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Image is one of the most important forms of information expression in multimedia. It is the key factor to determine the visual
effect of multimedia software. As an image restoration task, image deraining can effectively restore the original information
of the image, which is conducive to the downstream task. In recent years, with the development of deep learning technology,
CNN and Transformer structures have shone brightly in computer vision. In this paper, we summarize the key to success of
these structures in the past, and on this basis, we introduce the concept of a layer aggregation mechanism to describe how to
reuse the information of the previous layer to better extract the features of the current layer. Based on this layer aggregation
mechanism, we build the rain removal network called DenseformerNet. Our network strengthens feature promotion and
encourages feature reuse, allowing better information and gradient flow. Through a large number of experiments, we prove
that our model is efficient and effective, and expect to bring some illumination to the future rain removal network.

Keywords: artificial intelligence, convolutional neural network, image deraining.

1. Introduction
Visual data play a crucial role in fields related to people’s
livelihoods and industries (Nowak et al., 2022; Chen
et al., 2015; Kian Ara et al., 2023; Karlupia et al.,
2023), such as autonomous driving, road monitoring, and
drone aerial photography. Currently, deep learning-based
algorithms are used in these fields to achieve object
detection. In challenging weather conditions, the visual
signals obtained by cameras may become distorted or
damaged, especially in situations such as rain, fog, or
snow. These conditions affect the visibility of the visual
system, resulting in a decrease in the ability of object
detection algorithms to detect key objects. In this article,
we focus mainly on rain because it is the most common
adverse weather condition. Rain is composed of droplets
of various sizes and shapes, which hinder the reflection of
light from objects in the scene and appear as rain streaks in
the image. They can cause image details to be blurred, low
contrast, and obstructed content, which may pose safety
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risks to systems that rely on visual data.
Using a rain removal algorithm and applying

advanced visual algorithms to the generated rain-free
images is the most naive and intuitive solution. However,
if the rain removal algorithm model takes a long time
to execute, this will impose an additional computational
burden on rainy day object detection, directly limiting
the practical application of rain removal algorithms.
Therefore, it is crucial to propose an efficient and robust
rain removal algorithm.

The process of image raining can be described as

I = B +R, (1)

where B and R represent background layers and rain
layers of the image, respectively, and I represents the
rainy image obtained by the camera. Rain removal refers
to separating B and R when obtaining I , which is an
ill-posed problem. At the same time, the distribution of
rain lines is very random, which makes rain removal still
challenging.
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Fig. 1. Metaformer has a basic paradigm, which consists of two
modules: a token mixer and a feed-forward network
(FFN). Previous work used spatial operation as the token
mixer. In this paper, we employ sequential operation in
this role.

With the development of deep learning technology,
the CNN architecture has been proven to be superior to
traditional methods in the field of rain removal. Many
modules have been proposed to form various rain removal
networks, including the residual structure (He et al.,
2016), the attention mechanism (Vaswani et al., 2017), the
multi-stage structure (Zamir et al., 2021), the progressive
structure (Ren et al., 2019), the U-Net architecture
(Ronneberger et al., 2015), and so on. Despite the
continuous improvement of rain removal performance, the
structure is becoming more and more complex, and the
amount of computations is also increasing. Around the
same time, the Transformer structure has performed well
in natural language processing. After the introduction
of Vit (Dosovitskiy et al., 2021), it shines brightly
in the visual field, completely changing the pattern of
network architecture design. The self-attention module
is the core component of the Transformer model. It
provides a powerful way to get rid of the local limitation
of convolution. Specifically, the attention mechanism
calculates global autocorrelation matrix to model the
global relationships between pixels. Therefore, it is also
considered to be the key to the success of Transformer.

However, the Vit model has some problems when
adopted as the network backbone. On the one hand, the
calculation of the global attention matrix has quadratic
complexity with the size of the input image, which brings
a heavy computational burden and affects the operation
efficiency. On the other hand, the key to success is
still vague. Swin Transformer (Liang et al., 2021)
and Volo (Yuan et al., 2021) introduce local attention,
indicating that the neural network can still work well
even without global attention. Further, MLP Mixer
(Tolstikhin et al., 2021), Poolformer (Yu et al., 2022)
and Shiftvit (Wang et al., 2022) completely abandon the
attention mechanism by some simple operations such as
MLP, pooling, and shift to build Transformer deformation
and have demonstrated encouraging performance. These
models have one thing in common, that is, the basic units

of them have a basic paradigm, which consists of two
modules as shown in Fig. 1. The front module is called
the token mixer, which is used to mix information, and
the back module is a feed-forward network (FFN). Such a
common basic unit is called Metaformer (Yu et al., 2022).
The above deformation reveals that it seems that as long as
the model adopts Metaformer as the general architecture,
promising results can be obtained.

In this paper, we propose an efficient rain removal
network, DenseformerNet, based on Metaformer. For
the rain removal task, the model requires both location
information to know where the rain line is, and semantic
information to restore it. However, in the design of
existing Metaformer, spatial operation has been paid
enough attention, but the problem of sequential operation
has not been well discussed. Sequential operation is
of great significance. Here, the output feature maps of
each layer in the network are regarded as a sequence.
Rich representations that span levels from low to high are
required for computer vision tasks. Even with the depth
of features in a convolutional network, a layer in isolation
is not enough. For example, the FPN (Belongie, 2017)
adopts a multi-layer output scheme. The sequential
operation realizes the fusion of sequence information, that
is, combining and aggregating the depth features of each
layer. In our design, we introduce sequential operations
into Metaformer, which is the main difference from other
Metaformer paradigm structures. Other operations such
as pool, shift, and self-attention, as token mixers, are
all operated on a single layer. We introduce a layer
aggregation (LA) module as the token mixer, which can
obtain the outputs of all previous LA modules as inputs,
thus capturing the short- and long-range dependencies
of different layer features. Sequential operation models
the relationship between feature maps of different layers,
and realizes semantic fusion to improve the inference of
content and spatial fusion to improve the inference of
location.

In addition, since our token mixer only aggregates
information from previous layers but not processes,
the FFN has to undertake more pressure for model
performance. In our design, we introduce a scale-voting
convolution (SVC) module to better capture local context.
We explored the effects of different FFN designs on the
performance of the model in ablation experiments.

In summary, the contributions of this work are as
follows:

• We propose a complete rain removal model
DenseformerNet based on the Metaformer paradigm,
which has been proven to be an efficient structure for
building neural network models.

• We propose an LA module to replace attention
in Transformers, which can capture short- and
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long-term dependencies of different layer features
and allow better information and gradient flow.

• We carefully design the FFN and identify key factors
of success for Metaformer in rain removal design.

• We conduct comprehensive experiments on various
benchmark datasets to demonstrate the superiority
of the proposed method. DenseformerNet achieves
attractive results both on synthetic and real-world
data sets.

The rest of the paper is organized as follows.
Section 2 summarizes the relevant work in the past, and
Section 3 introduces our methods in detail. Section 4
presents the analysis of the conducted experiments.
Section 5 summarizes the main result of this paper.

2. Related work
In this section, we review some single image deraining
methods and Metaformer structures.

2.1. Single image deraining. Single image deraining
went through an evolutionary process of moving from
model-driven to data-driven. Model-driven methods
are subdivided into filter-based methods introduced by
He et al. (2010) and Zheng et al. (2013), and prior
knowledge-based methods represented by morphological
component analysis (Kang et al., 2011), sparse coding
(Luo et al., 2015), dictionary learning (Wang et al., 2017),
and GMM prior knowledge (Li et al., 2016). However,
the above methods have common drawbacks, including
high computational complexity, long running time, and
incomplete rain removal results.

With the proposal and rapid development of
convolutional neural networks, data-driven methods have
shown amazing results in various computer vision fields.
Fan et al. (2017b) drew inspiration from ResNet and
proposed a deep detail network to remove high-frequency
rainfall content, and creatively presented a large-scale
synthetic dataset consisting of rain and no-rain image
pairs. Fan et al. (2017a) learnt the mapping between the
rainfall image detail layer and the no-rainfall image detail
layer directly from the data. PreNet (Ren et al., 2019)
uses recursive computation and RCDnet (Wang et al.,
2020b) proposes a model-driven deep neural network
for this task. MPRnet (Zamir et al., 2021) proposes
a multi-stage architecture to balance spatial details and
high-level contextualized information. PHMNet (Yu
et al., 2023) proposed a new blending and modulating
HMM, and further adopts a multi-level refined module
to refine the final deraining results. DGUNet (Mou
et al., 2022) integrated a gradient estimation strategy
into the gradient descent step of the proximal gradient
descent (PGD) algorithm, driving it to deal with image

degradation. Li et al. (2022) proposed a rain removal
dataset SynRain-13k, and extensively evaluated the
performance of rain removal models on it.

After the introduction of the Transformer
architecture into the field of computer vision, Transformer
models for single image rain removal have been rapidly
developed in recent periods. SwinIR (Liang et al., 2021),
Uformer (Wang et al., 2021) and IDT (Xiao et al., 2022)
use a swin block to build rain removal network. Because
Transformer is difficult to apply to large-resolution
image restoration tasks, Zamir et al. (2022) proposed
a more efficient attention module for image restoration
called MDTA. Although the Transformer-based methods
achieve better results, the reason is not clear.

2.2. Metaformer structure. The Metaformer
structure consists of a token mixer and an FFN.
Transformer and its variations adopt attention as the
token mixer. Vit (Dosovitskiy et al., 2021) is a pioneering
work that used Transformers for visual tasks and sparked
Transformer research. MSViT (Fan et al., 2021) obtains
multi-scale features by constructing a hierarchical
attention layer. Swin Transformer (Liang et al., 2021)
decomposes the image into local windows so that the
amount of calculation is reduced from the quadratic
complexity of the image size to linear complexity. Volo
uses outlook attention to encode finer level features
and contexts. Restomer (Zamir et al., 2022) calculates
the covariance matrix between feature channels and
implicitly models global relationships. In addition
to the attention mechanism, MLP Mixer (Tolstikhin
et al., 2021) proved that using MLPs directly can also
achieve good performance. Recently, some methods (Yu
et al., 2022; Wang et al., 2022) have used zero-parameter
operations such as pooling and shift as token mixers, and
their performance is even better than Transformers when
using the same number of parameters. Our method is
based on the paradigm of Metaformer. Specifically, we
use layer aggregation as the token mixer to mix features
from different stages. We expect that our results can
bring some inspiration to the design of the rain removal
network.

3. Denseformer for single image deraining
In this section, we first introduce the overall structure
of the rain removal network and then describe the core
components of the proposed network: the Denseformer
layer. Finally, we provide details on the training scheme
and the loss function.

3.1. Rain removal network architecture. As shown
in Fig. 2, the whole rain removal network architecture
includes three parts: input projection, network backbone,
and output projection. The whole model process is shown
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Fig. 2. Architecture of DenseformerNet for image deraining. DenseformerNet uses a single-scale pipeline incorporating efficient
Denseformer blocks. The core modules of the network are input projection, network backbone, and output projection. Input
projection converts the image to a feature space. The network backbone extracts the depth feature. Output projection restores
depth features to images.

Algorithm 1. Model process pseudocode.
Input: O is a rainy image
Parameter: P1 and P2 represent input projection and
output projection, respectively. DFLi,j represents the j-th
DFL in the i-th DFB. K is the number of DFBs, and Ni is
the number of DFLs in the i-th DFB.
Output: B is a derained image

1: Let x = [].
2: f = P1(O).
3: x.append(f )
4: for i = 0 to K do
5: for j = 0 to Ni do
6: X, f = DFLi,j(x, f)
7: x.append(X)
8: end for
9: end for

10: B = P2(f) +O
11: return B

as Algorithm 1. The entire algorithm is explained as
follows: In the first line, the feature list is defined. In the
second line, the input projection module is used to process
the image. In the third line, the output from the previous
step is added to the feature list. From the fourth to the
ninth line, all the DFBs and their DFLs are traversed to
process the features. The sixth and seventh lines indicate
that the output of each stage will be added to the feature
list. In the tenth line, the output projection module is
used to restore the features to an image. Next, we will
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Fig. 3. Construction of the SVC module by combining multiple
branches with different dilated convolution layers. Di-
lated convolution layers assign each branch with an in-
dividual receptive field. The weight of each branch in
the final output will be controlled by a set of learnable
parameters.

provide a detailed explanation of the specific functions
and processing procedures for each module.

Input projection. For the input rainy image I ∈
R

H×W×Cin (H , W , and Cin are the image height,
width, and input channel number, respectively), we
use a convolution layer with both the kernel size and
stride p and the number of channels Cdim to obtain the
high-dimensional feature map F0 ∈ R

H
p ×W

p ×Cdim as

F0 = conv (I) . (2)

Input projection is very important for early visual
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Fig. 4. Qualitative comparison with the state-of-the-arts on two randomly sampled files Rain100H.

processing. Although the resolution becomes 1/p, it
yields more stable optimization and better results. In our
implementation, we use p = 2.

Network backbone. For the high-dimensional feature F0

obtained by input projection, we will continue extracting
the deep feature Fi ∈ R

H
p ×W

p ×Cdim as

Fi = DFB (Fi−1) , i = 1, 2, . . . , N, (3)

where DFB is a Denseformer block and N is the number
of DFB blocks in the network. Each DFB contains Ki

Denseformer layers (DFL). More specifically, for the i-th
DFB, the intermediate features are extracted block by
block as

Fi, 0 = Fi−1, Ki−1 , (4)

Fi, j = DFL (Fi, j−1) , j = 1, 2, . . . ,Ki, (5)

where Fi, j means the output feature map of the j-th DFL
in the i-th DFB.

Output projection. We get the feature sequence
(F1, F2, . . . , FN ) in the backbone, and the output
projection is responsible for restoring it to rain removal
images. In reference, only FN is restored. In order to
introduce additional supervision, we restore each deep
feature during training. For the i-th depth feature Fi ∈
R

H
p ×W

p ×Cdim, we use a set of convolution layers to convert

its channel number to Cin × p2. Finally, PixelShuffle is
directly used and combined with the residual structure to
transform it into a rain removal image Bi ∈ R

H×W×Cin

as
Bi = PixelShuffle (convs i (Fi)) + I. (6)

3.2. Denseformer layer. The structure of the
Denseformer layer is shown in Fig. 2. It consists of
two parts: a token mixer and a feed-forward network. In
our design, we use layer aggregation as a token mixer to
combine past and current features.

The structure of layer aggregation is shown in Fig. 2.
Firstly, it accepts the output of all LA in the past as the
input, and combines them to aggregated feature fl ∈
R

H
p ×W

p ×Cdim through one 1 × 1 convolution layer as

fl = conv l1 (concat (x0, x1, . . . xl−1) ), (7)

where concat (x0, x1, . . . xl−1) ∈ R
H
p ×W

p ×(l×Cdim)

represents the concatenation of feature maps generated
from layers 0 to l−1 on the dimension of feature channel.
Then fl and the output of the previous Denseformer layer
Fl−1 are aggregated to xl ∈ R

H
p ×W

p ×Cdim as

xl = conv l2 (concat((Fl−1, fl) ). (8)

The second part is FFN. Instead of using a linear
projection layer, we use convolution layers to expand
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Fig. 5. Qualitative comparison with the state-of-the-art on four randomly sampled real-world images.

the receptive field. Extracting features at different scales
can improve the performance of visual tasks. In this
paper, we designed a scale-voting convolution (SVC)
module to learn features at different receptive fields. SVC
can adaptively learn which parts are more effective in
rainwater removal. The structure of our proposed module
is shown in Fig. 3. SVC is a multi-branch convolution
block. Its internal structure can be divided into two parts:
a multi-branch convolution layer with different dilation
rates and a set of learnable voting coefficients. The former
part uses dilation convolution, which is responsible for
generating feature maps of multiple receptive fields. The
latter part learns a set of adaptive weights w to weight the
feature maps of different receptive fields for voting. This
process can be formulated as

Xl =
M∑

i=1

wiconvdi (xl) , (9)

where wi is a voting coefficient and M is the number of
branches. In our implementation, we use M = 3 and the
corresponding dilation rates are 1, 2, and 3, respectively.
We set wi as a set of learnable parameters after the
softmax operation, so that the network can automatically
select the appropriate scale in a certain position. We use
a 3 × 3 convolution for subsequent processing and use
GELU as the activation function. Our FFN is formulated
as

Fl = convl3(GELU(Xl)) + xl . (10)

Compared with the vanilla version, our FFN has the ability
to capture local information, which is what we lose in the
token mixer.

3.3. Loss function. In the training process, each DFB
will output the deep feature maps F . They will be restored
to a rain removal image B. We adopt negative SSIM

for each B, and use different coefficients controlled by
hyper-parameters α. Consequently, the loss function of
the network can be formulated as

L = −
N∑

i=1

αiSSIM (Bi, Bgt) , (11)

where Bgt represents ground truth image. When i =
N,αi = 1, otherwise αi = 0.1.

3.4. Training scheme. Our network uses PyTorch
to complete training with a single NVIDIA 3090 GPU.
In our experiment, all networks share the same training
settings. The patch size is 112 × 112 and the batch size
is 8. We use the Adam optimizer to train for 100 epochs,
with an initial learning rate of 10−3. At the 30th, 50th,
and 80th epochs, the learning rate is multiplied by an
attenuation of 0.2.

4. Experiments
4.1. Experimental settings. Datasets. We trained our
model on the synthetic dataset Rain100H and tested it on
both Rain100H and Rain100L datasets (Yang et al., 2017).
The Rain100L dataset contains 100 images for testing.
The images in this dataset have sparse rain streaks and
relatively few types of rain streaks, corresponding to
scenes with light rain. The Rain100H dataset contains
1800 images for training and 100 images for testing. The
images in this dataset have dense rain streaks and complex
types of rain streaks, which have a significant impact
on image quality, corresponding to scenes with heavy
rain. Training and testing are based on the official split.
Additionally, we used the real-world dataset provided
by Wang et al. (2020a), which comprises rainy images
collected from the Internet. During testing, we randomly
selected 100 images from this dataset.
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Fig. 6. Image results for different numbers of blocks.

Evaluation methods. We adopt the commonly used
PSNR and SSIM indicators to evaluate the rain removal
performance on the synthetic dataset. Following previous
work (Zamir et al., 2021), we evaluate on the Y channel
in the YCbCr color space. We also use NIQE (Mittal
et al., 2012) to measure the performance of our model on
the real-world data set. NIQE is a non-reference image
quality score. The smaller the value, the higher the image
quality. The test time is calculated at an image resolution
of 256× 256 with one Tesla V100 GPU.

Architecture variants. We designed three
DenseformerNet variants: DenseformerNet-T (tiny),
DenseformerNet-M (medium), DenseformerNet-L
(large). Specifically, we set different channels and the
number of DFBs and DFLs. The details are as follows:

• DenseformerNet-T: C = 36, depths = [1, 1, 2, 2, 2],

• DenseformerNet-M: C = 48, depths = [3, 3, 3, 3, 4],

• DenseformerNet-L: C = 60, depths = [4, 4, 4, 4, 4].

4.2. Experimental results. We compare our models
with excellent performance and commonly used structures
GMM (Li et al., 2016), PreNet (Ren et al., 2019), RCDNet
(Wang et al., 2020b), MPRNet (Zamir et al., 2021),
and the Transformer structure Restomer (Zamir et al.,
2022). For PreNet, MPRNet, and RCDNet, we retrained
them with the same settings as DenseformerNet. For
Restomer, we use the unofficial version (https://git
hub.com/leftthomas/Restormer). We tested our

model on synthetic datasets Rain100H and Rain100L and
real-world datasets.

The quantitative results in Tables 1 and 2 indicate that
DenseformerNet-L achieves the strongest performance
compared with the current state-of-the-art architectures,
both on synthetic and real-world datasets. As shown
in Table 1, on the rain100H test set, DenseformerNet-L
outperforms GMM, PreNet, RCDNet, MPRNet, and
Restormer by 18.00 dB, 3.56 dB, 1.17 dB, 1.27 dB, and
1.09 dB in terms of PSNR, respectively. As shown in
Table 2, DenseformerNet-L achieves the lowest NIQE
score, indicating its superior performance on real-world
datasets. In addition, DenseformerNet achieves optimal
performance at a comparable running speed. For
example, at a processing speed of approximately
40 ms, DenseformerNet-L outperforms MPRNet. These
improvements demonstrate the effectiveness of building
a rain removal model based on Denseformer. Table 1
also presents the results of different versions of
DenseformerNet, which have varying numbers of
parameters (from 0.83 M to 10.32 M) and different
performance (PSNR increases from 29.76 dB to 33.05
dB). Specifically, the lightest version can achieve a
running speed of over 100 fps.

Owing to our proposed network structure and loss
function, DenseformerNet achieves the best results for all
indicators, while the visualization in Fig. 4 illustrates
that our network outperforms the rest of the networks
in terms of rain removal. Specifically, DenseformerNet
recovers the box area better, removes the rain lines more

https://github.com/leftthomas/Restormer
https://github.com/leftthomas/Restormer
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Table 1. Quantitative results of different SID methods.
Model Rain100H Rain100L Test time(ms) Parameters(M)
GMM 15.05/0.425 28.66/0.865 1000+ -
PreNet 29.49/0.903 35.49/0.974 21 0.16

RCDNet 31.88/0.915 37.15/0.977 83 2.98
MPRNet 31.78/0.932 38.12/0.984 37 3.64

Restormer 31.96/0.916 38.41/0.982 69 26.10
DenseformerNet-T(w/o SVC) 29.76/0.913 35.69/0.977 8 0.83
DenseformerNet-T(w SVC) 30.05/0.915 35.91/0.977 14 1.58

DenseformerNet-M(w/o SVC) 31.01/0.924 37.59/0.981 16 3.07
DenseformerNet-M(w SVC) 31.37/0.937 37.69/0.982 28 5.73

DenseformerNet-L(w/o SVC) 32.64/0.943 38.28/ 0.984 23 6.13
DenseformerNet-L(w SVC) 33.05/0.948 38.50/ 0.984 40 10.32

Table 2. NIQE of different models on real-world dataset.
Models GMM PreNet RCDNet MPRNet Restormer DenseformerNet-L

NIQE(↓) 5.01 4.13 4.18 4.12 4.11 4.09

effectively, and preserves the image background more
realistically. Figure 5 shows our test results on real-world
datasets. We can see that our method can remove the rain
lines more cleanly and restore more details.

4.3. Ablation study and analysis. We conducted
extensive ablation experiments to explore the impact
of each component of our model on the rain removal
performance. Unless specified, the experiments in this
section adopt common parameters and training strategies
on DenseformerNet-M. We demonstrated PSNR and
SSIM on Rain100H.

Input projection. Input projection projects the image
from the RGB space to a feature space by a patch-embed
operation,which is adopted in many visual tasks to divide
the image into small patch. These small blocks are still
part of the original image, and the pixel values have not
been changed. Table 3 shows the results with different
patch sizes. When the patch size is 2, the PSNR is
higher by 1.23 dB and 0.53 dB compared with patch
sizes of 1 and 4, respectively. If the patch size is 1,
the model will consume more computing resources, but
lead to performance degradation. This shows that input
projection is very important for early visual processing,
which brings more stable optimization and better results.

Aggregation mode. Table 4 shows the effects of different
aggregation methods on rain removal performance. Here
× indicates that there is no aggregation method. We
directly used a 1×1 convolution layer in a token mixer.
We also made a comparison with the another aggregation
method: LSTM (Graves, 2012; Shi et al., 2015). LSTM
introduces a gate mechanism to control the flow and loss
of features. In our implementation, all token mixers in

each block are a common LSTM, and all LSTMs share
the hidden state. In addition, we conducted experiments
on spatial aggregation, including the pool and shift
mentioned in the first section. It can be seen that dense
connection outperforms the methods of no aggregation,
LSTM, pooling, and shift by 1.44 dB, 0.11 dB, 2.78 dB,
and 0.33 dB in terms of PSNR, respectively, indicating the
importance of sequence aggregation in feature processing,
and that a dense connection is the most effective method
for temporal aggregation.

FFN. Previous work (Wang et al., 2021) indicated that
introducing locality into the FFN is more suitable for
image restoration compared with the token mixer, so we
designed different FFNs and showed the results in Table 5.
Vanilla FFN consists of two 1 × 1 convolution layers. It
can be seen that using a vanilla FFN will lead to serious
performance degradation. This is because the whole
network will completely lose the ability to capture local
features. We also compared SVC with single receptive
field methods. The experimental results show that our
voting strategy outperforms using a single receptive field
methods by at least 0.26 dB, indicating that widening the
receptive field at each stage is advantageous for image
deraining.

Output of each block. Figure 7 shows the SSIM and
PSNR values of the Bi (i = 1, 2, 3, 4, 5). We can see that
the output of a later layer may lead to a higher PSNR.
This is due to the benefit of dense connection method,
which allows the later layers to directly obtain the desired
features. Figure 6 visualizes this process, and it can be
seen that the texture details are constantly improving.
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Fig. 7. Results of the SSIM and PSNR for different numbers of
blocks.

Table 3. Results with different patch sizes.
Patch size PSNR SSIM

1 30.14 0.915
2 31.37 0.937
4 30.84 0.910

Table 4. Effects of different aggregation methods on rain re-
moval performance.

Aggregation mode PSNR SSIM
× 29.93 0.907

LSTM 31.26 0.927
Pool 28.59 0.888
Shift 31.04 0.927

Dense 31.37 0.937

Table 5. Different FFNs and their results.
FFN Dilation rate PSNR SSIM

Vanilla 1 18.76 0.740
Convolution 3×3 1 31.01 0.924
Convolution 3×3 2 30.79 0.923
Convolution 3×3 3 30.39 0.919

SVC (1,2,3) 31.37 0.937

5. Conclusion

In this paper, we propose an effective rain removal model.
The model is built based on the Metaformer structure,
so it is very simple. Our model encourages the reuse of
features in different stages, which effectively improves
the performance. We carefully designed the network
details, deeply discussed the impact of different methods
on the performance, and designed a loss function to
further enhance the rain removal effect of the model.
Experiments show that our model has a good effect on
synthetic datasets. We hope that our model can bring some
new thoughts to the design of rain removal networks.
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