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When constructing a new data classification algorithm, relevant quality indices such as classification accuracy (ACC) or
the area under the receiver operating characteristic curve (AUC) should be investigated. End-users of these algorithms
are interested in high values of the metrics as well as the proposed algorithm’s understandability and transparency. In
this paper, a simple evolving vector quantization (SEVQ) algorithm is proposed, which is a novel supervised incremental
learning classifier. Algorithms from the family of adaptive resonance theory and learning vector quantization inspired this
method. Classifier performance was tested on 36 data sets and compared with 10 traditional and 15 incremental algorithms.
SEVQ scored very well, especially among incremental algorithms, and it was found to be the best incremental classifier if
the quality criterion is the AUC. The Scott–Knott analysis showed that SEVQ is comparable in performance to traditional
algorithms and the leading group of incremental algorithms. The Wilcoxon rank test confirmed the reliability of the obtained
results. This article shows that it is possible to obtain outstanding classification quality metrics while keeping the conceptual
and computational simplicity of the classification algorithm.

Keywords: incremental learning, data classification, vector quantization, adaptive resonance theory, classification perfor-
mance.

1. Introduction
Traditional machine learning algorithms do not
continually integrate new data into the already trained
model. This is a significant problem, especially in the
case of the exponentially growing amount of collected
data. Increasing the size of the data set leads to a longer
training time of the model. Additionally, after generating
a new class, the model cannot automatically update it
without first updating the model itself. Thus, researchers
have been strongly motivated to propose techniques that
allow one to update the classification model as new data
arrive instead of starting algorithms from scratch. This
has resulted in proposals for incremental classifiers (Luo
et al., 2020). An incremental classifier can identify and
update new classes and does not require access to the
original data used to train an existing classifier (Polikar
et al., 2001; Lee et al., 2021). It is worth noting that,
alongside the shallow methods discussed earlier, deep
learning methods have been rapidly developing recently,
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also in the domain of incremental learning (Pratama
et al., 2020; Leo and Kalita, 2022). These methods
demonstrate effective classification performance, but it
often comes with a significant time burden. Theoretical
results, especially with respect to the implications of the
“no free lunch” theorem (Wolpert and Macready, 1997)
and empirical studies, do not exclude the need to create
new shallow algorithms (Banerjee et al., 2017).

To measure the quality of any new classifier,
appropriate metrics, e.g., ACC, AUC, and others, should
be defined. End users of these algorithms are interested
in high values of these metrics for many different groups
of data sets as well as their intelligibility, transparency
(Villuendas-Rey et al., 2017), and interpretability (Kluska
and Madera, 2021). Therefore, decision trees are among
the most popular machine learning algorithms (James
et al., 2013). It is also very important for any newly
developed algorithm to compare it with existing ones and
show statistically reliable results for a sufficiently large
data set (Stapor, 2018).
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This paper aims to introduce a simple and efficient
method of incremental classification that yields high
classification quality performance. Category generation
on the fly was inspired by vector quantization (VQ)
(Kohonen et al., 2001) and adaptive resonance theory
(ART) (Carpenter et al., 1992), but we did not use
vigilance to match categories. We chose a way closer
to LVQ matching for category matching and compared
the closest category with a new record based on label
matching. Our algorithm decides whether to create a new
category or update an existing one. The main contribution
of this work is a novel incremental classifier applied to
multiclass classification tasks. We experimentally show
that conceptual and computational simplicity can go hand
in hand with improving recognized classification quality
metrics, which is not an obvious result (Holte, 1993).

The literature review indicates that only a few
papers show that straightforward classification algorithms
perform well on the most commonly used data sets. This
empirical observation is significant for our motivation
to set forth a new approach (Fernández-Delgado et al.,
2014; Kluska and Madera, 2021). Our goal is also to
eliminate the drawbacks often found in previous work on
vector quantization. First, authors often do not consider
the statistical significance of the experimental results.
Second, the source code is often unavailable, making it
impossible to reproduce the study. Third, algorithms are
often published in pseudocode, with their informality risks
being overlooked or introducing new bugs when translated
into real programming languages. Fourth, algorithms are
often tested on a small number of data sets.

The remainder of the paper is organized as follows.
In Section 2 we present a short overview of the
related work and incremental algorithms that inspired the
development of SEVQ. In Section 3, we introduce SEVQ,
a simple design for an incrementally trained supervised
evolving algorithm for data classification, and briefly
discuss the apparent differences between our SEVQ and
inspiring algorithms to highlight our contributions to this
work. Section 4 concludes with a visualization of our
algorithm for sample data sets. Section 5 describes
the data sets and provides details on the classifier setup
used for comparison with SEVQ. Section 6 outlines the
classification assessment methods. Next, we present the
experimental results in Section 7. Sections 8 and 9 contain
the outcomes of the Scott–Knot analysis and the Wilcoxon
signed rank test. Finally, in Section 10, we conclude
the article with our observations and directions for future
research.

2. Related work
Many classification algorithms have been proposed
throughout the history of machine learning, for example,
popular support vector machines (SVMs), random forests

(RFs), the K-nearest neighbors (KNNs) algorithm, naive
Bayes (NB), decision trees (DTs), adaptive boosting
(AB), logistic regression (LR) or XGBoost (XGB). It is
worth mentioning that XGB has become very popular in
recent years and has attracted attention as the algorithm
of choice of the winners of data science and machine
learning competitions (Shi et al., 2019).

Hulten et al. (2001) proposed the Hoeffding tree
(HT) classifier, an incremental decision tree algorithm
capable of learning from data streams in which the
input data distribution does not change over time.
Bifet and Gavaldà (2009) introduced the Hoeffding
adaptive tree (HAT) classifier based on the HT, capable
of learning adaptively from data streams that drifted
over time. Oza and Russell (2001) proposed the
Oza bagging (OB) ensemble learning method, which
improved the bagging ensemble method for batching.
Gomes et al. (2017) introduced an adaptive random
forest classifier (ARF). Manapragada et al. (2018)
proposed an extremely fast decision tree (EFDT) classifier
that incrementally constructed a tree. Carpenter and
Grossberg (1987) presented adaptive resonance theory
(ART). It concerns the brain’s ability to quickly
learn to categorize, recognize, and predict objects and
events in a changing world. ART models used for
supervised learning applications typically follow an
ARTMAP architecture (Carpenter et al., 1991), the first
ART supervised predictive mapping model consisting
of two binary modules connected via a map field.
Fuzzy ARTMAP (FAM) extended the capabilities of
ARTMAP to enable the processing of real-valued data
by replacing a logical AND operator with a fuzzy AND
intersection (Carpenter et al., 1992). The simplified
fuzzy ARTMAP (SFAM) method was explicitly designed
for classification tasks (Kasuba, 1993); in this approach,
vectors representing class labels replaced one of the
modules. Another simplified architecture was discussed
by Vakil-Baghmisheh and Pavešić (2003).

2.1. Family of learning vector quantization (LVQ)
algorithms. LVQ was introduced by Kohonen et al.
(2001) as a supervised classification algorithm based
on clustering and classification processes. Class
boundaries are defined based on a codebook vector, the
winner-takes-it-all paradigm, and a nearest-neighbor rule
(Elsayad, 2009; Duch et al., 2000). The LVQ family
consists of LVQ1, LVQ2, LVQ3, and the improved
version of LVQ, such as LVQ2.1, the one-dimensional
Kohonen LVQ net or predictive vector quantization
(Skubalska-Rafajlowicz, 2000; Rutkowski and Cierniak,
1996). Lughofer (2008b), motivated by the ART
network approach, extended the conventional vector
quantization (VQ) by incorporating a vigilance parameter
and proposed an evolving variant of vector quantization
(EVQ). Evolving fuzzy classifiers (eClass), proposed,
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e.g., by Pratama et al. (2018) or Škrjanc et al. (2019),
are also relevant algorithms due to their ability to start
learning from scratch and do not need to pre-specify the
number of fuzzy rules and classes.

2.1.1. Learning vector quantization (LVQ). LVQ is
a prototype-based supervised classification algorithm that
seeks to adjust the prototypes to obtain a positioning that
can correctly discriminate the classes of the training set
(Kohonen et al., 2001). The algorithm iterates over the set,
and each instance verifies the closest prototype using the
KNN technique. If they are of the same class, a correction
is made in the prototype seeking to approximate the same
instance. Otherwise, a separation is carried out. The
weight vector update (from the codebook) is as follows:

wk = wk + cα (x−wk) , (1)

where c = 1 if x and wk belong to the same class,
otherwise c = −1 and a learning rate α decreases, e.g.,

α(i) = α0

(
1− i

Ne

)
, (2)

where i is an epoch, Ne is the maximal number of epochs,
α0 ∈ (0, 1), and α0 = 0.4 by default. Thus, adjustable
parameters are α0 and k (number of neighbours).

2.1.2. Learning vector quantization 2 (LVQ2).
LVQ2 is an improved version of LVQ (Kohonen et al.,
2001). This algorithm iterates on the set and verifies
the two closest prototypes using the KNN technique. If
the neighboring prototypes are from different classes, a
correction is made in the two prototypes, a correction
of distance, and another of approximation relative to the
instance of the training set. This correction will only be
performed if the instance is within a window defined as
follows:

min

(
di
dj

,
dj
di

)
>

1− s

1 + s
, (3)

where the distance dk = ||x − wk|| and s is the size of
the ‘window’ (usually s ∈ [0.2, 0.6]). Suppose wi and wj

are the two closest codebook vectors to x, and x falls into
the ‘window.’ If x and wi belong to the same class, then
wi is updated according to (1) for k = i and c = 1; if
x and wj belong to different classes, then wj is updated
according to (1) for k = j, c = −1, where α decreases as
in (2). Thus, the adjustable parameters are s—the size of
the window, α0, k, and Ne.

2.1.3. Learning vector quantization 3 (LVQ3).
LVQ3 is an improved version of the LVQ2.1 algorithm
developed to avoid overfitting in LVQ 2.1. It adjusts
the prototypes even when the two closest ones are from
the same class as the training pattern (approaching them

from the pattern). The weight vector is updated according
to (1) for k ∈ {i, j}, if x, wi and wj belong to the
same class. However, the positive parameter p now
means the ratio between the closest subclasses that trigger
double weight update and α decreases as in (2). Thus,
adjustable parameters are: s—the size of the ‘window’,
(s = 0.6 by default), α0 (0.01 by default), k—the number
of neighbors (k = 1 or 3 by default), the parameter
p ∈ [0.1, 0.5], and the number of epochs Ne.

Note that, in LVQ algorithms, input data records need
to be normalized.

2.2. Evolving vector quantization (EVQ). EVQ is
a supervised version of the original VQ and the LVQ
described above. It can evolve new clusters on demand
by comparing incoming samples with already generated
clusters. The primary differences between EVQ and LVQ
approaches are a modified winning selection strategy,
which is based on distances from cluster surfaces, rather
than from cluster centers, a specific cluster evolution
strategy, and a specific classification scheme, which
takes into account the relative position of the sample
to be classified to the boundary of the influence range
of two neighboring clusters (Kohonen et al., 2001).
Essential for this algorithm is the specific incorporation
of the class label in the incremental clustering process to
achieve a supervised learning procedure and an evolving
clustering-based classifier. Rather than quoting the entire
algorithm, we point out three aspects of this algorithm.
First, in EVQ, a hit matrix is defined, containing in the
i-th row and j-th column the number of samples falling
into cluster i and class j. If a new class is introduced by
a new sample falling into cluster i, a column is appended
whose entries are set to 0, except for the i-th, which is
set to 1. Second, the class label is included directly in
the feature vectors (if the number of classes is known a
priori). Third, the so-called vigilance parameter is used,
which steers the trade-off between plasticity and stability
during incremental online learning (see Lughofer, 2008a,
p. 781). The data must be normalized to [0, 1] in this
algorithm.

2.3. Simplified fuzzy ARTMAP (SFAM). SFAM is
a simpler and faster variant of FAM (Vakil-Baghmisheh
and Pavešić, 2003) and is identified with a neural network.
Let N be the total number of neurons in the second layer
(winner-takes-all) of the SFAM network (N is number of
classes). The normalized input of x ∈ R

M we denote
by a ∈ [0, 1]M , and the neural network input I =
[a, 1− a]. The activity level of the r-th neuron we define
by Tr(I) = (α + |wr|)−1|min(I,wr)|1, where the norm
|·|1 of m = [μ1, . . . , μn] ∈ [0, 1]n is |m|1 = μ1+. . .+μn

(a sigma-count of a fuzzy set). The SFAM algorithm can
be briefly described as follows.
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S1. Set the vigilance factor equal to its baseline value ρ,
compute the nework input I, and calculate the second
layer activities (winner-takes-all cells) Tr(I) for r =
1, . . . , N − 1, TN = T0.

S2. Find the winning neuron as K = argmax1≤r≤N Tr.
If the winner neuron is uncommitted, go to Step S4.
Otherwise, if the input is similar enough to the
winner’s prototype, i.e.,

|min{I,wK}|1
M

≥ ρ (4)

is satisfied (resonance), then go to Step S3. If not,
reset the winner (TK = −1), go to step S2, and check
the next winner.

S3. If the class label of the winner matches the class label
of input, update the winner prototype

wK = αmin{I,wK}+ βwK (5)

and go to step S5. Otherwise, reset the winner (TK =
−1), and

ρ =
|min{I,wK}|

M
+ ε. (6)

If ρ > 1, (data mismatch), go to Step S5; otherwise,
go to Step S2.

S4. Assign the winner neuron wN = I and set the class
label of I. Next, create a new uncommitted neuron,
and N = N + 1.

S5. Go to Step S1 and repeat the algorithm for the next
input.

3. Simple evolving vector quantization
algorithm

The labeled learning data set is given by

D = {(x1, y1) , . . . , (xz, yz)} ⊂ R
j × L, (7)

where L = {l1, . . . , lr} contains original labels, 2 ≤
r ≤ z and xi = (xi,1, . . . , xi,j), i = 1, . . . , z. SEVQ
is an incremental learning algorithm that produces the
categories c1, . . . , ck, (k ≤ r), each of which is an
‘aggregate’ of several records that define their label. For
each category ci, there is one assigned vector of weights
wi ∈ R

j , and there are two scalars ni and li, where ni

is the number of records from set D that are involved
in calculating the category, and li is a class label to
which the category is assigned. The input data can be
continuously used to update existing weights. Training
can be performed not only record-by-record, but also on a
batch of records in several epochs. This algorithm consists
of two phases. The first one (the training phase) is shown
in Algorithm 1, and the second one (the prediction phase)
in Algorithm 2. The number of epochs Ne is specified by
the user, while the outputs are weight vectors w1, . . . ,wk,

categories’ counts of committed samples n1, . . . , nk, and
categories’ labels l1, . . . , lk, (1 ≤ k ≤ r). A “for loop"
on the second line in Algorithm 1 signals that the same
data should be provided in a different order. The first
step is to calculate the Euclidean distances ‖·‖ between
the current data record xi and each category weight
w1, . . . ,wk, and find the index c of the smallest one. If
the category label has the same label as the data record,
then the existing category weight is updated by adding
the difference between the data record and the previous
category weight divided by the number of records that
were originally used to train this category. If the labels
differ, a new category is created by assigning a data record
to it.

During the prediction phase, the algorithm searches
for the closest category to each tested record and assigns
the label of the closest category to it. Due to the prediction
phase’s simplicity, the classification speed is proportional
to the number of categories.

Figure 1 presents a matrix of category weights,
a vector of category labels, and a vector containing
the number of samples committed to creating a given
category. As can be seen, the idea of the SEVQ algorithm
is straightforward. The clear advantage of SEVQ is that
it does not require manual setting of any parameters.
Additionally, it does not require data normalization. Users

Algorithm 1. SEVQ training phase.
Inputs:

(x1, y1) , . . . , (xz , yz): a labeled data set,
Ne: the number of epochs

Outputs:
w1, . . . ,wk: weight vectors,
n1, . . . , nk: categories’ counts of committed samples,
l1, . . . , lk: categories’ labels

1: k = 0
2: for 1, 2, · · · , Ne, do
3: for i = 1, 2, · · · , z, do
4: find index c = arg min

s∈{1,...,k}
‖xi −ws‖,

for this index c, check:
5: if lc = yi then
6: update the existing category weights:
7: wc = wc +

1
nc

(xi −wc)
8: nc = nc + 1
9: else

10: create a new category:
11: k = k + 1
12: wk = xi

13: nk = 1
14: lk = yi
15: end if
16: end for
17: end for
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can also set the number of epochs (Ne) during batch
learning in the learning phase, but Ne = 1 is sufficient
for the algorithm to perform well on most data sets. To
further improve the results, we propose to increase Ne,
but Ne ≤ 10. Too many epochs can lead to category
proliferation. The algorithm is available as an open-source
Python package at https://github.com/sylwek
czmil/sevq. In addition to the algorithm’s code, we
shared the code used to perform this study so that it is
simple to replicate all results in this article. We also
ensured that the data sets used to test the performance of
the presented algorithms are downloaded automatically.

To clarify the similarities and differences between the
newly introduced SEVQ algorithm and the methods that
inspired it, we briefly compare it with LVQ, EVQ, and
SFAM below.

LVQ has a fixed number of prototypes, whereas
SEVQ has an evolving number of categories. Algorithms
also have a distinctly different way of decreasing the
learning rate during training. Furthermore, SEVQ selects
the category to be trained more straightforwardly than
LVQ. LVQ requires setting many parameters, determining
the appropriate number of prototypes, and initializing
the values for the codebook vectors. This task is not
trivial due to its sensitivity to initialization (Kohonen
et al., 2001).

The main differences between SEVQ and EVQ are
that the latter uses the vigilance parameter in the learning

Category 1 w1,1 w1,2 · · · w1,j l1 n1

Category 2 w2,1 w2,2 w2,j l2 n2

... · · · · · · . . . · · · ...
...

Category k wk,1 wk,2 · · · wk,j lk nk

Fig. 1. Graphical representation of the SEVQ model (k: cate-
gory index, j: weight vector dimension, l1, . . . , lk: la-
bels, n1, . . . , nk: numbers of committed samples).

Algorithm 2. SEVQ prediction phase’s pseudocode.
Inputs:

x1, . . . ,xz′ : vectors of data features,
Loading a pretrained model:
w1, . . . ,wk: weight vectors,
n1, . . . , nk: categories’ counts of committed samples,
l1, . . . , lk: categories’ labels

Outputs:
y1, . . . , yz′ : data labels

1: for i = 1, 2, · · · , z′, do
2: find index c = arg min

s∈{1,...,k}
‖xi −ws‖

3: yi = lc
4: end for

phase to decide if the closest cluster should be updated or
a new one created. SEVQ makes this decision based on
category class comparison: if the closest category has the
same class, it will be updated; otherwise, a new category
will be created. This difference affects the construction of
the model. EVQ uses a hit matrix to represent how many
times a cluster has been updated by a sample assigned to
a specified class; multiple samples from different classes
can update a cluster. In SEVQ, there is no need to use a
hit matrix; the category contains only a single-class label
because only samples from the same class can update it in
the same way as SFAM. There is also a difference in the
learning rate: EVQ uses α = 0.5/n, and SEVQ employs
α = 1/n. Having a learning rate equal to 1/n ensures that
the category weight is exactly at the center of the samples
used to update this category.

SEVQ differs from SFAM in terms of updating the
prototype weights and the match criterion, since SEVQ
is based on distance and SFAM is based on vigilance.
Choosing all SFAM parameters, α, β, ρ, and ε, is not
trivial in any data set. Such parameters are absent in the
SEVQ algorithm.

Finally, we can conclude that SEVQ is considerably
different and much more straightforward than all
incremental algorithms such as LVQ, LVQ1, LVQ2,
LVQ3, EVQ, and SFAM. Therefore, it is crucial to
investigate its performance.

4. Visualization
The 2D visualizations shown in Figs. 2–5 were prepared
to demonstrate the operation of SEVQ. Each shows a
plot of records and categories generated for records on
the left and the corresponding accuracy plot for the
number of records processed by the algorithm on the right
to emphasize the incremental nature of this algorithm.
Figures were prepared only for visualization purposes,
and in these cases, learning and testing were performed
on the same data, and the algorithm without epochs was
used.

To start our test of the SEVQ algorithm, we randomly
generated a multiclass data set that contained 100 data
points. Normally distributed clusters of points were
assigned to each class. The data set is presented in Fig. 2
on the left. Individual samples are marked on the plot
with triangles. We tested SEVQ on this synthetic data
set to resolve the problem of classifying samples into
one of three classes and observe how many categories the
algorithm would create. It generated exactly one category
marked with a filled circle for each class. The line plot
for accuracy on the right shows that the training process
converged well, and the SEVQ algorithm required only
five examples to reach 100% accuracy. In the case shown
in Fig. 2, one example was randomly selected from the
0th class, three were from the 1st class, and the last was

https://github.com/sylwekczmil/sevq
https://github.com/sylwekczmil/sevq
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from the 2nd class. In the optimistic case, if one case were
randomly selected from each class, it would certainly turn
out that only three examples would suffice to obtain 100%
accuracy.

Continuing our test of SEVQ, we generated a new
synthetic data set comprised of 100 data points. These
points were assembled forming a pair of moons facing
each other in an asymmetrical arrangement, as depicted
in Fig. 3. Due to their unique arrangement, these
moons are not linearly separable. Despite the complexity,
SEVQ allocated the categories very well, generating three
categories for samples from the 0th class (represented
by triangles) and four categories for samples from the
1st class. This experimental scenario was more intricate
than the preceding ones, so it required more sample
inputs for the SEVQ algorithm to learn accurately. A
validation accuracy of 100% was achieved after providing
31 randomly selected samples.

Another type of natural pattern is concentric circles.
We generated two concentric circles for the test, each
containing 50 data points. These points were assigned
to two respective classes, as depicted in Fig. 4. SEVQ
created 16 categories for Class 0 and 14 for Class 1
samples. After presenting all the examples to our model,
we observed a high accuracy rate of 96%.

To further evaluate our algorithm, we used a
two-spiral data set, as shown in Fig. 5. Each spiral
contained 100 data points. The two-spiral problem
has long served as a standard benchmark for neural
network algorithms since its introduction by Wieland
(Lang and Witbrock, 1988). Despite its simplicity in
visual representation, the extreme nonlinearity of the
two-spiral configuration presents a significant challenge
for many learning models. Impressively, SEVQ achieved
100% accuracy after processing just 158 examples.

As shown in Figs. 2–5, the order in which the
examples are supplied affects the outcome, i.e., providing
the samples in a different order would result in the
generation of different categories. Experiments show that,
for the best results, records should be provided from
different classes without class repetition. It is possible
to improve the algorithm’s results using multiple learning
epochs; however, it is recommended to shuffle the records
in subsequent epochs.

5. Experimental data sets and algorithms
5.1. Data sets. For the experiments, 36 publicly
available standard classification data sets with numeric
values were selected from the KEEL data set repository
(Alcalá-Fdez et al., 2011). To evaluate the SEVQ
algorithm reliably, we considered instances, attributes
and classes, and data collections from multiple domains
during selection. The data sets downloaded from the
KEEL data set repository had already been partitioned

using a 10-fold stratified cross-validation procedure.
Table 1 shows the details of the data sets selected for
the experiments, including the name, counts of instances,
attributes, and classes (the last ones being the number of
possible values of the output variable) and an imbalance
score of each data set. Each imbalance score shown in the
table represents the average of imbalances calculated for
the respective pairs of classes.

5.2. Algorithms. In our study, we consider two
groups of classifiers that were compared with the
SEVQ algorithm. The first one contains traditional
algorithms, most of which were implemented using the
scikit-learn library (Pedregosa et al., 2011), and the sole
exception—the XGB method—was implemented using
the XGBoost library (Chen and Guestrin, 2016).

• AdaBoost (AB): here the AdaBoost-SAMME
implementation (Hastie et al., 2009).

• Decision tree (DT): the optimized version of the
CART algorithm (Breiman et al., 1984; Kusy and
Zajdel, 2021).

• Gaussian NB (GNB): the implementation of a
Gaussian naive Bayes learning algorithm (Chan
et al., 1979).

• K-nearest neighbors (KNN): a nonparametric
classification method (Altman, 1992).

• Multilayer perceptron (MLP): a classifier that
optimizes the logarithm of the loss function using
a stochastic gradient-based optimizer (Kingma and
Ba, 2015).

• Nearest centroid (NC): a classification method that
assigns observations to the class of training samples
with the closest mean or centroid (Tibshirani et al.,
2002).

• Quadratic discriminant analysis (QDA): a classifier
with a quadratic decision boundary that uses
conditional densities of classes and Bayes’ rule
(Hastie et al., 2008).

• Random forest (RF): a method that combines the
output of multiple decision trees to produce a single
result (Breiman, 2001).

• C-support vector classification (SVC): an
implementation of the SVM based on LibSVM
with a radial basis kernel function (Chang and
Lin, 2011).

• XGBoost (XGB): a highly scalable decision tree
ensemble based on gradient boosting (Friedman,
2001).

The second group contains incremental algorithms
implemented using the scikit-multiflow (Montiel et al.,
2018) and NeuPy (Shevchuk, 2015) librariers, except
for the SFAM algorithm with an implementation based
on AIOpenLab’s code (Galbraith, 2017) and custom
implementation of EVQ (Czmil, 2021).
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(a) (b)
Fig. 2. “Blobs” artificial data set: data visualization before and after the learning process (a), accuracy vs. the number of learning

samples (b).

(a) (b)
Fig. 3. “Moons” artificial data set: data visualization before and after the learning process (a), accuracy vs. the number of learning

samples (b).

• Additive expert ensemble (AEE): a method for using
any online learner for drifting concepts (Kolter and
Maloof, 2005).

• Adaptive random forest (ARF): an algorithm that
adapts the original random forest classifier to the
context of evolving data streams (Gomes et al.,
2017).

• Dynamic weighted majority (DWM): an algorithm
that uses an ensemble of classifiers that are
dynamically weighted according to their
performance on streaming data with concept
drift (Kolter and Maloof, 2007).

• Extremely fast decision tree (EFDT): an incremental
decision tree learning algorithm that can revisit and
change the split decisions at the nodes to adapt to
concept drift and achieve higher accuracy than the
Hoeffding tree classifier (Manapragada et al., 2018).

• Hoeffding adaptive tree (HAT): a method that
monitors the performance of branches on the tree and

replaces them with new items when their accuracy
decreases if the new branches are more accurate
(Bifet and Gavaldà, 2009).

• Hoeffding tree (HT): an incremental decision tree
learning method for stream data that uses a statistical
bound to split nodes (Hulten et al., 2001).

• K-nearest neighbors incremental (KNNI): an online
version of the KNN classifier that keeps track of the
last maximum size of the window storing the last
observed samples (Montiel et al., 2018).

• Naive Bayes (NB): a classifier that provides classical
Bayesian predictions while naively assuming that
all inputs are independent (Montiel et al., 2018;
Kulczycki and Kowalski, 2015).

• Oza bagging (OB): an ensemble learning method that
improves the bagging ensemble method for the batch
setting (Oza and Russell, 2001).

• Simplified fuzzy ARTMAP (SFAM): an algorithm
based on AIOpenLab’s code (Galbraith, 2017).
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(a) (b)
Fig. 4. “Circles” artificial data set: data visualization before and after the learning process (a), accuracy vs. the number of learning

samples (b).

(a) (b)
Fig. 5. “Two spirals” artificial data set: data visualization before and after the learning process (a), accuracy vs. the number of learning

samples for this artificial data set (b).

• Evolving vector quantization (EVQ): we used an
implementation based on the pseudocode EVQ-Class
(variant B) included in (Lughofer, 2008a).

• Learning vector quantization (LVQ, LVQ2, LVQ2.1,
LVQ3): an implementation and default parameter
settings included in (Shevchuk, 2015) were used.

All parameter setups of the compared algorithms are
available in the documentation provided at https://s
evq.readthedocs.io/.

6. Classification assessment methods
For the multi-class classification problem, we used
the most popular measures, mainly ACC and AUC.
Additionally, weighted precision (Pre), weighted sensi-
tivity (Sen), and the F1 measure were used. Let Ln =
L × . . . × L be an n-ary Cartesian product, t =
[t1, . . . , tn] ∈ Ln the vector containing true labels, and
p = [p1, . . . , pn] ∈ Ln be a vector containing predicted

labels. For the i-th class i ∈ L, we define the subsets Ti

and Pi as follows:

Ti =
{
k | ∃ xk ∈ R

j , (xk, i) ∈ Dtest, i ∈ t
}
, (8)

Pi =
{
k | ∃ xk ∈ R

j , (xk, i) ∈ Dtest, i ∈ p
}
, (9)

where a test data set Dtest ⊂ D. Accuracy is defined as

ACC =
1

n

∑
i∈L

|Ti ∩ Pi| , (10)

where |X | is the cardinality of the set X . AUC is one of
the most important measures of a classifier’s performance
(Huang and Ling, 2005) and is computed according to the
formula

AUC =
1

r (r − 1)

r∑
j=1

r∑
k=1
k �=j

(AUCj,k + AUCk,j) , (11)

where AUCp,q is the AUC with class p as the positive
class and q as the negative class (AUCp,q 	= AUCq,p).

https://sevq.readthedocs.io/
https://sevq.readthedocs.io/
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Table 1. Data sets used in the experiments.
# Dataset Records Attributes classes Imbalance score
1 appendicitis 106 7 / 2 0.2471
2 australian 690 14 / 2 0.8016
3 banana 5300 2 / 2 0.8126
4 bupa 345 6 / 2 0.7250
5 cleveland 297 13 / 5 0.4136
6 coil2000 9822 85 / 2 0.0634
7 contraceptive 1473 9 / 3 0.6645
8 dermatology 358 34 / 6 0.5647
9 glass 214 9 / 6 0.4079
10 hayes-roth 160 4 / 3 0.6486
11 heart 270 13 / 2 0.8000
12 hepatitis 80 19 / 2 0.1940
13 led7digit 500 7 / 10 0.8739
14 mammographic 830 5 / 2 0.9438
15 marketing 6876 13 / 9 0.7003
16 monk-2 432 6 / 2 0.8947
17 movement libras 360 90 / 15 1.0000
18 newthyroid 215 5 / 3 0.4302
19 optdigits 5620 64 / 10 0.9858
20 page-blocks 5472 10 / 5 0.2135
21 phoneme 5404 5 / 2 0.4154
22 ring 7400 20 / 2 0.9807
23 satimage 6435 36 / 6 0.6479
24 segment 2310 19 / 7 1.0000
25 shuttle 57999 9 / 7 0.1143
26 spambase 4597 57 / 2 0.6506
27 spectfheart 267 44 / 2 0.2594
28 tae 151 5 / 3 0.9613
29 texture 5500 40 / 11 1.0000
30 thyroid 7200 21 / 3 0.1771
31 titanic 2201 3 / 4 0.5380
32 twonorm 7400 20 / 2 0.9984
33 vowel 990 13 / 11 1.0000
34 wine 178 13 / 3 0.7735
35 wisconsin 683 9 / 2 0.5383
36 zoo 101 16 / 7 0.4364

We compute the average AUC of all possible pairwise
combinations of classes.

For two subsets A and B, where B 	= ∅, we define a
function q (A,B) = |A ∩B| · |B|−1 and q (A,B) = 0 for
B = ∅. Weighted precision (Pre, or the positive predictive
value) and weighted sensitivity (Sen, also called recall, hit
rate or the true positive rate) are defined by

Pre =
∑
i∈L

vi · q (Ti, Pi) , (12)

Sen =
∑
i∈L

vi · q (Pi, Ti) , (13)

where vi = |Ti| /n is the weight of the i-th class, (i ∈ L).

A weighted F1 measure is defined as

F1 =
2

n

∑
i∈L

|Ti|
|Ti|+ |Pi| |Ti ∩ Pi| . (14)

7. Experimental results
In this section, we compare the performance of the new
classification algorithm and state-of-the-art traditional
algorithms: AB, DT, GNB, KNN, MLP, NC, QDA, RF,
SVC, and XGB, and incremental algorithms: SFAM, HT,
OB, HAT, KNNI, NB, EFDT, ARF, AEE, DWM, LVQ,
LVQ2, LVQ2.1, LVQ3 and EVQ. Results are presented
for the traditional and incremental algorithms because
the SFAM method and algorithms from the LVQ family
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require normalized data. Hence, we used normalized data
for testing the incremental algorithms and non-normalized
data for testing the traditional ones. The average results
obtained for the 36 data sets presented in Table 1 for each
incremental algorithm were calculated from the results of
each data set.

7.1. Calculated metrics. In this section, we compare
the performance of the new classification algorithm and
state-of-the-art traditional ones AB, DT, GNB, KNN,
MLP, NC, QDA, RF, SVC, and XGB as well as
incremental: SFAM, HT, OB, HAT, KNNI, NB, EFDT,
ARF, AEE, DWM, LVQ, LVQ2, LVQ2.1, LVQ3, and
EVQ. Results are presented in separate tables for the
traditional and the incremental algorithms because the
SFAM method and algorithms from the LVQ family (with
which we primarily wanted to compare the results) require
normalized data. Hence, we used normalized data to
test incremental algorithms and non-normalized data for
traditional ones.

To date, no common consensus has emerged
regarding the measures used to evaluate the performance
of classifiers to compare data classification algorithms
(Sokolova and Lapalme, 2009). Thus, in this study, we
chose the most popular measures, such as ACC, precision
(Pre), sensitivity (Sen), F1 score (F1), and AUC, to
evaluate and compare classifiers.

Tables 2 and 3 describe the performance of
traditional and incremental classifiers, respectively,
calculated as the average classification results obtained for
the 36 data sets for each algorithm from each of the fold
results on each data set. AUC sorts results in both tables
in descending order.

Given such an ordering among the traditional
algorithms (Table 2), XGB is the clear winner because
it achieved the highest average AUC (0.840±0.149) and
other metrics, followed by the MLP with an average
AUC of 0.788±0.168. SEVQ is the third-best for AUC
(0.787±0.165) and the fifth best for ACC (0.764±0.221).
NC was the worst, with an average AUC of 0.716±0.145
and ACC of 0.629±0.201.

Among the incremental algorithms (Table 3), SEVQ
achieved the best results for an AUC of 0.794±0.166,
followed by NB (0.791±0.144) and EVQ (0.783±0.160).
It was second best for ACC (0.775±0.218) and
outperformed only by EVQ (0.785±0.193). The
worst with average AUC and ACC achieved LVQ3:
0.671±0.164 and 0.658±0.213, respectively.

7.2. Distribution of basic classification metrics.
The results of the traditional algorithms and SEVQ are
presented using box plots and standardized charts often
employed in explanatory data analysis.

Figures 6 and 7 present box plots of accuracy and
AUC for each traditional algorithm on 36 data sets
subjected to a 10-fold cross-validation. Box plots are
arranged in descending order of the medians of accuracy
and AUC, respectively. The plots also show several
outliers that lower the average results of the algorithm.
SEVQ is in the second position among all traditional
algorithms for accuracy and AUC; in other words, it is
a good algorithm for general usage. It only loses to XGB,
which has become the best non-incremental algorithm for
winning competitions at Kaggle. Figures 8 and 9 present
a box plot of ACC and AUC arranged in descending
order. SEVQ is in the first position among all incremental
algorithms tested for accuracy and AUC.

7.3. Ranking of the algorithms. AUC and ACC
for the 10 folds were calculated for each data set for
traditional and incremental algorithms. The algorithm
with the highest average value was first. The counts of
wins and the instances of second and third are presented
in Tables 4 and 5.

Among the traditional algorithms, XGB won most
often. SEVQ took third place in this ranking. However,
SEVQ scored the highest number of wins due to the
highest AUC on six data sets and the highest accuracy
on five data sets among the incremental algorithms,
surpassing even SFAM, LVQ, LVQ2, LVQ2.1, and LVQ3.

8. Scott–Knott analysis
Additionally, we used the Scott–Knott effect size
difference (ESD) test to show the difference in the
performance of state-of-the-art classification methods.
This test produces the ranking of mean values while
ensuring that the magnitude of the difference for all values
in each group is negligible and the magnitude of the
difference of values between groups is non-negligible
(Kluska and Madera, 2021). We used version 2.0.2
of the Scott–Knott ESD test with the default parameter
settings (Tantithamthavorn et al., 2019). We performed
a Scott–Knot ESD analysis for accuracy. The results are
shown in Fig. 10. SEVQ was placed in the third group
of traditional algorithms, among algorithms such as the
KNN, SVC, and DT. In this analysis, the clear winner is
again XGB.

The outcome of the Scott–Knot ESD analysis of
algorithm performance in terms of mean AUC is plotted
in Fig. 11. In this case, SEVQ performs even better.
It is in the second group and its position has improved.
XGB remains the best. Next, as in the case of comparing
SEVQ with the traditional algorithms, we performed the
Scott–Knot ESD analysis for the incremental algorithms.

The outcome of the algorithm performance analysis
in terms of mean accuracy (Fig. 12) places SEVQ among
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Table 2. Results of a comparison of the traditional algorithms.
Algorithm AUC ACC Pre Sen F1

1 XGB 0.840±0.149 0.829±0.173 0.831±0.175 0.829±0.173 0.822±0.182
2 MLP 0.788±0.168 0.799±0.181 0.791±0.193 0.799±0.181 0.783±0.196
3 SEVQ 0.787±0.165 0.764±0.221 0.779±0.211 0.764±0.221 0.763±0.222
4 GNB 0.786±0.141 0.703±0.223 0.774±0.189 0.703±0.223 0.699±0.230
5 DT 0.785±0.140 0.757±0.185 0.758±0.191 0.757±0.185 0.743±0.196
6 RF 0.782±0.149 0.793±0.175 0.783±0.187 0.793±0.175 0.775±0.191
7 KNN 0.779±0.170 0.776±0.205 0.779±0.211 0.776±0.205 0.766±0.213
8 AB 0.751±0.150 0.701±0.246 0.681±0.270 0.701±0.246 0.675±0.271
9 SVC 0.746±0.175 0.763±0.202 0.736±0.237 0.763±0.202 0.733±0.228
10 QDA 0.746±0.176 0.675±0.284 0.698±0.287 0.675±0.284 0.655±0.300
11 NC 0.716±0.145 0.629±0.201 0.700±0.194 0.629±0.201 0.632±0.201

Table 3. Results of a comparison of the incremental algorithms.
Algorithm AUC ACC Pre Sen F1

1 SEVQ 0.794±0.166 0.775±0.218 0.789±0.207 0.775±0.218 0.774±0.219
2 NB 0.791±0.144 0.756±0.192 0.769±0.199 0.756±0.192 0.747±0.205
3 EVQ 0.783±0.160 0.785±0.193 0.791±0.193 0.785±0.193 0.778±0.198
4 HAT 0.780±0.159 0.761±0.193 0.750±0.217 0.761±0.193 0.741±0.213
5 SFAM 0.779±0.155 0.759±0.204 0.779±0.196 0.759±0.204 0.757±0.205
6 HT 0.775±0.159 0.762±0.192 0.748±0.221 0.762±0.192 0.741±0.213
7 AEE 0.765±0.149 0.718±0.218 0.723±0.233 0.718±0.218 0.701±0.234
8 OB 0.762±0.169 0.763±0.217 0.759±0.233 0.763±0.217 0.745±0.235
9 KNNI 0.760±0.168 0.759±0.217 0.756±0.233 0.759±0.217 0.742±0.234
10 EFDT 0.757±0.157 0.736±0.212 0.733±0.233 0.736±0.212 0.713±0.232
11 ARF 0.753±0.165 0.717±0.242 0.683±0.285 0.717±0.242 0.681±0.279
12 LVQ2 0.750±0.160 0.732±0.223 0.726±0.237 0.732±0.223 0.715±0.240
13 LVQ 0.738±0.166 0.725±0.229 0.710±0.254 0.725±0.229 0.699±0.255
14 LVQ2.1 0.736±0.167 0.729±0.227 0.707±0.266 0.729±0.227 0.699±0.260
15 DWM 0.735±0.160 0.674±0.262 0.675±0.288 0.674±0.262 0.656±0.283
16 LVQ3 0.671±0.164 0.658±0.213 0.649±0.226 0.658±0.213 0.626±0.223

the best and well-known competitors, namely EVQ, OB,
HT, HAT, KNNI, SFAM, and NB. Furthermore, the
outcome of the Scott–Knot ESD analysis of algorithm
performance in terms of mean AUC (Fig. 13) indicates
that SEVQ’s performance ranked first among the top six
algorithms.

9. Wilcoxon’s signed-rank test
To compare statistically multiple algorithms on multiple
data sets, we use the Wilcoxon signed rank test, which
does not assume a data distribution (Trawiński et al.,
2012). This nonparametric statistical hypothesis test
determines whether there is a statistically significant
difference between classifiers (Kluska and Madera, 2021).
The result of this test depends only on the two algorithms
being compared. The following cases are considered:
SEVQ vs. the traditional algorithms for the ACC and AUC
measures, and SEVQ vs. the incremental algorithms for
ACC and AUC measures. Let X be a vector containing

elements that are mean values of the ACC (or AUC)
measure for the SEVQ algorithm tested on 10 random
stratified folds for each data set, and Yi a vector containing
the corresponding values for the i-th algorithm tested
on exactly the same folds. The index i corresponds to
the analyzed algorithm. Table 6 shows the probability
(p-value) of a paired two-sided Wilcoxon test for the null
hypothesis H0 that the difference (X − Yi) comes from
a distribution with zero median. The two-sided p-value
is computed by doubling the most significant one-sided
value.

The results in Table 6 indicate that the test fails
to reject the null hypothesis of no significant difference
in the mean values of ACC at the significance level of
α = 0.05 for SEVQ and three algorithms: AB, DT and
SVC. The alternative hypothesis H1 is accepted: there
is a significant difference in the mean values of ACC
for SEVQ compared with the GNB, KNN, MLP, NC,
QDA, RF and XGB algorithms. In addition, according
to the distribution of accuracy values in Fig. 6, the SEVQ



160 S. Czmil et al.

Table 4. Ranking of the compared traditional algorithms.

# Alg.
AUC

1st
AUC

2nd
AUC

3rd
ACC

1st
ACC

2nd
ACC

3rd
1 XGB 7 9 3 8 8 4
2 AB 6 0 5 6 1 3
3 SEVQ 4 6 1 4 3 2
4 GNB 4 4 3 4 0 1
5 SVC 4 1 5 6 0 7
6 NC 4 1 0 1 1 0
7 MLP 3 4 8 4 5 9
8 QDA 2 2 4 1 2 5
9 KNN 1 4 2 1 4 1

10 RF 1 2 4 1 6 3
11 DT 0 3 1 0 6 1

Table 5. Ranking of the compared incremental algorithms.

# Alg. AUC
1st

AUC
2nd

AUC
3rd

ACC
1st

ACC
2nd

ACC
3rd

1 SEVQ 6 6 2 5 6 2
2 EVQ 4 6 2 6 3 3
3 AEE 4 5 1 5 1 1
4 SFAM 4 3 5 3 4 5
5 ARF 4 1 2 7 1 2
6 DWM 3 2 3 3 1 2
7 HAT 3 2 3 1 0 4
8 OB 2 3 4 2 4 4
9 EFDT 2 3 4 1 7 1
10 NB 1 2 2 0 2 1
11 KNNI 1 1 3 0 2 6
12 LVQ2.1 1 1 0 2 1 0
13 LVQ2 1 0 2 0 1 2
14 LVQ 0 1 1 1 2 0
15 HT 0 0 2 0 1 2
16 LVQ3 0 0 0 0 0 1

algorithm is worse than XGB, but SEVQ is better than
the following six algorithms: RF, MLP, KNN, QDA,
GNB and NC. Furthermore, according to the Scott–Knott
ranking shown in Fig. 10, Wilcoxon’s test result confirms,
at the significance level of α = 0.05 the placement of
SEVQ in the third group of the best traditional algorithms,
just after the KNN algorithm and better than GNB, QDA
and NC, from the perspective of the ACC measure.
Furthermore, Wilcoxon’s test confirms, at the significance
level of α = 0.05, the Scott–Knott ranking result shown
in Fig. 11, i.e., SEVQ is worse than XGB but better than
the QDA, AB, SVC and NC algorithms.

Taking into account the p-values for the ACC
measure in Table 7 and the distribution of ACC values
in Fig. 8, we conclude that SEVQ is superior at the
significance level of α = 0.05 to the SFAM, LVQ2.1,
LVQ2, ARF, NB, LVQ, EFDT, AEE, DWM and LVQ3
algorithms. Wilcoxon’s test confirms, at the same
significance level, the Scott–Knott ranking result shown

in Fig. 12.
Finally, we conclude that SEVQ is superior at the

significance level of α = 0.05 to the HT, SFAM, EVQ,
ARF, AEE, OB, KNNI, LVQ2, LVQ, EFTD, LVQ2.1,
DWM and LVQ3 algorithms, and Wilcoxon’s test
confirms, at the same significance level, the Scott–Knott
ranking result shown in Fig. 13.

10. Conclusions
This paper introduced the SEVQ method, a supervised
incremental learning classifier. The proposed algorithm
draws inspiration from the ART and LVQ algorithm
families. It merges the capacity to incrementally generate
new categories, as is done in SFAM and EVQ, with the
critical difference being the elimination of the traditional
vigilance parameter. SEVQ decides to update the nearest
cluster or create a new one based on category class
comparison.
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Fig. 6. ACC values for the traditional algorithms across data
sets.

Fig. 7. AUC values for the traditional algorithms across data
sets.

We thoroughly study the performance of the new
classifier and state-of-the-art algorithms. We calculated
the most popular measures, such as accuracy and AUC, to
evaluate and compare classifiers. SEVQ was tested on 36
data sets, and its effectiveness was compared with 25 other
incremental and traditional methods (non-incremental).
When evaluated against the traditional machine learning
algorithms, SEVQ ranked second in accuracy and AUC
medians. Compared with incremental machine learning
algorithms, SEVQ emerged as the best regarding these
same performance metrics.

We ranked the algorithms based on the accuracy
and AUC metrics, utilizing the calculated number of
wins as well as second and third places across all data
sets. On this basis, we assigned ranks. Among the
traditional algorithms, SEVQ placed third, but it was
the top performer in the incremental algorithms category,
achieving the best results on the most significant number
of data sets.

We also provide the results of relevant statistical
tests. According to the Wilcoxon rank test results and the
distribution of ACC values for each traditional algorithm
across all data sets, the SEVQ algorithm underperformed,
at the significance level of α = 0.05, the XGB algorithm.
However, it outperformed the RF, MLP, KNN, QDA,
GNB, and NC algorithms. A review of p-values for

Fig. 8. ACC values for the incremental algorithms across data
sets.

Fig. 9. AUC values for the incremental algorithms across data
sets.

the AUC measure and the distribution of AUC values
for each traditional algorithm across all data sets shows
that SEVQ underperformed XGB but outperformed the
QDA, AB, SVC, and NC algorithms. The Wilcoxon test
results confirmed the Scott–Knott analysis results because
SEVQ was placed in the third group of the best traditional
algorithms according to the ACC measure and in the
second group of the best traditional algorithms according
to the AUC measure.

Taking into account the p-values for the ACC
measure and the distribution of ACC values per
incremental algorithm across all data sets, we conclude
that SEVQ is superior, at the significance level of α =
0.05, to the SFAM, LVQ2.1, LVQ2, ARF, NB, LVQ,
EFDT, AEE, DWM, and LVQ3 algorithms. Wilcoxon’s
test confirms the Scott–Knott ranking result that SEVQ
is as good as EVQ and is better than the HT, SFAM,
EVQ, ARF, AEE, OB, KNNI, LVQ2, LVQ, EFTD,
LVQ2.1, DWM, and LVQ3 algorithms under the same
criteria as above. The results of Wilcoxon’s rank test
and the distribution of AUC values for each incremental
algorithm across all data sets in terms of the ACC criterion
indicate that SEVQ is superior, at the significance level
of α = 0.05, to the HT, SFAM, EVQ, ARF, AEE, OB,
KNNI, LVQ2, LVQ, EFTD, LVQ2.1, DWM, and LVQ3
algorithms. The results of Wilcoxon’s rank test confirm
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Table 6. Comparison of the traditional classifiers and SEVQ
with Wilcoxon’s signed-rank test.

# Algorithm ACC p-value AUC p-value
1 AB 0.0563 0.0144
2 DT 0.9889 0.5877
3 GNB 0.0001 0.5384
4 KNN 0.0002 0.6423
5 MLP 0.0000 0.3201
6 NC 0.0000 0.0000
7 QDA 0.0008 0.0012
8 RF 0.0001 0.2342
9 SVC 0.2323 0.0000

10 XGB 0.0000 0.0000

Table 7. Comparison of the incremental classifiers and SEVQ
with Wilcoxon’s signed-rank test.

# Algorithm ACC p-value AUC p-value
1 AEE 0.0001 0.0013
2 ARF 0.0374 0.0001
3 DWM 0.0000 0.0000
4 EFDT 0.0199 0.0000
5 EVQ 0.3275 0.0209
6 HAT 0.1737 0.0587
7 HT 0.2214 0.0120
8 KNNI 0.9419 0.0003
9 LVQ 0.0000 0.0000

10 LVQ2 0.0001 0.0000
11 LVQ2.1 0.0000 0.0000
12 LVQ3 0.0000 0.0000
13 NB 0.0189 0.5311
14 OB 0.3693 0.0025
15 SFAM 0.0000 0.0000

Scott–Knott’s ranking. Hence, we conclude that SEVQ
achieves outstanding results in the group of incremental
algorithms.

The experimental results demonstrate the
effectiveness of SEVQ. They show that a very efficient
supervised incremental classifier does not have to be
complicated and can achieve a very high classification
performance.

The algorithm developed has numerous advantages
over other existing methods, stated below.

• SEVQ is conceptually very simple and suitable for
incremental learning and multiclass classification
tasks.

• It is less complicated than many incremental and
non-incremental classifiers and, at the same time,
achieves better classification indices for many data
sets.

• It does not require manual setting of any parameters.
• Unlike algorithms from the LVQ and ART families,

the SEVQ algorithm can be applied to unnormalized

data. Our research on 36 data sets shows a slight
effect of data normalization on the obtained results.
The mean difference of the results achieved by
SEVQ for normalized and non-normalized data in
terms of ACC was 1.1%, and in terms of AUC it was
0.7%.

• The algorithm has been well tested, and the results
are statistically reliable, as shown in the article.

• The algorithm code in Python is publicly available,
and all results are easily reproducible.

The findings of this study have to be seen in the light
of some limitations, outlined as follows.

• First, we did not apply quality indicators dedicated
to the stream data classification algorithms intended
for real-time classifiers.

• The second limitation concerns not taking into
account concept drift.

• We also did not perform a memory requirement test.

The ideas and results presented in this paper
contributed to creating the Classification Algorithms
Comparison Pipeline (CACP) to compare newly
introduced classification algorithms developed in
Python with other commonly used classifiers to evaluate
classification performance, reproducibility, and statistical
reliability (Czmil et al., 2022). In its current version,
the SEVQ algorithm can be applied to industrial process
diagnostics (Żabiński et al., 2014; 2017), and we are
confident that it can be a competitive algorithm for big
data reduction. Future work aims to conduct additional
research on the SEVQ algorithm in the context of concept
drift and data reduction in big data environments using
this algorithm. Due to its simplicity, SEVQ is a suitable
algorithm for implementation on a field-programmable
gate array (FPGA) for industrial applications. We have
made some progress with this experiment up to now.
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Fig. 12. Scott–Knott analysis for average ACC of the
incremental algorithms over all data sets.
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