 −B2FC1 A22 −B2FC2

]
,

C = [ C1 C2 ], C1 ∈ R
p×n1 , C2 ∈ R

p×n2 .
(18b)

Theorem 7. The Roesser model with output feedback
(18) is observable if and only if the Roesser model (6a) is
observable.

Proof. The Roesser model with output feedback (18) is
observable if and only if

rank

⎡
⎣

In1z1 −A11 +B1FC1

−A21 +B2FC1

C1

−A12 +B1FC2

In2z2 −A22 +B2FC2

C2

⎤
⎦

= n, z1, z2 ∈ C. (19)

Note that
⎡
⎣

In1z1 −A11 +B1FC1 −A12 +B1FC2

−A21 +B2FC1 In2z2 −A22 +B2FC2

C1 C2

⎤
⎦

=

⎡
⎣

In1 0 B1F
0 In2 B2F
0 0 Ip

⎤
⎦

×
⎡
⎣

In1z1 −A111 −A12

−A21 In2z2 −A22

C1 C2

⎤
⎦ .

(20)

From (20) it follows that the Roesser model with output
feedback (18) is observable since the matrix

⎡
⎣

In1 0 B1F
0 In2 B2F
0 0 Ip

⎤
⎦ (21)

is nonsingular for any matrix F. �
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5. Decomposition of the Roesser model
Let the Roesser model (6) be uncontrollable and
unobservable. From the matrix (9) we choose the
first independent columns M1, . . . ,Mr and next n − r
additional independent columns N1, . . . , Nn−r such that
the matrix

P = [M1, . . . ,Mr, N1, . . . , Nn−r] (22)

is nonsingular, detP �= 0.

We apply the similarity transformation to the
uncontrollable pair (A, B).

Lemma 1. Applying the similarity transformation to the
uncontrollable pair (A, B), we obtain

Ā = P−1AP =

[
A1 A2

0 A3

]
,

B̄ = P−1B =

[
B1

0

]
,

(23)

A1 ∈ R
r×r, A3 ∈ R

(n−r)×(n−r), B1 ∈ R
r×m,

where the pair (A1, B1) is controllable and the pair
(A3, 0) is uncontrollable.

Proof. Applying the similarity transformation to the pair
(A, B) and taking into account that P−1P = In, we
obtain

Ā = P−1AP = [M1, . . . ,Mr, N1, . . . , Nn−r]
−1

×A[M1, . . . ,Mr, N1, . . . , Nn−r]

= [M1, . . . ,Mr, N1, . . . , Nn−r]
−1

× [AM1, . . . , AMr, AN1, . . . , ANn−r]

=

[
A1 A2

0 A3

]
(24a)

and

B̄ = [M1, . . . ,Mr, N1, . . . , Nn−r]
−1B

=

[
B1

0

]
, (24b)

where

A2 =

⎡
⎣

p1AN1 . . . p1ANn−r

. . . . . . . . . . . . . . . . . . . . . . .
prAN1 . . . prANn−r

⎤
⎦ ,

A2 =

⎡
⎣

pr+1AN1 . . . pr+1ANn−r

. . . . . . . . . . . . . . . . . . . . . . . . . . .
pnAN1 . . . pnANn−r

⎤
⎦ . (24c)

and pi, i = 1, . . . , n is the i-th row of the matrix P−1.
Note that the pair (A1, B1) is controllable. �

Lemma 2. The transfer matrix (8) of the uncontrollable
Roesser model (6) is equal to its controllable part

T (z1, z2) =
[
C1 C2

]
[

In1z1 −A11 −A12

−A21 In2z2 −A22

]−1 [
B1

B2

]

= C1[Irz1 −A1]
−1B1,

(25)

where the matrix P is defined by (22) and C1 is the sub-
matrix of the matrix C = [ C1 C2 ].

Proof. Taking into account (8), (23) and the definition of
C, we obtain

T (z1, z2)

= C

[
In1z1 −A11 −A12

−A21 In2z2 −A22

]−1 [
B1

B2

]

= CPP−1

[
In1z1 −A11 −A12

−A21 In2z2 −A22

]−1

× PP−1

[
B1

B2

]

=
[
C1 C2

] [ Irz1 −A1 −A2

0 In−rz2 −A3

]−1

×
[

B1

0

]

= C1[Irz1 −A1]
−1B1.

(26)

Therefore, the transfer matrix of the uncontrollable
Roesser model is equal to the transfer matrix of only its
controllable part. �

Now consider the unobservable Roesser model (6).
For, the matrix (10) we use the first r independent rows
M̄1, . . . , M̄r and next n − r additional independent rows
N̄1, . . . , N̄n−r such that the matrix

P̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

M̄1

...
M̄r

N̄1

...
N̄n−r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(27)

is nonsingular, i.e., det P̄ �= 0.
We apply the similarity transformation to the

unobservable pair (A, C).

Lemma 3. Applying the similarity transformation to the
pair (A, C), we obtain

Â = P−1AP =

[
Â1 0

Â3 Â4

]
,

Ĉ = CP =
[
Ĉ1 0

]
,

(28)
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where the pair (Â1, Ĉ1) is observable and the pair
(Â4, 0) is unobservable.

The proof is similar (dual) to that of Lemma 1.

Lemma 4. The transfer matrix (8) of the unobservable
Roesser model (6) is equal to its observable part,

T (z1, z2)

=
[
Ĉ1 0

] [ In1z1 − Â1 0

−Â3 In2z2 − Â4

]−1 [
B̂1

B̂2

]

= Ĉ1[In1z1 − Â1]
−1B̂1.

(29)
The proof is similar(dual) to that of Lemma 2.

Theorem 8. The transfer matrix of the Roesser model (6)
is zero if and only if the following conditions are satisfied:

1. the pair (A, B) is uncontrollable,

2. the pair (A, C) is unobservable,

3. CB = 0.

Proof. By Lemma 2 the transfer matrix of the
uncontrollable Roesser model is equal to its controllable
part and, by Lemma 4, to its observable part. If
Conditions 1 and 2 are satisfied then in the transfer matrix
(14) the matrix A is zero and the transfer matrix of the
model is zero if and only if Condition 3 is satisfied. �

Example 1. Consider the Roesser model with the
matrices

A =

[
A11 A12

A21 A22

]

=

⎡
⎣

1 0 0
0 1 1
1 0 0

⎤
⎦ ,

B =

[
B1

B2

]
=

⎡
⎣

0
1
1

⎤
⎦

(30)

and two cases of the matrix C:
Case 1. C1 =

[
0 0 1

]
;

Case 2. C2 =
[
1 0 0

]
. �

Note that the pair (30) is uncontrollable since

rank [ M(0, 1) M(1, 0) M(1, 1) ]

= rank

⎡
⎣

0 0 0
0 1 1
1 0 0

⎤
⎦ = 2 < n = 3.

(31)

In Case 1 the Roesser model is also unobservable since

rank

⎡
⎢⎢⎣

C1

C1T10

C1T01

C1T11

⎤
⎥⎥⎦ = rank

⎡
⎢⎢⎣

0 0 1
0 0 0
1 0 0
1 0 0

⎤
⎥⎥⎦ = 2 < n = 3

(32)

but

C1B =
[
0 0 1

]
⎡
⎣

0
1
1

⎤
⎦ = 1.

In this case the cancelation occurs in the transfer matrix
but it is nonzero.

In Case 2 the Roesser model is also unobservable
since

T (z1, z2)

= C

[
In1z1 −A11 −A12

−A21 In2z2 −A22

]−1 [
B1

B2

]

=
[
0 0 1

]
⎡
⎣

z1 − 1 0 0
0 z1 − 1 −1
−1 0 z2

⎤
⎦
−1 ⎡
⎣

0
1
1

⎤
⎦

=
1

z2 − 1
,

(33)

but CB = 0 and the transfer matrix

T (z1, z2)

= C2

[
In1z1 −A11 −A12

−A21 In2z2 −A22

]−1

B

=
[
1 0 0

]
⎡
⎣

z1 − 1 0 0
0 z1 − 1 −1
−1 0 z2

⎤
⎦
−1 ⎡
⎣

0
1
1

⎤
⎦

= 0

(34)

is zero. This confirms Theorem 8.

6. Concluding remarks

Controllability, observability and the transfer matrix of
the discrete 2-D Roesser model have been analyzed.
It was shown that the controllability of the Roesser
model is invariant under state feedbacks (Theorem 6) and
the observability under output feedbacks (Theorem 7).
Sufficient conditions are established for zeroing the
transfer matrix of the Roesser model (Theorem 8).
The analysis was illustrated by a simple numerical
example. The considerations can be easily extended to
Fornasini–Marchesini models and to general 2-D linear
models. An open problem is an extension of these
considerations to fractional orders 2-D linear systems.
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