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In many digital systems, various sequential blocks are used. This paper is devoted to the case where the model of a Mealy
finite state machine (FSM) represents the behaviour of a sequential block. The chip area occupied by an FSM circuit is one
of the most important characteristics used in logic synthesis. In this paper, a method is proposed which aims at reducing
LUT counts for FPGA-based Mealy FSMs with transformation of state codes into FSM outputs. This is done using the
combined state codes. Such an approach allows excluding a block of transformation of binary state codes into extended
state codes. The proposed method leads to LUT-based Mealy FSM circuits having exactly three levels of logic blocks.
Under certain conditions, each function for any logic level is represented by a circuit including a single LUT. The proposed
approach is illustrated with an example of synthesis. The results of experiments conducted using standard benchmarks
show that the proposed method produces LUT-based FSM circuits with significantly smaller LUT counts than is the case
for circuits produced by other investigated methods (Auto and One-hot of Vivado, JEDI, and transformation of binary codes
into extended state codes). The LUT count is decreased by an average of 17.96 to 91.8%. Moreover, if some conditions are
met, the decrease in the LUT count is accompanied with a slight improvement in the operating frequency compared with
circuits based on extended state codes. The advantages of the proposed method multiply with increasing the numbers of
FSM inputs and states.
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1. Introduction
Modern digital systems (Marwedel, 2018; Sklyarov et al.,
2014) include a lot of sequential blocks, starting with
rather simple binary counters and ending with very
sophisticated digital controllers (Gajski et al., 2009;
Borowczak and Vemuri, 2013). Very often, the behaviour
of a sequential block is represented by the model of Mealy
finite state machine (FSM) (Baranov, 1994; Micheli,
1994). In this paper, we discuss the case where Mealy
FSMs circuits are implemented using internal resources
of field-programmable gate arrays (FPGAs) (Intel, 2023;
AMD, 2023a). This case is of great practical interest since
a huge number of various projects are implemented on the
basis of FPGAs (Ruiz-Rosero et al., 2019).

Several optimization problems arise when
implementing FPGA-based FSM circuits (Kubica
et al., 2021; Kubica and Kania, 2017; Barkalov

*Corresponding author

et al., 2018). The main issues are a decrease in the
chip area occupied by an FSM circuit, an increase
in performance (the maximum operating frequency),
and reducing the power consumption (Barkalov and
Barkalov Jr., 2005; Sklyarov et al., 2014; Tiwari and
Tomko, 2004). As a rule, reducing the area also reduces
the power consumption (Barkalov et al., 2021). At the
same time, it is very important that a reduction in the area
does not lead to a significant decrease in the performance
(Kubica et al., 2019; Maxfield, 2008). In this paper,
we propose a method of area reduction which does not
lead to a reduction in the maximum operating frequency.
We discuss the case where an FPGA-based FSM circuit
is implemented using look-up table (LUT) elements
(Trimberger, 2015; Machado and Cortadella, 2020). We
use the approach from the paper by Islam et al. (2020),
where the chip area is estimated as an LUT count.

Modern LUTs have rather small amounts of inputs
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(Intel, 2023; Microchip, 2023; AMD, 2023a). As a result,
the methods of functional decomposition (Scholl, 2001;
Solovjev and Czyzy, 1999) should be used to represent an
FSM circuit by a network of interconnected LUTs. These
circuits have many levels of logic and complex systems of
spaghetti-type interconnections (Barkalov et al., 2020a).
Therefore, it is very important to develop FSM design
methods, where the negative impact of a limited number
of LUT inputs is minimized. The methods of structural
decomposition (Barkalov et al., 2021) are aimed at
solving this problem.

The main contribution of this paper is a novel method
of reducing LUT counts in logic circuits of Mealy FSMs.
The method is based on a transformation of combined
state codes, proposed in this paper, into FSM outputs. It is
an improvement of the approach of Barkalov et al. (2022),
where the transformation of maximum binary state codes
into extended state codes is connected with the presence
of a special block. This block generates extended state
codes using codes of collections of outputs and identifiers.
Thus, the main difference between our technique and the
known FSM synthesis methods is the development of a
new approach for representing state codes. As follows
from our experiments, the proposed representation of
state codes allows improving LUT counts in Mealy FSM
circuits compared with the circuits produced by other
investigated methods. In addition, due to the resulting
decrease in the number of interconnections among the
LUTs of an FSM circuit, our approach leads to a slight
increase in the FSM performance.

The rest of the paper is organized as follows.
Section 2 includes the basic information on LUT-based
design of FSM circuits. The relative works are discussed
in Section 3. The main idea of the proposed method is
discussed in Section 4. Section 5 shows an example of
synthesis. Section 6 includes experimental results. A
concise conclusion ends the paper.

2. Synthesis of LUT-based FSMs
A Mealy FSM is represented using three sets and
two functions (Baranov, 1994; Micheli, 1994). A set
A = {a1, . . . , aM} includes internal states, a set
X = {x1, . . . , xL} consists of FSM inputs, a set Y =
{y1, . . . , yN} includes FSM outputs. A function of
transition sets the dependence of the states of transitions
on the current states and FSM inputs. A function of output
shows the dependence of FSM outputs on the current
states and FSM inputs. The state a1 ∈ A is an initial
state.

An FSM can be represented by state transition tables
(Micheli, 1994; Minns and Elliot, 2008), binary decision
diagrams (Anceau, 1986; Milik, 2016; Kubica et al.,
2019), and-inverter graphs (Brayton and Mishchenko,
2010) and graph-schemes of algorithms (Baranov, 2008).
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Fig. 1. State transition graph of Mealy FSM S1.

In this paper, FSMs are represented by state transition
graphs (STGs) (Micheli, 1994; Senhadji-Navarro and
Garcia-Vargas, 2018). An example of an STG for an FSM
S1 is shown in Fig. 1.

STG nodes correspond to FSM states. As follows
from Fig. 1, there are M = 8 states in FSM S1. STG arcs
correspond to interstate transitions. There are H = 15
arcs in the STG (Fig. 1). An arc is directed from a
current state am ∈ A to a state of transition as ∈ A.
The arc number h (h ∈ {1, . . . , H}) is marked by a
pair 〈Xh, Yh〉. The symbol Xh stands for a conjunction
of FSM inputs (or their compliments) causing the h-th
transition. The symbol Yh stands for a collection of
outputs (CO) generated during the h-th transition.

The analysis of Fig. 1 allows obtaining the sets X =
{x1, . . . , x4} and Y = {y1, . . . , y7}. This gives the values
L = 4 and N = 7. Obviously, the state a1 ∈ A is an
initial state of S1.

An FSM circuit is represented by some systems
of Boolean functions (SBFs) (Baranov, 1994; Micheli,
1994). To get these SBFs, the step of state assignment
should be executed. During this step, states am ∈ A are
represented by R-bit codes K(am). The minimum value
of R is determined as

R = �log2 M�. (1)

The formula (1) determines maximal binary state codes
(Sutter et al., 2002).

The bits of K(am) correspond to state variables
forming the set T = {T1, . . . , TR}. State codes are kept
in a state register (RG) consisting of R flip-flops. To
load the code K(a1) into the RG, a special pulse Start is
used. To change the RG contents, input memory functions
(IMFs) are used. There are R IMFs forming the set Φ. As
a rule, D flip-flops are used in state registers (Skliarova
et al., 2012). In our paper, we use this approach. Thus,
there is a set Φ = {D1, . . . , DR}. The synchronization
pulse Clock allows changing the contents of the RG.

Using state codes allows transforming an STG into a
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Fig. 2. Structural diagram of P Mealy FSMs.

direct structure table (DST) (Baranov, 1994; Klimovich
and Solov’ev, 2012). The following SBFs are derived
from a DST:

Y = Y (T,X), (2)

Φ = Φ(T,X). (3)

The system (2) corresponds to the function of output, the
system (3) corresponds to the function of transitions.

In this paper, we discuss the case where the SBFs (2)
and (3) are implemented using LUT-based configurable
logic blocks (CLBs). A CLB includes LUTs, flip-flops,
multiplexers and internal connections (Chapman, 2014).
The flip-flops can be used as a hidden distributed state
register (Sklyarov et al., 2014). In our previous work
(Barkalov et al., 2018), we employed the symbol LUTer
to define a logic block consisting of LUTs. Using this
symbol, we can show a structural diagram of P Mealy
FSM (Fig. 2).

In the P FSM, the LUTerΦ implements the SBF (3).
The outputs of LUTs generating IMFs Dr ∈ Φ are
connected with the inputs of flip-flops. Therefore, there
is a distributed RG inside LUTerΦ. LUTerY implements
the SBF (2).

The largest manufacturer of FPGAs is the company
AMD (Xilinx) (AMD, 2023a). Hence our research
is focused on Xilinx FPGAs from the Virtex-7 family
(AMD, 2019). A LUT of Virtex-7 has SL = 6 inputs
(AMD, 2023a). A slice of Virtex-7 consists of four
6-LUTs and eight flip-flops. Using internal multiplexers
(MX) allows creating either two 7-LUTs or a single
8-LUT (Chapman, 2014).

As follows from the results of Baranov (1994; 2008),
a sum-of-products (SOP) of functions fi ∈ Y ∪ Φ can
include up to 30–40 literals. Thus, there is an obvious
contradiction between the extremely limited value of SL

and the very large number of arguments in functions
fi ∈ Y ∪ Φ. This contradiction leads to multi-level
circuits of LUTerΦ and LUTerY (Barkalov et al., 2020a).
It is known (Wolf, 2004) that multi-level circuits have
worse characteristics than their single-level counterparts.
Therefore, it is necessary to decrease the number of logic
levels in circuits of LUT-based Mealy FSMs.

3. Related work

The number of literals in each function representing an
FSM circuit can be reduced by using various methods
of structural decomposition (SD) (Barkalov et al., 2021;
Senhadji-Navaro et al., 2015). The main idea of SD
is the following. An FSM circuit is represented as a
composition of logic blocks. Each block has its unique
systems of inputs and outputs. SD assumes an increase in
the number of logic levels of an FSM circuit. However,
each of these blocks is represented by an SOP that has
much fewer literals than the SOPs of the functions (2)–(3).
Numerous studies (Barkalov et al., 2021) have shown
that this approach can significantly reduce the number of
LUTs compared with that for P FSMs.

One of such methods is discussed by Barkalov et al.
(2022). It is a method of transformation of states into
COs Yq ⊆ Y . A particular CO is represented using states
and identifiers Ij ∈ SI = {I1, . . . , IJ}. Thus, each CO
Yq ⊆ Y is represented by a pair Pg = 〈am, Ij〉 (g ∈
{1, . . . , G}).

The need for identifiers is explained as follows. For
example, there are two transitions into state a5 ∈ A.
A CO Y3 is generated during the first one, a CO Y7 is
generated in the second case. To distinguish these COs,
two identifiers (I1, I2) are necessary. Now, these COs can
be represented as pairs P1 = 〈a5, I1〉 and P2 = 〈a5, I2〉.
For example, the pair P1 determines Y3 and P2 determines
Y7. If Nm different COs are generated during transitions
into a state am ∈ A then Nm identifiers are necessary
to distinguish these COs. The number of identifiers for a
particular FSM is determined as

J = max(N1, . . . , NM ). (4)

To synthesize an FSM circuit, the identifiers should
be encoded by binary codes K(Ij). These include

RV = �log2 J� (5)

additional variables. We use elements of the set V =
{v1, . . . , vRV } to encode the identifiers Ij ∈ SI .

Now, codes K(Yq) are represented as

K(Yq) = K(am) ∗K(Ij), (6)

where * is a sign of concatenation. The codes (6) are
transformed into one-hot codes of outputs. Such an
approach leads to PAY Mealy FSM (Barkalov et al.,
2020b). Its LUT-based structural diagram is shown in
Fig. 3.
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Fig. 3. Structural diagram of PAY FSM.

In PAY FSM, LUTerTV implements the SBFs (3)
and

V = V (T,X), (7)

while LUTerY implements the SBF

Y = Y (T, V ). (8)

Obviously, variables vr ∈ V replace inputs xe ∈ X
in (8). As a rule, the following condition holds (Barkalov
et al., 2020b):

RV 
 L. (9)

Thus the SOPs of the functions (8) are much simpler
than their counterparts for the functions (2). As a
result, there are fewer LUTs in the circuit of PAY FSM
compared with the equivalent P Mealy FSM (Barkalov
et al., 2020b).

A SOP of function fi ∈ V ∪ Φ includes NA(fi)
arguments. If the condition

NA(fi) > SL (10)

holds, then the circuit of LUTerTV is multi-level. To
decrease the number of LUTs in LUTerTV, it is possible
to use the twofold state assignment (Barkalov et al., 2018;
2020c). Such an approach is proposed by Barkalov et al.
(2022).

The method of Barkalov et al. (2018) is based on
finding a partition ΠA = {A1, . . . , AK} of the set A.
Each class Ak ∈ ΠA is characterized by sets Xk and T k.
The set Xk ⊆ X includes inputs xe ∈ X determining
transitions from states am ∈ Ak. The set T k ⊆ T
includes Rk state variables encoding states am ∈ Ak by
codes C(am). The value of Rk is determined as

Rk = �log2(|Ak|+ 1)�. (11)

The value of Mk = |Ak| is increased by 1 to take into
account the relation am /∈ Ak.

Each state am ∈ A has two codes: K(am) and
C(am). There are R0 state variables in the set T =
T 1 ∪ T 2 ∪ · · · ∪ T K .

Each class Ak ∈ ΠA determines two SBFs:

Φk = Φk(T k, Xk), (12)

V k = V k(T k, Xk). (13)
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Fig. 4. Structural diagram of PATY Mealy FSM.

We name the functions (12)–(13) partial functions. To
obtain the functions (3) and (7), the disjunctions of partial
functions Dk

r ∈ Φk and vkr ∈ V k should be found. This
approach determines a PATY Mealy FSM (Fig. 4).

In the PAT FSM, LUTerk implements the partial
functions (12) and (13), LUTerOR generates state
variables Tr ∈ T and additional variables vr ∈ V ,
LUTerY implements the SBF (8). To create codes C(am),
LUTerT implements the following SBF:

T = T (T ). (14)

Some experiments (Barkalov et al., 2022) show
that PATY FSMs have better characteristics than the
equivalent PAY FSMs and FSMs based on various
methods of state assignment. The following methods of
state assignment were analyzed: Auto and One-hot of
Vivado (Vivado, 2023) and JEDI (Sentowich et al., 1992a;
1992b). The replacement of other models by PATY
FSMs allows reduction of the LUT counts (from 11.9% to
62.6%) and increasing the maximum operating frequency
(from 11.7% to 18.4%).

Our analysis shows that PATY FSMs have one
serious drawback. Namely, the transformation K(am) →
C(am) requires an additional block LUTerT , which
consumes some internal resources of a chip (LUTs and
interconnections). Consequently, it would be useful to
eliminate LUTerT . Such an approach is proposed in the
present paper.

4. Main idea of the proposed method
The proposed method can be applied if the condition (10)
holds for a PAY FSM. In this case, we suggest to find
a partition ΠB = {B1, . . . , BI} of the set A. As for a
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Fig. 5. Structural diagram of PACY Mealy FSM.

class Ak ∈ ΠA, each class Bi ∈ ΠB defines a set X i ⊆
X . The set X i includes Li inputs determining transitions
from states am ∈ Bi.

If |Bi| = Mi, then it is enough to use

Ri = �log2 Mi� (15)

state variables to encode states am ∈ Bi by codes C(am).
As in the case of ΠA, the following condition should

hold for each class Bi ∈ ΠB:

Ri + Li ≤ SL. (16)

In this case, each partial function is implemented by a
single LUT. It is enough to use

RS = max(R1, . . . , RI) (17)

state variables to encode any state from any class Bi ∈
ΠB . These variables form a set TS = {T1, . . . , TRS}.

Obviously, any state am ∈ A should have its unique
code. To reach this goal, we propose to encode a class
Bi ∈ ΠB with a binary code C(Bi). There are

RC = �log2 I� (18)

bits in the codes C(Bi). To encode classes, we use the
elements of a set Tc = {τ1, . . . , τRC}.

Using codes C(Bi) and C(am), where am ∈ Bi,
gives a combined state code (CSC),

CC(am) = C(Bi) ∗ C(am). (19)

In (19), the symbol * stands for the concatenation of
codes. A PACY FSM based on (19) has the structural
diagram shown in Fig. 5.

In PACY FSM, LUTeri implements the SBFs

Φi = Φi(TS , X
i), (20)

V i = V i(TS , X
i), (21)

while LUTerF implements the SBFs

TCC = TCC(TC ,Φ1, . . . ,ΦI), (22)

V = V (TC , V 1, . . . , V I). (23)

The set TCC includes class variables τr ∈ TC and state
variables Tr ∈ TS : TCC = TC ∪ TS . The block LUTerY
implements FSM outputs represented as

Y = Y (TCC , V ). (24)

The set of IMFs includes RCC elements:

RCC = RC +RS . (25)

Our analysis of standard benchmarks (LGSynth93, 1993)
shows that the following relations hold:

2R < R0 < 4R, (26)

R ≤ RCC ≤ R+ 1, (27)

RC ≤ 4. (28)

Accordingly, PACY FSMs have the following
advantages compared with the equivalent PATY FSMs:

1. There is no LUTerT in PACY FSMs. If there is
the same LUT count for parts of circuit generating
the SBFs (8), (12), (13) and (20)–(24), then PACY
FSMs require fewer LUTs than the equivalentPATY
FSMs.

2. PACY FSMs have fewer feedback signals between
the RG and LUTs of the first level of logic. This
allows simplification of the interconnects compared
with PATY FSMs.

3. There is no special code to show that am /∈ Bi.
Hence the following condition can occur:

I < K. (29)

Reducing the number of blocks LUTer of the first
logic level can lead to a decrease in the LUT counts for
PACY FSMs.

In this paper, we propose the following method for
synthesis of PACY FSMs:

1. Constructing the partition ΠB with a minimum
number of classes I .

2. Representing outputs yn ∈ Y by pairs 〈am, Ij〉.

3. Encoding states, classes Bi ∈ ΠB and identifiers in
a way optimizing the SBF (24).

4. Constructing the SBF (24) representing LUTerY.
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5. Constructing tables representing blocks LUTeri on
the basis of the DST of PACY FSM.

6. Constructing the SBFs (20) and (21).

7. Constructing a table of LUTerF.

8. Constructing the SBFs (22) and (23).

9. Implementing the FSM circuit using internal
resources of a particular FPGA chip.

We use the record Model (Sa) to show that a
particular model is employed for synthesis of the logic
circuit for an FSM Sa. In the next section, we discuss
an example of the synthesis of Mealy FSM PACY (S1).

5. Example of synthesis
To design the logic circuit of PACY (S1), we use LUTs
having SL = 4. As follows from (16), each class Bi ∈
ΠB should satisfy the condition (Barkalov et al., 2018)

Li +Ri ≤ 4. (30)

The value of Ri is determined by (15).
This step is very important (Barkalov et al., 2018).

Its outcome significantly affects the LUT count of the
resulting circuit. We use the methods of (Barcalov et
al., 2018; 2020c) to find a partition ΠB with a minimum
number of classes.

There is a set A = {a1, . . . , a8} in the discussed
case. Using the method of Barkalov et al. (2018) gives a
partition ΠB = {B1, B2}, where B1 = {a1, a3, a5, a6},
B2 = {a2, a4, a7, a8}. These classes determine sets
X1 = {x1, x2} and X2 = {x3, x4} with L1 = L2 = 2.
Using (15) and (17) gives R1 = R2 = RS = 2.
Obviously, the condition (30) holds for these classes.
There are I = 2 classes in the partition ΠB .

The analysis of an STG (Fig. 1) allows representing
FSM outputs by pairs 〈am, Ij〉. There are I = 2, G = 11,
SI = {I1, I2}. The representation is shown in Table 1.
Let us discuss it below.

In the given case, there are Q = 8 COs Yq ⊆ Y :
Y1 = ∅, Y2 = {y1, y2}, Y3 = {y2, y4}, Y4 = {y5},
Y5 = {y3}, Y6 = {y2, y6}, Y7 = {y3, y7} and Y8 =
{y2}. These COs are shown in the row Yq of Table 1. The
last row of Table 1 includes pairs P1–P11. Their contents
follow from rows am and Ij . For example, there are pairs
P1 = 〈a2, I1〉, P2 = 〈a5, I1〉, and so on. To distribute
the identifiers among the pairs Pq , we use the approach of
Barkalov et al. (2022).

A code CC(am) is represented by a conjunction Am

of class variables τr ∈ Tc and state variables Tr ∈ TS .
An identifier Ij is represented by a conjunction CIj of
variables vr ∈ V . A pair Pg = 〈am, Ij〉 is represented by
a conjunctionCPg = Am ·CIj . Using these conjunctions,
we can form the SOPs of the functions (24).

Table 1. Representation of outputs for FSM S1.
Yq y1y2 y2y4 y5 y3 y2y6 y3y7 y2
am a2 a5 a3 a6 a4 a3 a5 a2 a4 a7 a8
Ij I1 I1 I1 I1 I1 I2 I2 I2 I2 I1 I1
Pg P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

T1T2

τ1 00 01 11 10

0

1

a1 a5 a3a6

a4 a2 a7a8

C(B1)

C(B2)

Fig. 6. Combined state codes of PACY (S1).

Because of (16), each partial function is implemented
as a single LUT circuit. In consequence, there is no
influence of codes C(Bi) and C(am) on the LUT count.
Therefore, classes and states should be encoded in a way
optimizing the SBF (24).

We use the following rules for encoding of classes
and states:

1. The classes with a maximum number of common
outputs yn ∈ Y must have adjacent codes (with a
Hamming distance equal to 1).

2. If states am ∈ Bi and as ∈ Bj are parts of pairs with
the same outputs yn ∈ Y , then these states should
have adjacent codes.

The identifiers are encoded using the approach by
Barkalov et al. (2022). It is the following: the more often
an identifier appears in Table 1, the more zeros its code
includes.

In the discussed case, there are sets Tc = {τ1} and
Ts = {T1, T2}. Using (5) gives RV = 1 and V = {v1}.
We can encode the classes in the following way: C(B1) =
0 and C(B2) = 1. The codes of states are shown in Fig. 6.
The identifier I1 (resp. I2) appears 7 (resp. 4) times in
Table 1. Thus, there is K(I1) = 0 and K(I2) = 1.

The following condition holds for this example:

Rcc +RV ≤ SL. (31)

Because of it, each function (8) is represented by a
single LUT. In this case, the proposed approach for
encoding Bi ∈ ΠB and am ∈ Bi allows reducing the
number of interconnections between the blocks LUTerF
and LUTerY.

Using codes C(Bi), C(am), and K(Ij) leads, for
example, to the following SOPs:

y1 = A2 · CI1 ∨ A5 · CI1

= τ1T̄1T2v̄1 ∨ τ̄1T̄1T2v̄1,

y3 = A3 · CI2 ∨ A5 · CI2 ∨A2 · CI2 ∨ A7 · CI2

= T̄1T2v1 ∨ T1T̄2v1.

(32)



Reducing the number of LUTs for Mealy FSMs with state transformation 173

Table 2. Direct structure table of PACY (S1).
am C(am) as CC(as) Xh Ih Φh Vh h

a1 00
a2 101 x1 I1 D1D3 – 1
a3 010 x̄1x2 I1 D2 – 2
a4 100 x̄1x̄2 I1 D1 – 3

a2 01
a3 010 x3x4 I2 D2 v1 4
a4 100 x3x̄4 I1 D1 – 5
a5 001 x̄3 I1 D3 – 6

a3 10
a4 100 x1 I2 D1 v1 7
a5 001 x̄1 I2 D3 v1 8

a4 00
a5 001 x3x4 I1 D3 v1 9
a2 101 x3x̄4 I2 D1D3 – 10
a1 000 x̄3 – – – 11

a5 01 a6 011 1 I1 D2D3 – 12
a6 11 a7 110 1 – D1D2 – 13
a7 10 a8 111 1 – D1D2D3 – 14
a8 11 a4 100 1 I2 D1 v1 15

All other SOPs for LUTerY can be obtained in the same
way.

Blocks LUTer1–LUTerI generate the functions (20)
and (21). Thus, in a DST of PACY FSM, each CO
Yq ⊆ Y should be replaced by a pair 〈am, Ij〉. For
example, the CO Y2 = {y1, y2} is generated during the
transition 〈a1, a2〉 caused by x1. As follows from Table 1,
this situation is represented by a pair 〈a2, I1〉 = P1. Thus,
in the DST of PACY (S1), the identifier I1 should replace
CO Y2. All rows of the DST are filled in the same way.

Thus, there are the following columns in the DST:
am (a current state), C(am), as (a next state), CC(as),
Xh (an input signal determining the transition 〈am, as〉,
Ih (an identifier replacing the CO Yq ⊆ Y ), Φh (a
collection of IMFs equal to 1 to load the CC(as) into
RG), Vh (a conjunction corresponding to K(Ii)), h (the
number of transitions). There are H = 15 arcs in the STG
(Fig. 1). Accordingly, DST of PACY (S1) has 15 rows
(Table 2).

The tables of LUTer1–LUTer2 are constructed in a
trivial way. For example, the table of LUTer1 includes
the rows of Table 2 with the transitions from states
a1,a3,a5,a6 ∈ B1. We do not show these tables in our
example. The SBFs (20) and (21) can be derived from
Table 2.

For example, the following SOPs can be obtained
from Table 2 (after minimization):

D1
3 = T̄1T̄2x1 ∨ T1T̄2x̄1 ∨ T̄1T2,

D2
3 = T̄1T2x̄3 ∨ T̄1T̄2x3 ∨ T1T̄2,

v11 = T1T̄2,

v21 = T̄1T2x3x4 ∨ T̄1T̄2x3x̄4.

(33)

The LUTerF includes up to Rcc + RV multiplexers

implementing the functions (22) and (23), Its table
conveys the rows marked by symbols D1, . . . , DRcc ,
v1, . . . , vRV . There are I + 1 columns in a table of
LUTerF. The last I columns contain the numbers of blocks
of LUTeri. If a partial function is generated by LUTeri,
then there is 1 on the intersection of the corresponding
function and the column i.

Analysis of Table 2 shows that all Rcc + RV partial
functions are generated by each LUTeri (i = 1, 2). Hence,
the SBFs (22) and (23) are constructed in a trivial way.
They are the following:

D1 = τ̄1D
1
1 ∨ τ1D

2
1 ,

D2 = τ̄1D
1
2 ∨ τ1D

2
2 ,

D3 = τ̄1D
1
3 ∨ τ1D

2
3 ,

v1 = τ̄1v
1
1 ∨ τ1v

2
1 .

(34)

The variable τ1 ∈ Tc is connected with a control input of
an MX. The data inputs of each MX are connected with
the corresponding outputs of LUTer1–LUTer2.

Using the obtained SBFs, we can create the logic
circuit of FSM PACY (S1). Let us estimate the LUT count
of this circuit.

As follows from (34), in total, there are 12 LUTs in
the circuit of LUTer1, LUTer2 and LUTerF. Because the
condition (26) holds, there are N = 7 LUTs in the circuit
of LUTerY. Consequently, there are 19 LUTs in the circuit
of PACY (S1). Also, this circuit has three levels of LUTs.
We do not show this circuit.

To compare the approach by Barkalov et al. (2022)
with our new method, we synthesized the logic circuit
of PATY (S1). If SL = 4, then K = 3 > I = 2.
Consequently, there is a partition ΠA = {A1, A2, A3},
where A1 = {a1, a3, a5}, A2 = {a2, a4, a6}, A3 =
{a7, a8}. This means that the first level of FSM circuit
includes three blocks. There are 14 LUTs in the circuits
of LUTer1–LUTer3. There is R1 = R2 = R3 = 2,
but the LUTerTV consists of five LUTs. Thus, there
are seven LUTs in LUTerY and six LUTs in LUTerT .
In consequently, there are 32 LUTs in the circuit of
PATY (S1).

As can be seen, the transition from FSM PATY (S1)
to FSM PACY (S1) allows us to reduce the LUT
count by 1.68 times. Obviously, to implement the
circuits of LUT-based FSMs, we should use various
methods of technology mapping (Kubica et al., 2021;
Krishnamoorthy and Tessier, 2003; Kubica and Kania,
2017; Ling et al., 2005; Zgheib and Ouaiss, 2015). This
can be done using standard CAD packages such as, for
example, Vivado by AMD (Xilinx) (Vivado, 2023). We do
not show the results of implementation for our example.
In the next section, we present the results of experiments
conducted with standard benchmarks (LGSynth93, 1993)
and CAD tool Vivado.
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6. Experimental results

This section includes experimental results. We compare
the proposed approach (PACY Mealy FSMs) with
some known methods including PATY FSMs. In the
experiments, we use the library of standard benchmarks
LGSynth93 (LGSynth93, 1993). Here there are 48
benchmarks of different complexness. The benchmarks
are represented in the format KISS2. These benchmarks
have a wide range of basic characteristics (numbers of
states, inputs, and outputs). The characteristics of these
benchmarks can be found in many articles and books,
(e.g., Barkalov et al., 2022; 2020b). Thus we do not show
them in this paper. The benchmarks are used very often by
different researchers to compare the basic characteristics
of FSM circuits obtained with different design methods.

The experiments were conducted using a personal
computer with the following characteristics: Intel Core
i7 6700 K 4.2@4.4 GHz, 16 GB RAM 2400 MHz
CL 15 Memory. To implement LUT-based FSM
circuits, we used the Virtex-7 VC709 Evaluation Platform
(xc7vx690tffg1761-2) (AMD, 2023b). The FPGA chip of
this platform includes slices having four LUTs with six
inputs. The internal multiplexers of the slices can be used
for implementing fast multiplexers from 4:1 to 16:1. The
step of technology mapping was executed by the CAD
tool Vivado v2019.1 (64-bit) (Vivado, 2023). The reports
of Vivado give us the results of the experiments (LUT
counts and maximum operating frequencies). The process
of circuit implementation starts from the transformation
of KISS2-based files into VHDL-based FSM models. To
execute the transformation, our CAD tool K2F (Barkalov
et al., 2020b) was used.

We compared area and time characteristics of FSM
circuits obtained using the proposed method with four
other approaches. Three of them are Mealy FSMs based
on (i) Auto of Vivado (the value of R is selected from
the interval (�log2 M�,M)), (ii) One-hot of Vivado,
(iii) JEDI. The model of P Mealy FSM was used in these
three cases. Also, we compared our approach with PATY
FSM, proposed by Barkalov et al. (2022).

Our previous research (Barkalov et al., 2021; 2022)
shows that both the LUT count and maximum operating
frequency depend strongly on the relation between the
sum L + R, where the value of R is determined by (1),
on the one hand, and the number of inputs SL, on the
other. Thus, we divided the benchmarks into five classes.
The benchmarks create the class of trivial FSMs (Class
0) if R + L ≤ 6, the class of simple FSMs (Class 1) if
6 < R + L ≤ 12, the class of average FSMs (Class 2)
if 12 < R + L ≤ 18, the class of big FSMs (Class 3) if
18 < R+L ≤ 24, the class of very big FSMs (Class 4) if
R+L > 24. As previous research (Barkalov et al., 2021)
shows, the larger the class number, the bigger the gain
from using methods of structural decomposition.

For the library the LGSynth, the benchmarks are
divided as follows. Class 0 consists of the benchmarks
bbtas , dk17, dk27, dk512, ex3, ex5, lion , lion9, mc,
modulo12, and shiftreg . Class 1 includes the benchmarks
bbara , bbsse , beecount , cse , dk14, dk15, dk16, donfile ,
ex2, ex4, ex6, ex7, keyb, mark1, opus , s27, s386, s840,
and sse. Class 2 contains the benchmarks ex1, kirkman ,
planet , planet1, pma , s1, s1488, s1494, s1a, s208, styr ,
and tma . Class 3 is created by a single benchmark sand.
At last, the benchmarks s420, s510, s820, and s832 form
Class 4.

The results of experiments are shown in Table 3
(the LUT counts) and Table 4 (the maximum operating
frequency). These tables are organized in the same
manner. The columns are marked by the names of the
investigated methods. The names of the benchmarks are
shown in the rows. There are results of summation of
values from the columns in the row “Total”. The row “%”
includes the percentage of summarized characteristics of
FSM circuits produced by other methods with present to
PACY -based FSMs. The following conclusions can be
made on the basis of the experimental results.

As follows from Table 3, the circuits of PACY -based
FSMs use a minimum number of LUTs compared with the
other investigated methods. There is the following gain in
the LUT counts: (i) 64.81% compared with Auto-based
FSMs; (ii) 91.8% compared with FSMs based on one-hot
state assignment; (iii) 35.73% compared with JEDI-based
FSMs; (iv) 17.96% compared with PATY -based FSMs.

As follows from Table 4, our approach allows
obtaining FSM circuits with the highest operating
frequency. There is the following gain in the operating
frequency: (i) 10.49% compared with Auto-based FSMs,
(ii) 11.21% compared with FSMs based on one-hot state
assignment, (iii) 3.07% compared with JEDI-based FSMs,
(iv) 2.17% compared with PATY -based FSMs.

We think that the improvement in performance
related to PATY -based FSMs is associated with a
decrease in the number of interconnects. This number is
decreased due to the following factors. Firstly, as follows
from (26)–(28), there is a significant reduction in the
number of state variables used as feedback to the blocks
of the first logic level (for PACY FSMs, the first level
includes blocks LUTer1–LUTerI) related to the equivalent
PATY -based FSMs. Secondly, the following condition
holds for the equivalent benchmark FSMs (LGSynth93,
1993):

I ≤ K. (35)

The consequence of the validity of (35) is a decrease in the
number of connections between the blocks of the first and
second level compared with this number for the equivalent
PATY -based FSMs.

As mentioned by Feng et al. (2018), for the
modern nanoelectronics “...wire delay has come to
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dominate logic delay.” Our approach allows reducing
the number of interconnections. Therefore, this reduction
of interconnections is responsible for the increase in the
value of the maximum operating frequency.

As follows from Tables 3 and 4, using the combined

Table 3. Results of the experiments (the LUT count).
Benchmark Auto One-Hot JEDI TCAD21 Our appr. Class

bbtas 5 5 5 10 10 0
dk17 5 12 5 10 10 0
dk27 3 5 4 10 10 0

dk512 10 10 9 15 15 0
ex3 9 9 9 16 14 0
ex5 9 9 9 12 12 0
lion 2 5 2 10 10 0

lion9 6 11 5 11 11 0
mc 4 7 4 9 8 0

modulo12 7 7 7 11 11 0
shiftreg 2 6 2 8 8 0

bbara 17 17 10 11 10 1
bbsse 33 37 24 26 24 1

beecount 19 19 14 14 13 1
cse 40 66 36 33 32 1

dk14 16 27 10 12 11 1
dk15 15 16 12 8 8 1
dk16 15 34 12 11 10 1

donfile 31 31 24 21 19 1
ex2 9 9 8 8 9 1
ex4 15 13 12 11 10 1
ex6 24 36 22 21 19 1
ex7 4 5 4 6 6 1

keyb 43 61 40 37 34 1
mark1 23 23 20 18 16 1

opus 28 28 22 19 17 1
s27 6 18 6 6 6 1

s386 26 39 22 20 18 1
s8 9 9 9 9 8 1

sse 33 37 30 24 22 1
ex1 70 74 53 38 34 2

kirkman 42 58 39 31 25 2
planet 131 131 88 74 61 2

planet1 131 131 88 74 61 2
pma 94 94 86 68 56 2

s1 65 99 61 51 41 2
s1488 124 131 108 82 67 2
s1494 126 132 110 89 62 2

s1a 49 81 43 32 23 2
s208 12 31 10 9 9 2
styr 93 120 81 68 57 2
tma 45 39 39 28 22 2

sand 132 132 114 91 75 3
s420 10 31 9 8 8 4
s510 48 48 32 20 16 4
s820 88 82 68 48 35 4
s832 80 79 62 46 34 4
Total 1808 2104 1489 1294 1097

% 164,81 191,80 135,73 117,96 100,00

state codes allows obtaining FSM circuits with better
area (the LUT count) and time (the maximum operating
frequency) characteristics compared with the equivalent
PATY FSMs. Also, our approach produces better results
compared with those obtained using the known methods

Table 4. Results of the experiments (the maximum operating
frequency, MHz).

Benchmark Auto One-Hot JEDI TCAD21Our appr.Class
bbtas 204,16 204,16 206,12 190,38 191,38 0
dk17 199,28 167,00 199,39 181,14 182,01 0
dk27 206,02 201,9 204,18 190,32 190,98 0

dk512 196,27 196,27 199,75 188,32 189,07 0
ex3 194,86 194,86 195,76 188,22 188,09 0
ex5 180,25 180,25 181,16 172,45 173,01 0
lion 202,43 204,00 202,35 196,73 197,01 0

lion9 205,3 185,22 206,38 189,49 190,32 0
mc 196,66 195,47 196,87 181,03 181,79 0

modulo12 207,00 207,00 207,13 199,79 200,01 0
shiftreg 262,67 263,57 276,26 246,14 247,08 0

bbara 193,39 193,39 212,21 186,24 188,12 1
bbsse 157,06 169,12 182,34 159,73 164,26 1

beecount 166,61 166,61 187,32 178,66 185,75 1
cse 146,43 163,64 178,12 168,23 173,42 1

dk14 191,64 172,65 193,85 179,18 184,29 1
dk15 192,53 185,36 194,87 187,37 191,21 1
dk16 169,72 174,79 197,13 189,16 193,87 1

donfile 184,03 184 203,65 199,92 203,75 1
ex2 198,57 198,57 200,14 196,58 200,32 1
ex4 180,96 177,71 192,83 184,52 187,56 1
ex6 169,57 163,8 176,59 169,45 172,45 1
ex7 200,04 200,84 200,6 194,36 197,23 1

keyb 156,45 143,47 168,43 152,59 154,18 1
mark1 162,39 162,39 176,18 169,42 172,08 1

opus 166,2 166,2 178,32 170,07 172,14 1
s27 198,73 191,5 199,13 189,18 192,43 1

s386 168,15 173,46 179,15 162,68 165,14 1
s8 180,02 178,95 181,23 172,12 174,18 1

sse 157,06 169,12 174,63 161,67 164,21 1
ex1 150,94 139,76 176,87 190,76 194,78 2

kirkman 141,38 154,00 156,68 186,62 192,47 2
planet 132,71 132,71 187,14 210,37 218,42 2

planet1 132,71 132,71 187,14 210,37 218,42 2
pma 146,18 146,18 169,83 202,43 209,73 2

s1 146,41 135,85 157,16 188,72 194,23 2
s1488 138,5 131,94 157,18 199,62 205,38 2
s1494 149,39 145,75 164,34 201,34 207,14 2

s1a 153,37 176,4 169,17 199,83 206,18 2
s208 174,34 176,46 178,76 212,72 218,59 2
styr 137,61 129,92 145,64 178,62 182,19 2
tma 163,88 147,8 164,14 198,82 203,26 2

sand 115,97 115,97 126,82 154,56 165,12 3
s420 173,88 176,46 177,25 212,62 221,34 4
s510 177,65 177,65 198,32 226,13 243,01 4
s820 152,00 153,16 176,58 205,14 214,37 4
s832 145,71 153,23 173,78 208,62 217,45 4
Total 8127,08 8061,22 8718,87 8882,43 9079,42

% 89,51 88,79 96,03 97,83 100,00
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of state assignment (Auto, One-hot, and JEDI) and
functional decomposition. In consequence, the proposed
approach has a rather good potential and can be used in
CAD tools targeting LUT-based FSM synthesis.

7. Conclusion
A characteristic trend of our time is the widespread
application of various VLSI chips for implementing
digital systems. An important problem associated with
VLSI-based design is that of reducing the area occupied
by the digital system circuit. This fully applies to the
LUT-based synthesis of FSM circuits. In this case, it
is necessary to reduce the numbers of arguments in the
sum-of-products of Boolean functions representing an
FSM circuit. As a rule, the required chip area is estimated
as an LUT count of a particular circuit (Islam et al., 2020).
Thus, to reduce the required chip area, it is necessary to
diminish the LUT count in an FSM logic circuit.

Structural decomposition (Barkalov et al., 2021) is
one of the efficient ways to solve this problem. Various
methods of structural decomposition are connected with
a change in the FSM structural diagram compared with
single-level P Mealy FSMs. Of particular interest are
methods that can simultaneously reduce the LUT count
and increase the maximum operating frequency. Such a
method is proposed in this paper.

The developed approach is aimed at improving the
characteristics of LUT-based PATY Mealy FSMs with
the transformation of collections of outputs into extended
state codes. Our method is based on using combined
state codes having two parts. One is a code of some
class including a particular state. The other represents
this state as a class element. Due to this approach, we
eliminated the code transformer used in PATY Mealy
FSMs. Also, the number of state variables is significantly
reduced compared with equivalent PATY Mealy FSMs.
As a result, we have the improvement in important
characteristics such as the LUT count (on the average,
by 17.96%) and maximum operating frequency (on the
average, by 2.17%).

The results of our experiments show that the
proposed approach allows a reduction in LUT counts in
FSM circuits. Moreover, this improvement does not lead
to a decrease in the FSM performance. Consequently,
this method improves two main characteristics of FSM
circuits. We think that it can be used in CAD tools aimed
at LUT-based implementations of Mealy FSMs.
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