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Transfer learning has surfaced as a compelling technique in machine learning, enabling the transfer of knowledge across
networks. This study evaluates the efficacy of ImageNet pretrained state-of-the-art networks, including DenseNet, ResNet,
and VGG, in implementing transfer learning for prepruned models on compact datasets, such as Fashion MNIST, CIFAR10,
and CIFAR100. The primary objective is to reduce the number of neurons while preserving high-level features. To this
end, local sensitivity analysis is employed alongside p-norms and various reduction levels. This investigation discovers that
VGG16, a network rich in parameters, displays resilience to high-level feature pruning. Conversely, the ResNet architec-
tures reveal an interesting pattern of increased volatility. These observations assist in identifying an optimal combination
of the norm and the reduction level for each network architecture, thus offering valuable directions for model-specific op-
timization. This study marks a significant advance in understanding and implementing effective pruning strategies across
diverse network architectures, paving the way for future research and applications.
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1. Introduction

In recent years, exploratory data analysis has undergone
significant developments in both theoretical (Gui et al.,
2021) and practical (Saura, 2021) aspects. Data
classification, a primary task in this domain, comprises
two stages: model preparation and categorization of
new, unknown data (Corrales et al., 2018). This
study focuses on using a supervised learning approach,
wherein the training dataset contains input data and
corresponding class labels representing the desired model
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outputs. Various classifiers are employed, including
linear classifiers (naive Bayesian classifier, perceptron),
k-nearest neighbors, decision trees, Bayesian networks,
and neural networks (Kahani et al., 2019).

Despite the predominance of numerical data
processing, the complexity of real-world phenomena
necessitates the utilization of diverse variable types,
including binary, categorical, and mixed variables.
Probabilistic methods, fuzzy logic, and interval
information modeling can be applied to handle imprecise,
uncertain, or inaccurate information (Cuzzocrea, 2020).

Image information, however, possesses a distinct
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character. Algorithms dedicated to image analysis (e.g.,
cascade classifiers) are often employed to transform the
obtained information into a numerical feature vector
suitable for classical adaptive edge detection methods
(Huang et al., 2005). Convolutional neural networks
(CNNs) have emerged as a fundamental tool for
image analysis tasks (Yamashita et al., 2018), capable
of recognizing complex structures through multiple
convolution operations.

A typical CNN architecture comprises multiple
blocks for feature extraction and one to three dense layers
for classification (Hidaka and Kurita, 2017). Transfer
learning is a widely utilized technique that reuses a model
trained on a large dataset for use as a feature detector in
a target task, requiring only fine-tuning to adapt to the
problem under study (Mishkin et al., 2017).

Despite their effectiveness, neural networks are often
criticized as “black box” models due to their opacity
(Tzeng and Ma, 2005). Comprehensive knowledge of the
model and the ability to interpret individual components
is crucial for a deeper analysis and model modification. In
response, researchers have delved into neural structures
using methods like Shapley additive explanations (SHAP)
analysis (Lundberg and Lee, 2017), which assesses the
influence of feature vector elements on machine learning
algorithm results (Antwarg et al., 2021).

Another viable approach for neural structures is
sensitivity analysis, which treats the neural network as a
black box, studying input-output dependencies (Saltelli
et al., 2008). Sensitivity analysis (SA) methods were
initially applied to reduce the input layer of neural
networks, such as multilayer perceptrons (MLPs) (Fock,
2014; Zurada et al., 1997), radial basis functions (RBFs)
(Shi et al., 2005), and probabilistic neural networks
(PNNs) (Kowalski and Kusy, 2018). Advances in SA
enable deeper analysis and interpretation of individual
network components (Kowalski and Kusy, 2017), leading
to topological changes within the network, including
modifying the number of neurons and adjusting weighting
factors (Kusy and Kowalski, 2018).

This study introduces a novel approach utilizing
local sensitivity analysis (LSA) to reduce the internal
complexity of neural networks. The primary objective
is to identify and eliminate redundant features
within the flattening layer by examining the feature
extraction process in the convolutional layers. To
validate the proposed method, six pre-trained CNN
architectures (DenseNet121, DenseNet169, ResNet50V2,
ResNet101V2, VGG16, and VGG19) were employed,
with transfer learning applied using benchmark datasets,
including fashion MNIST, CIFAR10, and CIFAR100.
During this research, the primary goal was to find the
best possible value for the p-norm. This optimal value
is needed to aggregate sensitivity data from various
benchmarks, while also maintaining a high level of

classification accuracy.
The paper is organized as follows. Section 2

provides a brief description of the datasets used for
validation. Section 3 outlines transfer learning and
pre-trained CNN structures. Sections 4 and 5 detail the
Local Sensitivity Analysis and the main CNN structure
reduction algorithm. The subsequent two sections present
the numerical experiments’ details and results. Finally,
the paper concludes with a summary and discussion of
the research on the proposed neural network reduction
method.

2. Datasets
This paper uses the following open-access image
classification datasets: fashion MNIST (Xiao et al.,
2017), CIFAR10, and CIFAR100 (Krizhevsky, 2009).
Fashion MNIST, designed as a replacement for the
now-trivial MNIST, consists of 28×28 grayscale images
representing 10 types of fashion clothing items. The
dataset includes a training set of 60,000 elements and
a test set of 10,000 elements. Both CIFAR datasets
feature 50,000-element 32×32 color train sets and
10,000-element test sets. While CIFAR10 comprises 10
labels of animals and vehicles, CIFAR100 consists of 100
fine-grained categories grouped into 20 coarse-grained
classes. This study utilizes CIFAR100’s 100 fine-grained
labels.

In this research, ImageNet serves as the dataset
for pretraining all networks. ImageNet contains
181,167 training images and 50,000 validation images,
organized into 1,000 categories. This dataset has posed
a significant challenge and benchmark for currently
developed networks. For the purpose of this study,
ImageNet was preprocessed, and all images were
center-cropped to a size of 256×256.

3. Convolutional neural networks
Developing large-scale CNNs from scratch is a
laborious and time-consuming process, and competing
against state-of-the-art networks presents its own
challenges. Consequently, researchers often reuse
well-established architectures. Training a network from
a randomly-initialized state requires a greater number of
epochs to achieve acceptable performance. To expedite
the learning process for new problems, a common
technique involves using pre-trained networks derived
from other similar datasets, an approach called “transfer
learning.” In this paper, all the presented networks were
pretrained on ImageNet (Russakovsky et al., 2014), a
standard large-scale benchmark dataset.

DenseNet121 and DenseNet169 (Huang et al., 2017)
are deep networks consisting of 121 and 169 layers,
respectively. This family of networks is based on dense
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blocks connected to each other, which helps reduce the
vanishing gradient problem by propagating features to
deeper blocks. The concept of passing down features
enables a decrease in the parameter count. DenseNets are
designed to scale well with hundreds of layers, with the
assumption that deeper networks yield higher accuracy.
DenseNets are generally smaller in size and converge
faster than other large networks.

ResNet50V2 and ResNet101V2 (He et al., 2016b)
contain improved residual blocks compared with the
original ResNet(V1) architecture (He et al., 2016a).
ResNetV2 utilizes identity connections to skip ReLU
activation and pass input directly to the next residual
block, which enhances performance and mitigates the
vanishing gradient problem in very deep networks.
Furthermore, post-convolution normalization results in
unnormalized output, while batch normalization before
convolution guarantees normalized input for convolution.
These changes led to a TOP1 accuracy improvement of
1.1% and 0.8% for the ImageNet dataset (Keras, 2023).
In this article, all ResNets belong to the V2 family, even if
not explicitly mentioned.

VGG16 and VGG19, introduced in 2015 (Simonyan
and Zisserman, 2015), are the oldest of the presented
networks. The numbers in their names represent the total
number of convolutional and fully connected layers. Both
networks have three fully connected layers and either
13 or 16 convolutional layers. Unlike the previously
mentioned architectures, VGGs lack skip connections
and have a straightforward pipelined input. In terms
of performance, VGGs exhibit slightly lower accuracy
than DenseNets or ResNets and contain significantly more
parameters.

Dropout and regularization are methods used to deal
with overfitting in CNNs. The dropout technique works
by temporarily leaving out a random selection of neurons
during the training process. By doing this, the network
becomes less reliant on any one neuron and spreads
the learning across multiple neurons, which can help it
to generalize better to new data. On the other hand,
regularization is a method that introduces a penalty for
large weights in the loss function. By adding this penalty,
the method discourages the model from using extreme
weight values, making it more stable and less likely
to overfit. Thus, the model becomes more capable of
working well not just on the training data but also on new,
unseen data.

There are two principal strategies for network
optimization: structural pruning, exemplified by
methods such as LSA, and non-structural pruning,
often implemented through regularization (Kowal
et al., 2018). Structural pruning serves as a mechanism to
curtail a network’s complexity by selectively eliminating
weights or, in some instances, entire neurons or layers
(Kusy and Zajdel, 2021). This tactic reduces the overall

size and intricacy of the network, resulting in a model that
is simpler and potentially more interpretable. Conversely,
non-structural pruning adopts a less aggressive approach.
Instead of outright removal, it assigns zero values to
specific weights, effectively minimizing their influence
on the network’s output. Notably, this method does
not alter the fundamental architecture of the network,
preserving its original structure while attenuating certain
aspects of its functionality. In essence, while structural
pruning offers the dual benefits of shrinking model size
and lowering computational demand, non-structural
pruning primarily affects computational processes.
However, the impact of non-structural pruning is most
evident when using specialized hardware or software.

4. Local sensitivity analysis
SA techniques, which determine how the uncertainty of
a model’s output can be attributed to the uncertainty in
that model’s input (Saltelli et al., 2004), are generally
classified as global (GSA) or local (LSA). GSA methods,
such as Sobol (Saltelli et al., 2010) or the extended Fourier
amplitude sensitivity test (EFAST) (Saltelli et al., 2012),
simultaneously modify all input variables to measure the
impact of input on output variance. In contrast, LSA
methods modify a single input directly to measure its
influence on the output. While GSA methods have been
used in similar applications in other works (Jeczmionek
and Kowalski, 2021) and have yielded positive results
in terms of accuracy, they have been found insufficient
for state-of-the-art networks due to their extremely large
complexity and lack of GPU acceleration.

In this article, LSA is applied as a partial gradient
on the final layers after convolutions. For VGGs,
this involves the classifier and the flattening layer; for
DenseNets and ResNets, it involves the average pooling
layer. Let us assume that the described layer has input
vector xi and output vector yj , where i ∈ 1, . . . , I and
j ∈ 1, . . . , J . LSA then calculates the partial gradient of
the layer ∂yj

∂xi
for N forward propagations. Subsequently,

an average of sensitivities is calculated for each neuron,
i.e.,

SLSA =
1

N

N∑

i

∂yj
∂xi

. (1)

5. Prepruned transfer learning models
Transfer learning is a widely employed technique that
facilitates the reuse of networks trained on different
datasets. This section presents the application of various
p-norms (Riesz, 1910) to the post-convolution layer
(Algorithm 1). This method measures the importance
of high-level features and investigates whether pruned
networks, initially trained on large, diverse datasets, can
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Algorithm 1. Prepruned transfer learning models.
1: train the selected neural network on the ImageNet

training dataset
2: choose a p value for the p-norm and the reduction

factor r
3: for all image in the ImageNet validation set do
4: run forward propagation for the image
5: calculate and store the average SLSA values for

each neuron in the first post-convolution layer
6: end for
7: apply the p-norm to all stored SLSA vectors
8: sort the final SLSA vector in ascending order
9: remove neurons corresponding to the lowest values in

the sorted vector
10: return pruned network for use with other datasets

be directly transferred to smaller datasets. To perform the
reduction task, SLSA is calculated for 50,000 elements of
the ImageNet validation set. Subsequently, the following
p-norm is applied:

||SLSA||p =
( 50,000∑

n=1

|LSAn|p
)1/p

, (2)

where n is the cardinality the of ImageNet validation
set. In this approach, p covers values from 0.5 to 5 with
step 0.5 with the addition of two special numbers for
mathematics: e and π, i.e.,

p ∈ {0.5, 1, 1.5, 2, 2.5, e, 3, π, 3.5, 4, 4.5, 5}. (3)

Common p-norms have their special names: p = 1 is
known as the ‘taxi-cab’ or ‘Manhattan’ norm, p = 2 is
called the ‘Euclidean’ (l2) norm and p → ∞ defines the
‘maximum norm’.

Then with a vector of sensitivities, all values are
sorted and reduction r is applied in a range of 0% to 50%
with a step of 5%. This parameter represents the number
of pruned features. Thus,

r ∈ {0%, 5%, . . . , 45%, 50%} (4)

and r neurons with the least sensitivity are pruned from
the models. This procedure creates models described by p
that are used by the norm and r connected to the reduction
level.

6. Experiment
DenseNet121, DenseNet169, ResNet50, ResNet101,
VGG16, and VGG19 are networks initially trained on the
ImageNet dataset. Next, various permutations of p and
r were applied to create pretrained networks according
to Section 5. The resulting models were then trained
on three smaller datasets: fashion MNIST, CIFAR10,

Start

Train network

Choose p and r

For each image

Run forward propagation

Calculate S LSA

Apply p-norm

Sort S LSA

Remove neurons

Return pruned network

yes

no

Fig. 1. Flowchart of the proposed procedure.

and CIFAR100. This process generated a combination
of six networks, twelve p-norms, ten reductions, and
three datasets. The objective was to determine whether
prepruning is an effective technique and, if so, identify
the optimal pruning levels and norms for achieving the
best results.

In this experiment, we utilized pretrained neural
networks fine-tuned on the ImageNet dataset. However,
the large number of output parameters from these
networks posed a challenge of producing irrelevant
outputs for the smaller datasets. To address this issue,
we adjusted the number of neurons in the final layer
of the classifier to correspond to the number of labels
present in each dataset used for the experiment. As a
result, initializing and training the classifier from scratch
was necessary. Furthermore, due to limited computing
resources, the number of epochs was set to 15, which
significantly reduced the training time, considering the
number of combinations to be tested. In this study,
training a new model involved copying a pretrained model
and applying random initialization of classification or
fully connected layers at the end of the network. All
parameters were trainable, and no freezing of layers was
implemented. This approach not only limited the number
of training epochs but also facilitated faster convergence.
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Fig. 2. Average accuracy results as a function of the change in p.

Training was conducted with a batch size of 128 and
categorical cross-entropy as the loss function.

All datasets were preprocessed according to the
specific network requirements. For VGG networks, the
color space was converted from RGB to BGR, and
color channels were zero-centered based on the ImageNet
dataset. For ResNetV2 networks, image pixels were
scaled between −1 and 1.

Additionally, DenseNet preprocessing involved
scaling pixel values within a range of 0 to 1, after
which each channel was normalized with respect to the
ImageNet dataset.

7. Results
This section presents the results of LSA for high-level
feature pruning. The objectives of this study are to
determine an optimal p-norm value for transfer learning
prepruning for individual networks and, in general,
identify an optimal reduction level for achieving the
best accuracy for the used CNNs, and discover the
most effective combination of norm and reduction levels.
Herein, the original test accuracy of unmodified networks
serves as a benchmark for comparison, representing a 0%
change in accuracy.

Figure 2 displays the dataset and reduction average
test accuracy changes for individual networks and in
general. Notably, VGG16 was the only network to
maintain an average accuracy across various reduction
levels, surpassing the benchmark of original accuracy.
Interestingly, the larger sibling network, VGG19,
exhibited results close to the average index for all

networks. In contrast, the highest volatility was observed
in the ResNet family networks. Both ResNets achieved
peak accuracy improvements close to 0.5% for a p value
of 3. However, these networks also experienced the most
significant accuracy drops among all tested networks.
Specifically, ResNet50 lost over 1% at p equal to π, while
ResNet101 dropped over 2% at p equal to 3.5. Moreover,
extreme off-accuracy values were observed for ResNet101
at extreme values of p. Notably, only a p-norm value of
3 could marginally increase accuracy for the researched
networks as a whole.

Figure 3 presents the ratio of reduction to accuracy,

ratior =
1

(1− r)L

∑

norm

∑

dataset

(acctest − accoriginal).

(5)
This ratio is introduced to determine whether the
accuracy drop is proportional to reduction. Zero
indicates proportionality, positive values signify a
disproportionately high reduction compared with a
smaller accuracy drop (a positive scenario), and negative
values imply a disproportionately low reduction compared
with the accuracy drop (a negative scenario). This
equation calculates the average difference between the
benchmark accuracy and the accuracy for each dataset
and norm. Here, the multiplication of the number of
datasets and norms is denoted as L, and the fraction 1

1−r ,
where r is a value between 0.05 and 0.5, scales the ratio
proportionally for accuracy and reduction. Additionally, a
reduction of x% compensates for the drop in accuracy by
x%.

Consistent with Fig. 2, VGG16 surpassed the



668 E. Jeczmionek and P.A. Kowalski

Fig. 3. Results of the average accuracy with respect to the reduction ratio.

benchmark for all reduction levels. In contrast, VGG19
displayed subpar results, although a 35% reduction
exceeded the general index of all networks. The VGG
family’s increased resistance to high-level feature pruning
might be attributed to the number of parameters; VGG16
has over three times more parameters than ResNet101 and
nearly seven times more than DenseNet169. Like the
previous case, ResNet networks exhibited high volatility,
reaching an extreme range of the ratio.

In the experiment, all networks except for the VGG
architecture experienced a significant drop at the 40%
reduction. Interestingly, networks with a larger number
of layers, such as DenseNet169 and ResNet101, declined
faster than their smaller counterparts, i.e., DenseNet121
and ResNet50.

Table 1 reports the average accuracy for all networks
across norm and reduction pairs. A dotted line border
highlights the top-3 maximal accuracies for p-norm,
while a solid line border indicates the top-3 maximum
accuracies for the reduction level.

In this study, it was anticipated that lower reduction
levels would yield the best accuracy results. As shown
in the table, an average accuracy improvement of 0.8%
was attained with a p value of 1 and a 10% reduction.
Surprisingly, the second-best result of 0.7% increase was
achieved by pairs with very different components. A 5%
reduction is not far from the best result, but a p value of
5 significantly deviates from the p-norm range. The next
top-performing solution had a p value of 3.5 and a larger
reduction level of 25%.

In the table, a dashed line border marks positive
average accuracy improvements for norm or reduction.

As shown, only p-norms with a value of 3, on average,
maintain the accuracy level of the original solutions.
While it is unsurprising that a small reduction of 5%
can, on average, increase accuracy, this is achievable only
by 0.1%. Interestingly, a reduction of 20% resulted, on
average, in solutions comparable to those of the original
networks.

Table 2 presents the best accuracy changes and
the best/worst scenarios for maximum pruning levels
for each network. The VGG family achieved modest
accuracy improvements of 1.3% and 1% for VGG16 and
VGG19, respectively. Notably, a 50% reduction did not
significantly impact accuracy. As displayed in the table,
the difference between the best and worst solutions was
0.9% and 1.6% for VGG16 and VGG19, respectively.

Table 3 compares the output sizes from the
convolutional layers, measured in terms of features
or neurons. The outputs from these convolutional
layers constitute the inputs to the classifier segment
of the respective networks. This transition from the
convolutional layers to the classifier is often termed as
“lattening” the output. This process typically involves
transforming a multi-dimensional tensor of feature maps
into a one-dimensional tensor or vector. The neurons
arising from this transformation are the focal points for
the proposed pruning method. The specific features
selected as input for the classifier are contingent upon
the employed norm. Consequently, networks with
larger classifiers, such as those in the VGG family,
can particularly benefit from this pruning method. By
reducing the input, the method effectively decreases the
number of weights required in the subsequent layer.
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The higher number of features likely contributes
to the minimal accuracy impact from higher reduction
levels. In this study, better results for 50% pruning were
observed with p values close to 4, while the worst results
were associated with p values near 2. As with previous
cases, the ResNet family demonstrated high volatility in
results. ResNet50 and ResNet101 achieved the highest
accuracy improvements of 2.1% and 3.5%. However, the
fluctuation of accuracy reached 5.5% and 8.1%, with the
best results obtained using higher p values and the worst
results with lower p values. The ResNet family is highly
volatile when high pruning levels are desired; poor norm
choices may lead to substantially worse results than other
networks.

Our experiment further demonstrates that the
DenseNet family’s performance, in terms of accuracy, is
inferior to the previously mentioned networks. However,
DenseNet169 has the advantage of attaining higher
pruning, reaching a level of 35% while still achieving
the best accuracy for a given solution. Notably, when
subjected to a 50% reduction, DenseNets were the only
networks unable to surpass the benchmark accuracy.

This research primarily aimed at optimizing the
p-norm value for transfer learning. The ultimate
objective was to minimize the feature set necessary
for classification, while concurrently sustaining high
accuracy levels. Distinct from many existing methods that
focus on pruning networks centered on their convolutional
layers, the present approach assesses the significance
of features yielded by the segment of a network
designated for feature extraction. This methodological
shift potentially enables a more nuanced understanding of
the role and impact of various features within a network.
Additionally, the study undertook a comprehensive
examination of a broad range of norm formulas to discern
whether the order of the norm can enhance the detection
of less impactful features. This scrutiny helps not only
to identify and eliminate superfluous features but also
to better understand the dynamics of feature interactions
within complex network structures.

The current research conducted provides insight into
the interplay between p-norm values, reduction levels,
and accuracy across various neural network architectures.
However, to fully comprehend the dynamics behind these
observations, a deeper investigation is required. The study
underscores the importance of considering the complexity
of a network and the count of its parameters when
interpreting these results.

Evidently, networks with a higher number of
parameters, like VGG16, seem to display more robustness
against high-level feature pruning. This implies the
presence of redundancy in high-level features of these
networks, enabling them to endure larger pruning levels
without a substantial decrease in accuracy. Conversely,
ResNet architectures display greater fluctuations in
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Table 2. Accuracy results for the investigated neural network structures.
VGG16 VGG19 ResNet50 ResNet101 DenseNet121 DenseNet169

Best accuracy (p/r)
1.3%

(2/15%)

1.0%
(1/10%)

(3.5/10%)

2.1%
(2/5%)

(4.5/20%)

3.5%
(3.5/25%)

0.5%
(0.5/15%)

0.5%
(0.5/35%)
(1.5/15%)

Best accuracy for
max. reduction (p)

0.6%
(4.5)

0.3%
(4)

1.4%
(3)

1.8%
(4.5)

-0.4%
(0.5)

-0.4%
(0.5, 1)

Worst accuracy for
max. reduction (p)

-0.3%
(1.5)

-1.3%
(2, e)

-4.1%
(0.5)

-6.3%
(1.5)

-1.8%
(e)

-2.3%
(5)

Table 3. Number of feature neurons as output of convolutional layers and input to the classifier.
Network VGG ResNetV2 DenseNet121 DenseNet169

Features for classifier 512 2048 1024 1664

performance, possibly due to their deeper structures and
residual connections. These characteristics might interact
with the pruning process in a more complex manner,
impacting the performance outcomes. Furthermore, the
research acknowledges the potential impact of the number
of layers in a network on the efficacy of pruning, as
demonstrated by DenseNet169 and ResNet101. Given
the high degree of interconnectedness in these dense
networks, specific layers or features might prove more
vital to the overall accuracy, rendering them more
vulnerable to performance degradation with escalating
pruning levels. Looking ahead, the research intends
to incorporate more state-of-the-art architectures in the
investigation, including Inception (Szegedy et al., 2016),
Xception (Chollet, 2017), EfficientNet (Tan and Le,
2019), and ResNext (Xie et al., 2017), to broaden the
understanding of feature pruning implications across a
more diverse set of network structures.

8. Conclusions

This study offers an analysis and evaluation of local
sensitivity analysis transfer learning high-level feature
pre-pruning based on the ImageNet dataset, focusing
on three network architectures: DenseNet, ResNet, and
VGG. The research objective was to identify the optimal
p-norm and reduction levels for these networks when
tested on three datasets: CIFAR10, CIFAR100, and
Fashion MNIST. Our findings reveal that the average
test accuracy changes fall within a range of −2.1% to
0.8% for all networks. Additionally, a more significant
drop in accuracy is evident when 40% of all neurons are
removed. Remarkably, the VGG16 network outperforms
the benchmark of the unpruned network in terms of
average accuracy for all norms and reduction levels.
Although VGG networks typically do not yield the best

results, they are relatively unaffected by changes in the
investigated parameters. In contrast, ResNet networks
exhibit substantial accuracy volatility, achieving both
the highest and lowest accuracies among the analyzed
networks depending on the chosen parameters. A 20%
reduction with p equal to 3 proved neutral for average
accuracy, average reduction, and their combination. The
most substantial overall accuracy improvements were
achieved with low reduction levels and extreme p values
within the applied range, such as 1 or 5.
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