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Safety-critical and mission-critical systems are often sensitive to functional degradation at the system or component level.
Such degradation dynamics are often dependent on system usage (or control input), and may lead to significant losses and a
potential system failure. Therefore, it becomes imperative to develop control designs that are able to ensure system stability
and performance whilst mitigating the effects of incipient degradation by modulating the control input appropriately. In
this context, this paper proposes a novel approach based on an optimal control theory framework wherein the degradation
state of the system is considered in the augmented system model and estimated using sensor measurements. Further, it is
incorporated within the optimal control paradigm leading to a control law that results in deceleration of the degradation
rate at the cost of system performance whilst ensuring system stability. To that end, the speed of degradation and the state
of the system in discrete time are considered to develop a linear quadratic tracker (LQT) and regulator (LQR) over a finite
horizon in a mathematically rigorous manner. Simulation studies are performed to assess the proposed approach.
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1. Introduction

Traditional control system designs (Stengel, 1986; Åström
and Wittenmark, 1995) focus only on the stability
and performance without taking into consideration the
effects of aging, fatigue, and damage of the concerned
components and without minimizing the risk of failure.
However, safety-critical systems (Knight, 2002) arise
in several application areas, such as transportation and
air-traffic control systems, space systems, nuclear plants
and automated industrial processes. The evolution
of such complex systems calls for development of
new control technologies that maintain system stability
and performance specifications, and also address the
progressive incipient degradation.

In this context, recent works include approaches such
as adaptive or robust control to address issues where the
degree of failure may be unknown. In the work of Bole
et al. (2010), a fault adaptive control is proposed for
incipient fault modes growing into catastrophic failure
conditions. The methodology is developed for a finite
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constrained optimization problem where the model of
the system and the degradation is supposed to be
known. Zhang et al. (2022) develop a reconfiguration
control method using a multiple-model based adaptive
control. The proposed control law allows handling
component faults while maintaining the performance of
the electro-hydraulic position servo system. Moreover,
fault tolerant control design (Noura et al., 2009; Blanke
et al., 2006) has been developed for various industrial,
mission critical and safety critical systems that operate in
closed loop, in order to compensate for fault occurrence.
In the work of Hamdi et al. (2021), a fault tolerant control
was introduced for delayed linear parameter varying
systems including disturbances and actuator faults.

In recent years, new methods have been developed
such that the useful life of critical systems can be
enhanced. In this context, health aware control has
emerged as a significant domain where control laws
are designed while taking into consideration the state
of health (SoH) and/or remaining useful life (RUL)
prognostics of critical components. Some prominent
works have proposed methods for developing control laws
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that attempt to extend the RUL of a component/system
(e.g., Lipiec et al., 2022; Pour et al., 2021; Rodriguez
et al., 2018; Salazar et al., 2017). Moreover, in the
framework of model predictive control (MPC), several
works have been adopted to design a controller that
ensures robustness to particular failures, thus reducing
their impact on the system (Brown et al., 2010; 2021).

However, in the case where the states of a system
are not measurable, it can be challenging to design
effective controllers that can maintain good performance
in the presence of these uncertainties. In such situations,
various techniques can be employed to estimate the
system states and the degradation state such as the Kalman
filter (Durrant-Whyte, 2006), the extended Kalman filter
(Kanso et al., 2022; Obando et al., 2021; Bressel et al.,
2016), particle filtering (Jha et al., 2016), etc. In the
framework of linear systems, Kalman filtering is often
used for real-time control applications due to its low
computational complexity and convergence guarantee.
Combining the Kalman filter and linear quadratic control
(LQC) yields a powerful control approach known as
linear quadratic Gaussian (LQG) control (Lewis et al.,
2012; Söderström, 2002). It is commonly applied
to optimize the performance of linear systems in the
presence of additive white Gaussian noise. It is widely
used in a variety of applications to maintain good control
performance in the presence of noise (Athans, 1971). The
Kalman filter allows estimating the states of the system
based on noisy measurements; then the estimated states
are used to compute the optimal control input, ensuring
optimal system behavior and performance.

In the context of incipient degradation, incorporating
the degradation state into control design is a non-trivial
task (Söderström, 2002). This challenge is further
compounded when the degradation states are not directly
measurable (Félix et al., 2022). Consequently, it can be
difficult to accurately assess the extent of degradation
and to design controllers that can adapt to changing
degradation levels over time or decelerate the degradation
speed.

Most of the existing work focuses on integrating fault
tolerance within the control design without addressing
the incipient functional degradation phenomena that lead
to such faults and, consequently, a system failure. On
the other hand, very few works have addressed the
problem emanating due to degradation that is often not
measurable and incipient in nature. In this context, this
paper proposes a novel approach based on an optimal
control theory framework wherein the degradation state
of the system is considered in the augmented system
model and estimated using sensor measurements. Further,
it is incorporated within the optimal control paradigm
leading to a control law that results in deceleration of
the degradation rate at the cost of system performance
whilst ensuring system stability. While the importance of

MPC control and its practical benefits are recognized, our
specific research focus centers on exploring the potential
of the LQR and preparing the foundation for future
research on reinforcement learning approaches in control
design for nonlinear systems.

This work is an extension of the previous one (Kanso
et al., 2023), wherein a linear quadratic regulator (LQR)
and tracker (LQT) were designed for a deterministic
discrete-time linear system in the presence of a linear
degradation, and the full information about the state and
the degradation was considered available.

This paper aims to extend the previous work and
address the cases of incomplete states information,
thereby addressing stochastic systems using LQG control.
The main scientific contribution is the proposition of a
novel degradation tolerant approach based on optimal
control theory for a stochastic discrete-time linear system
with partially measurable states and degradation.

This paper is organized as follows. Section 2
introduces the problem statement. Section 3 presents
the proposed reconfiguration approach for deterministic
systems. Section 4 develops LQG control for incomplete
state information. Section 5 examines the feasibility of the
proposed approach using an academic example. Also, it
highlights the distinction between the formulation of this
article and the approach of extending the state vector to
include both the system state and the degradation state for
the control design. Finally, the conclusions summarize
significant advances and presents future perspectives.

2. Problem formulation
The degradation of a system’s components affects its
performance and stability. The state of degradation or
deterioration, considered as a health indicator, also affects
directly the remaining useful life of the active system,
consequently reducing the usability and productivity
of the system. Moreover, the SoH is predominantly
influenced by the states of the system, and implicitly
affected by the action of the controller. Therefore, the
development of an optimal approach for performing a
control action that takes into account the performance
requirements, the stability and also the SoH of the system
gains paramount importance for such systems undergoing
component degradation.

This paper focuses on linear MIMO (multiple inputs
multiple outputs) discrete-time systems represented by the
state transition, control and observation matrices, A1 ∈
R

n×n, A2 ∈ R
n×l, B1 ∈ R

n×m and C1 ∈ R
p×n,

xk+1 = A1xk +A2dk +B1uk, (1)

yk = C1xk, (2)

where u ∈ R
m, x ∈ R

n, d ∈ R
l and y ∈ R

p correspond
respectively to the input, state of the system, state of
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degradation and measurement vectors. The system is
affected by the degradation in an affine manner and
the degradation evolution is described by the following
state-space representation:

dk+1 = A3xk +A4dk (3)

with A3 ∈ R
l×n and A4 ∈ R

l×l. In most cases, the
evolution of the degradation is monotonic and irreversible;
moreover, it is generally unknown. In this work, the
current state of degradation is assumed to be dependent
on the previous state of degradation and also the previous
state of the system. Moreover, it is assumed that the
degradation variable dk has a maximum value dmax, such
that, if the degradation level at any time k is less than
dmax, the system remains stable and can be asymptotically
stabilized on R

n.
In order to maintain the system performance while

minimizing the energy and the speed of evolution of
degradation, a quadratic utility function is defined by

Uk = (C1xk − rk)
TQ(C1xk − rk) + uT

kRuk

+ΔdTk Q1Δdk,
(4)

where rk is the desired reference trajectory and Δdk is the
rate of evolution of degradation described by

Δdk = dk+1 − dk = (A4 − I)dk +A3xk. (5)

The utility function (4) is used to develop the performance
index of a linear quadratic tracker problem, which gives
the following quadratic cost function:

J0 =
1

2
[(C1xN − rN )T S̄N(C1xN − rN )

+ ΔdTN P̄NΔdN ]

+
1

2

N−1∑

k=0

[(C1xk − rk)
TQ(C1xk − rk)

+ uT
kRuk +ΔdTk Q1Δdk], (6)

where Q, Q1, R, S̄N and P̄N are symmetric positive
definite cost-weighting matrices and |R|�= 0. The initial
plant and degradation state are given as x0 and d0,
respectively.

In the following section, the control problem will
be addressed for the case of deterministic systems while
minimizing the rate of evolution of degradation.

3. Optimal reconfiguration control of
deterministic systems

In this section, the developed optimal control based
approach allows the synthesis of a state feedback control
law using the minimization of a quadratic criterion
involving the state, control and rate of evolution of

degradation. The problem posed is to bring the state to
any reference track, which is equivalent to bringing the
state to equilibrium (zero) starting from a non-zero initial
condition. Hence, in Section 3.1, the solution of the
problem is developed for an LQT, and then the solution is
deduced for a LQR problem. The constructed controller
is for deterministic systems with fully measurable states.

3.1. Linear quadratic tracker. This section
synthesizes an optimal control law that forces the
system to track a desired reference trajectory rk over a
specified time interval [0, N ]. The cost function (6) is
sensitive to the tracking error, the input and Δd to force
the state to reach the reference and to decelerate the speed
of evolution of degradation. Using (5) to eliminate Δd in
(6) gives

J0 =
1

2
[xT

N (CT S̄NC + AT
3 P̄NA3)xN

+ dTN (A4 − I)T P̄N (A4 − I)dN + rTN S̄NrN

− xT
NCT S̄NrN − rTN S̄NCxN

+ dTN (A4 − I)T P̄NA3xN + xT
NAT

3 P̄N (A4 − I)dN ]

+
1

2

N−1∑

k=0

[xT
k (C

TQC +AT
3 Q1A3)xk + uT

kRuk

+ dTk (A4 − I)TQ1(A4 − I)dk + rTk Qrk

− xT
k C

TQrk − rTk QCxk + dTk (A4 − I)TQ1A3xk

+ xT
k A

T
3 Q1(A4 − I)dk].

(7)

To solve the LQT problem, the Hamiltonian is first
considered in order to derive the necessary conditions.
The Hamiltonian function is defined by the following
equation:

Hk =
1

2
[xT

k (C
T
1 QC1 +AT

3 Q1A3)xk + uT
kRuk

+ dTk (A4 − I)TQ1(A4 − I)dk + rTk Qrk

− xT
k C

T
1 Qrk − rTk QC1xk

+ dTk (A4 − I)TQ1A3xk + xT
k A

T
3 Q1(A4 − I)dk]

+ λk+1[A1xk +A2dk +B1uk],

(8)

where λk ∈ R
n is the costate of the system and is given

by

λk =
∂Hk

∂xk

= (CT
1 QC1 +AT

3 Q1A3)xk +AT
1 λk+1

+AT
3 Q1(A4 − I)dk − CT

1 Qrk.

(9)

Solving the stationarity condition ∂Hk

∂uk
= 0 yields

uk = −R−1BT
1 λk+1. (10)
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If the optimal λk can be found, (10) can be used
to find the optimal control. Moreover, the boundary
condition is given by

(11)
λN =

∂ΦN

∂xN

= (CT
1 S̄NC1 +AT

3 P̄NA3)xN

+AT
3 P̄N (A4 − I)dN − CT

1 S̄NrN

with

ΦN =
1

2
[xT

N (CT
1 S̄NC1 +AT

3 P̄NA3)xN

+ dTN (A4 − I)T P̄N (A4 − I)dN + rTN S̄NrN

− xT
NCT

1 S̄NrN − rTN S̄NC1xN

+ dTN (A4 − I)T P̄NA3xN

+ xT
NAT

3 P̄N (A4 − I)dN ].

(12)

Thus, assuming that a linear relation like (11) holds for all
times k ≤ N , the costate equation can be written as

λk = Skxk + Pkdk − qk. (13)

Using (13) in the state equation (1), we get

xk+1 = (I +B1R
−1B1TSk+1)

−1

× [(A1 −B1R
−1BT

1 Pk+1A3)xk

+ (A2 −B1R
−1BT

1 Pk+1A4)dk

+B1R
−1BT

1 qk+1].

(14)

Using (14) and (13) in the costate equation (9) gives

Skxk + Pkdk − qk

= [CT
1 QC1 +AT

3 Q1A3]xk

+AT
1 Sk+1[I +B1R

−1BT
1 Sk+1]

−1

× [A1 −B1R
−1BT

1 Pk+1A3]xk

+AT
1 Sk+1[I +B1R

−1BT
1 Sk+1]

−1

× [A2 −B1R
−1BT

1 Pk+1A4]dk

+AT
1 Sk+1[I +B1R

−1BT
1 Sk+1]

−1B1R
−1BT

1 qk+1

+AT
1 Pk+1A4dk +AT

1 Pk+1A3xk

+AT
3 Q1(A4 − I)dk −A1qk+1 − CT

1 Qrk.

(15)

This equation must hold for all state sequences xk

and dk given any x0 and d0, leading to

Sk = CT
1 QC1 +AT

3 Q1A3

+AT
1 Sk+1(I +B1R

−1BT
1 Sk+1)

−1

× (A1 −B1R
−1BT

1 Pk+1A3) +AT
1 Pk+1A3,

(16)

Pk = AT
1 Sk+1(I +B1R

−1BT
1 Sk+1)

−1

× (A2 −B1R
−1BT

1 Pk+1A4)

+AT
1 Pk+1A4 +AT

3 Q1(A4 − I),

(17)

qk = AT
1 qk+1 + CT

1 Qrk −AT
1 Sk+1

× (I +B1R
−1BT

1 Sk+1)
−1B1R

−1BT
1 qk+1.

(18)

By comparing (11) and (13), the boundary conditions
for these recursions are

SN = CT
1 S̄NC1 +AT

3 P̄NA3,

PN = AT
3 P̄N (A4 − I),

vN = −CT
1 S̄NrN .

(19)

Since the sequences Sk, Pk and qk can be computed, the
assumption (13) is valid and the optimal control is

uk = −R−1BT
1 (Sk+1xk+1 + Pk+1dk+1 − qk+1). (20)

Substituting (1) and (3) in (20) yields

uk = −Kx
kxk −Kd

kdk +Kq
kqk+1 (21)

with

Kx
k = (R+BT

1 Sk+1B1)
−1BT (Sk+1A1 + Pk+1A3),

(22)
Kd

k = (R+BT
1 Sk+1B1)

−1BT (Sk+1A2 + Pk+1A4),
(23)

Kq
k = (R+BT

1 Sk+1B1)
−1BT . (24)

Equations (22), (23) and (24) are solved off-line and
backwards in time, starting from time N → 0.

The solution for the LQR is reached by determining
the control sequence u0, u1, . . . , uN−1 that minimizes J0
in

(25)
J0 =

1

2
(xT

N S̄NxN +ΔdTN P̄NΔdN )

+
1

2

N−1∑

k=0

xT
k Qxk + uT

kRuk +ΔdTkQ1Δdk.

However, the regulation problem is nothing but a tracking
problem where the reference is the equilibrium (zero).
Thus, in this case qN = 0, which implies that the optimal
control takes the form

uk = −Kx
kxk −Kd

kdk, (26)

where Kx
k and Kd

k are computed using Eqns. (22) and
(23), respectively.

The controllers in (21) and (26) are full state
and degradation feedback, so they require complete
information on the system and degradation states. In
many real-world systems, it is not possible to measure
all of the states directly, especially the degradation
state. This can be due to a variety of factors, such
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Fig. 1. Regulator design using state feedback and the Kalman filter as the observer.

as the system complexity, the cost or difficulty of
obtaining measurements, or the inherent limitations of the
measurement devices. As a result, it is often necessary
to estimate the system states based on partial or noisy
measurements, using techniques such as Kalman filtering.
In the following section, the control problem of stochastic
linear systems with incomplete state information will be
addressed.

4. Optimal control with incomplete state
information

In the previous section, the system was assumed to
be exactly known, with no modeling inaccuracies,
disturbances, or noises. In control design, often not
all states are available for feedback purposes, only
measurements are accessible. This can be due to various
factors, such as the cost or complexity of measurements
and the limitations of available sensors. In this section,
incomplete state information is assumed to be available
and the measurements are considered noisy. To solve this
problem, a Kalman filter observer will be used to estimate
the state and the degradation from noisy measurements.
LQT control combined with the Kalman filter constitute
together the linear quadratic Gaussian (LQG) control. It
provides a powerful method for controlling linear systems
in the presence of noise.

Suppose we have the following systems described by
the stochastic dynamical equations:

xk+1 = A1xk +A2dk +B1uk + w1,k,

dk+1 = A3xk +A4dk + w2,k,

yk = C1xk + vk.

(27)

The signals w1,k and w2,k are unknown process noise
that acts to disturb respectively the dynamical system
and the degradation, and it could represent unmodeled
high-frequency plant dynamics or the effects of wind

gusts, for instance. The signal vk is unknown
measurement noise that impairs the measurements and it
represents sensor noise. The signals w1,k, w2,k and vk are
uncorrelated.

Consider the following augmented system composed
of the dynamical system and the degradation with Xk =[
xk dk

]T ∈ R
n+l and Uk = uk:

Xk+1 = AXk +BUk + wk,

Yk = CXk + vk,
(28)

where

A =

[
A1 A2

A3 A4

]
, B =

[
B1
0

]
,

C =
[
C1 0

]
, wk =

[
w1,k

w2,k

]
.

Here wk ∼ (0, Qobs), vk ∼ (0, Robs) are white noise
processes orthogonal to each other.

Suppose we have the full state-feedback control

(29)uk = −Kx
kxk −Kd

kdk +Kq
kqk+1

= −KX
k Xk +Kq

kqk+1

with KX
k =

[
Kx

k Kd
k

]
. The same feedback vector is

used as when the system was deterministic and the states
were known (Stengel, 1986).

The closed-loop system becomes

Xk+1 = (A−BKX
k )Xk +BKq

kqk+1 + wk. (30)

The control law (29) cannot be implemented since
not all the states are usually measurable. Now, consider a
Kalman filter designed as

X̂k+1 = (A− Lk+1C)X̂k +BUk + Lk+1Yk, (31)

where the filter gain Lk+1 is obtained using the Kalman
filter algorithm (Durrant-Whyte, 2006).
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Fig. 2. Trajectory of estimated and real states and degradation in closed loop: x1,k, x̂1,k and the measurement yk (a), the second state
x2,k, x̂2,k and the degradation dk and d̂k (b).
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Fig. 3. Convergence of Sk, Pk , Kx
k , Kd

k and Kq
k : evolution of matrices Pk and Sk with respect to time (a), evolution of the controller

gains Kx
k , Kd

k and Kq
k with respect to time (b).

The feedback of the estimated states X̂k is used
instead of the actual state Xk. Hence, the feedback control
law becomes

uk = −KX
k X̂k +Kq

kqk+1. (32)

The closed-loop structure using this controller is
illustrated in Fig. 1.

The state feedback gains and the observer gain can
be developed separately to obtain the desired observer
behavior and closed-loop plant behavior. This leads to the
separation theorem (Lewis et al., 2012), which is the core
of modern control design. To verify the effectiveness of
the developed control schemes, a finite horizon tracker is
implemented on an academic example in the next section.

5. Simulation results
Consider the following unstable stochastic discrete-time
linear system:

xk+1 =

[
0 6.3
0.6 2

]
xk +

[
1
0

]
uk + 0.1dk + w1,k,

yk =
[
1 0

]
xk + vk.

The dynamic of the evolution of degradation is described
by the following equation:

dk+1 =
[
2× 10−3 0

]
xk + dk + w2,k.

The weighting matrices of the tracker are chosen as

Q =

[
103 0
0 103

]
, Q1 = 103, R = 0.01,

S̄N = Q, P̄N = Q1.
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Fig. 4. System performance and degradation for different values of Q1: system output (a), control input of the system (b), the degra-

dation (c) and the rate of the evolution of the degradation (d).

The augmented system is given by

Xk+1 =

⎡

⎣
0 6.3 0.1
0.6 2 0

2× 103 0 1

⎤

⎦Xk +

⎡

⎣
1
0
0

⎤

⎦Uk +wk.

Yk =
[
1 0 0

]
Xk + vk

The first step in the Kalman filter algorithm is to
initialize the states and to adjust the covariance matrices
to make the filter work properly. The noises wk and vk
are assumed to be Gaussian with zero mean and variances
Qobs and Robs, respectively, with

Qobs =

⎡

⎣
σ2
w1

0 0
0 σ2

w1
0

0 0 σ2
w2

⎤

⎦ , Robs = σ2
v,

where σw1 = 10−3, σw2 = 10−3 and σv = 10−2.
Figure 2(a) shows the trajectory of x1,k, x̂1,k and

the measurements yk for N = 120. A strong correlation
is observed between the three curves, which implies that
the Kalman filter is able to estimate x1 since x̂1 and the
measured values are overlapped. Moreover, the output yk

tracks the reference rk. This indicates that the controller
is able to force the output yk to reach the desired trajectory
and to stabilize the system while using the estimated
states’ feedback.

Consistent results are obtained in Fig. 2(b) since the
trajectories of x2,k and x̂2,k coincide. The second graph in
Fig. 2(b) shows the evolution of the estimated and the real
value of the degradation in closed loop; the two curves are
correlated with a small error between dk and d̂k.

Figure 3(a) displays the evolution of the matrices Pk

and Sk, which form respectively the solutions of Eqns.
(17) and (16). The values are computed offline backward
in time from N to 0. It can be seen from these two figures
that the matrices’ parameters converge respectively to P0

and S0, for any SN and PN , as k approaches 0.
Similar performance is obtained in Fig. 3(b),

respectively, which is reasonable, as Kx
k ,Kd

k and Kq
k

are computed with respect to Pk+1 and Sk+1 (22)–(24).
As N → ∞, Pk and Sk converge to P∞ and S∞,
respectively, which implies that Kx

k , Kd
k and Kq

k reach
steady-state values Kx

∞, Kd
∞ and Kq

∞.
Thus, in this case, the optimal control can be written
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(a) (b)

Fig. 5. Trajectory of x1,k in closed loop for Q1 = 109: x1,k for the formulation of the augmented state vector (a), x1,k for the
formulation developed in the article.

as follows:

uk = −Kx
∞xk −Kd

∞dk +Kq
∞qk+1.

A disadvantage of this formulation is that qk needs to be
computed offline using the backward recursion (18).

The main objective of the developed work is
to decelerate the speed of evolution of degradation
Δdk. Looking at Eqn. (6), it can be seen that the
weighting matrix Q1 strongly affects the progression of
the degradation. Thus, the impact of Q1 on the system
behaviour will be studied in the following results.

For different values of Q1 =[103, 109, 5 × 109] and
for a finite horizon N = 120, the trajectory of the output
yk is represented in Fig. 4(a). It can be seen that, by
increasing the value of Q1, the steady state error between
the output and the reference increases; thus, the input
uk reduces in its turn, as shown in Fig. 4(b). Moreover,
Fig. 4(c) displays the evolution of the degradation for
different values of Q1. It shows that the final value of
the degradation dN decreases when Q1 increases. This
means that the controller tries to find a trade-off between
the performance and the speed of degradation. Thus by
augmenting the value of Q1, the controller will prioritize
reducing the rate of evolution of degradation over the
system performance.

Figure 4(d) shows results consistent with the
previous ones, as it displays the rate of evolution of
degradation for different Q1 and confirms that the speed
of degradation is slower when Q1 is large.

The choice of the formulation presented in this
article was carefully considered based on several factors
and issues. One of the primary reasons for selecting
this specific formulation was to address the problem of
decelerating the speed of degradation. One intuitive
and simplistic formulation that can be employed was

the augmentation of the system state vector with dk and
Δdk . Using such a formulation leads to an undesired
behavior in the trajectory of x1, where it exhibits negative
values for a large horizon (Fig. 5(a)). Conversely, the
approved formulation, which is the focus of this article,
demonstrated a more desirable behavior in the trajectory
of x1, without exhibiting such unconventional values
(Fig. 5(b)). This observation reinforces the effectiveness
of the chosen formulation in controlling the system
dynamics and achieving the desired objectives.

6. Conclusions and perspectives
This paper proposed a degradation tolerant control (DTC)
design based on the LQG approach, where the degradation
is hidden. A finite horizon optimization approach was
developed for linear systems, where these were supposed
to be affected by a linear degradation in an affine
manner. The degradation and state of the system were
considered not fully measurable. Thus, the Kalman
filter was employed to estimate the system states and the
degradation state in order to implement the state feedback
controller. This allows fast estimation with a negligible
residual using noisy measurements. Moreover, using the
output of the observer, the LQT was able to force the
measured state to follow the reference and to stabilise the
system. In order to slow down the speed of degradation,
the value of the matrix Q1 can be increased so that the
controller prioritizes reducing the rate of evolution of
degradation over the system performance, thus preventing
a system breakdown.

The convergence of the gains Kx
k , Kd

k and Kq
k ,

as well as the matrices Pk+1 and Sk+1, needs to be
investigated. Therefore, future work will focus on proving
the convergence of the controller gains. Furthermore,
the integration of the remaining useful life in the cost
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function to extend its value will be examined. However,
it is also important to extend the framework to address
more complex and real-world cases. This involves
considering system dynamics with nonlinearities and
handling scenarios that involve higher-dimensional and
realistic environments. By addressing these challenges,
the future work aims to provide practical and effective
solutions that can be applied to real systems. To
this end, the future work will also involve developing
reinforcement learning algorithms and techniques that are
specifically designed to handle the challenges posed by
nonlinear systems.
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