Int. J. Appl. Math. Comput. Sci., 2024, Vol. 34, No. 1, 93—103

DOI: 10.61822/amcs-2024-0007
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In this paper, we consider, from a numerical point of view, a two-temperature poro-thermoelastic problem. The model is
written as a coupled linear system of hyperbolic and elliptic partial differential equations. An existence result is proved and
energy decay properties are recalled. Then we introduce a fully discrete approximation by using the finite element method
and the implicit Euler scheme. Some a priori error estimates are obtained, from which the linear convergence of the
approximation is deduced under an appropriate additional regularity. Finally, some numerical simulations are performed to
demonstrate the accuracy of the approximation, the decay of the discrete energy and the behaviour of the solution depending

on a constitutive parameter.
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1. Introduction

It is usually accepted that porous elasticity (also known
as elasticity with voids) is the easiest generalization of
the classical theory of elasticity (Cowin, 1985; Cowin
and Nunziato, 1983; Nunziato and Cowin, 1979). In
this situation, the existence of a skeleton where we
can consider several holes (or voids) of the material
is assumed. The existence of these voids implies
an interdependence between the macrostructure and the
microstructure of the material. In general, several theories
(such as micropolar or micromorphic elasticity) have been
developed trying to incorporate microstructural effects
to understand the behaviour of different materials. The
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elasticity with voids has gained much interest over the last
fifty years (Barabasz et al., 2014; Feng and Apalara, 2019;
Feng and Yin, 2019; Leseduarte er al., 2010; Magafia
and Quintanilla, 2021; Magafa et al., 2020; Miranville
and Quintanilla, 2019; 2020; Pamplona et al., 2011).
Of course, this theory has been extended to incorporate
thermal effects.

One of the possibilities to introduce microstructural
effects on the materials can be by means of
microtemperatures. The theory of microtemperatures
was firstly considered by Grot (1969) and Riha
(1975; 1976). However, little attention was paid
until the beginning of this century (Iesan, 2007; Iesan
and Quintanilla, 2000). These two contributions were
a starting point trying to understand the relevance of
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the microtemperatures in the behaviour of the materials
(see, e.g., Bazarra et al., 2019; Grot, 1969; Magana and
Quintanilla, 2018; Passarella et al., 2017) .

In the period between 1968 and 1973, Gurtin and
several co-workers proposed and developed the so-called
two-temperature thermoelasticity (Chen and Gurtin, 1968;
Chen et al., 1968; 1969; Warren and Chen, 1973).
In this theory, the heat equation is modified and two
different temperatures (thermodynamical and inductive)
are considered. This theory has been thoroughly studied
(see, e.g., Abo-Dahab, 2020; Ali and Romano, 2017
D’Apice et al., 2020; Bazarra et al., 2020; Campo et
al., 2022; Fernandez and Quintanilla, 2021b; Gruais and
Polisevski, 2017; Kumar et al., 2020; Makki et al., 2019;
2021; Miranville and Quintanilla, 2016; Mukhopadhyay
et al., 2017; Sarkar and Mondal, 2020; Sellitto et al.,
2021; Youssef and Elsibai, 2015).

Recently, Ferndndez and Quintanilla (2021a)
proposed how to obtain a theory of porous
thermoelasticity ~ with ~ two  temperatures  and
microtemperatures for the one-dimensional case. The
usual theory of thermoelasticity with microtemperatures
was conveniently modified. Assumptions on the cons-
titutive coefficients were imposed to guarantee several
qualitative properties. In fact, existence, uniqueness and
exponential decay of the solutions were obtained. To
arrive at these results, the authors used the semigroup
theory of linear operators as well as the characterization
of exponentially stable semigroups obtained by Huang
(also Pruss), recalled in the book by Liu and Zheng
(1999).

In this paper, we want to continue the study of this
theory, but from a numerical point of view. In this
sense, a fully discrete approximation is introduced by
using the classical finite element method for the spatial
approximation and the implicit Euler scheme to discretize
the time derivatives. A priori error estimates are proved
from which the linear convergence is shown under some
adequate additional regularity conditions. Finally, some
numerical simulations are performed to demonstrate the
accuracy of the approximation, the discrete energy decay
and the behaviour of the solution with respect to some
constitutive coefficients.

2. Model

Let u, ¢, T, S, 6 and 9 be the displacement field,
the porosity (or volume fraction), the thermodynamic
microtemperature, the inductive microtemperature,
the thermodynamic temperature and the inductive
temperature, respectively. We note that the temperatures
and microtemperatures satisfy the relations

9:’[9—(1’19;5;5, T:S_asmma

where « is a given positive constant. We denote by
(0, ¢) the one-dimensional domain occupied by the body,
and we will study its deformation over the time interval
(0, Tf), with Tf > 0.

Therefore, the thermomechanical problem of a
one-dimensional poro-elastic rod with two temperatures
and microtemperatures is written in the following form
(see Fernandez and Quintanilla, 2021a).

Problem P. Find the displacement field v : [0,¢] x
[0,T¢] — R, the porosity field ¢ : [0,¢] x [0,T¢] — R, the
thermodynamic temperature 6 : [0,0] x [0, T¢] — R, the
inductive temperature ¥ : [0, ] x [0, Ty] — R, the thermo-
dynamic microtemperature T : [0,¢] x [0,Tf] — R and
the inductive microtemperature S : [0,0] x [0,Tf] — R
such that

pi = fitigy + poPx — Bobz + pF),
Jo = aous — potiz — p2Ts

+ 010 — §o + pL,
af = —Botty — B1¢ + Ky

+ K15z + pQ, (1)
bl = */LQQSI + K4 Spz — K2 S
— w3y — pG,
0 =19 — at,,,
T=5—-aS.,

u(z,0) = u’(z), u(z,0) =1"(x),
9(1’,0) = 90(56)’ (;5(:E,0) = ¢O(x)a 2
¢ﬁ(:1c,0) = (p0<$)7 T(*T’ 0) = To(w)’
fora.e x € (0,0),
u(0,t) = ¢(0,t) = ¥(0,t) =0,
u(l,t) = (L, t) =93¢, t) =0 3)
S(0,t) = S(¢,t) =0,

We note that, in Problem P, u°, %, ¢°, 9,
f° and T are initial conditions for the variables,
p, J,a, b, u, o, Bo, ao, p2, b1, &, K, K1, K4, ko and
k3 are given positive constants, and F, L, @ and G are
supply terms.

According to Ferndndez and Quintanilla (2021a) we
will make the following assumptions on the constitutive
coefficients:

p>0, J>0, a>0, b>0,

pE > pd, ap >0, k>0, rg>0,
darkkaky — akg(kr + Kk3)? — a?kak3 > 0,
dak(kg + akg) > o?K3.

p >0,
4)
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The following result was recently proved by
Ferndndez and Quintanilla (2021a), and it states the
existence of a unique solution to Problem P and an energy
decay property.

Theorem 1. Assume that the coefficients satisfy the con-
ditions ). If we denote by (v, p,0,9,T,S) the solution
to Problem P and we suppose that the initial conditions
have the following regularity:

u®, ¢ € H}(0,0),
00, T, 60, 0 € LQ( ,0)
NUQz - 6002 € L2<0’€)’
(Io(bgz - M2Tg? € L2( 0,

)

then Problem P has a unique solution such that

u, € Cl([O’Tf];H&(ng)) N CQ([Ova];LQ(ng))v
0,T € C1([0,Ty]; L*(0, 1)),
9,8 € C([0,Ty]; H3(0,0)).

Moreover, if we also assume that Bopa # 0, then the en-
ergy decay of this solution is exponentially stable.

In order to obtain the variational formulation of the
above thermomechanical problem, write Y = L?(0, /),
V = H}(0,¢) and E = HZ(0,¢). Moreover, let (-, -) and
|| -|| be the inner product and the norm defined in L?(0, £),
respectively.

Integrating Eqns. (I) by parts and using the initial
conditions (@) and the boundary conditions (@), we
obtain the following weak formulation written using the
velocity v = u, the porosity speed ¢ = b, the
thermodynamic temperature 6, the inductive temperature
¥, the thermodynamic microtemperature 7' and the
inductive microtemperature .S.

Problem VP. Find the velocity v : [0,Ty] — V, the
porosity speed ¢ : [0,Tf] — V, the thermodynamic
temperature 0 : [0,Ty] — Y, the inductive temperature
¥ 1 [0,Tf] — E, the thermodynamic microtemperature
T : [0,Tf] — Y and the inductive microtemperature
S : [0,Tf] = E such that v(0) = v° ©(0) = ¢Y,
0(0) = 6° T(0) = T° and, for a.e. t € (0,T}) and
forallw,m € Vandr,l, z, s €Y,

p(0(t), w) + p(ua(t), wa)
= M0<¢w(t)7w) + 60(9<t)aww) + p(F(t)ﬂU)» 5)

J((t),m) + ao(ds(t), m) + &(6(t), m)
= _MO(uw (t)v m) + 2 (T(t)v mw)
+ B1(6(t), m) + p(L(t), m), ()

a(é(t)v T) = 760(1}%@)7 T) - 61((;'5(75)7 T)
+ k(0 (t), 1) + £1(Sza(t), 1)
+ p(Q(t),T), )

g s
), ®)

(0(2),1) = (O(t) — alaa(t),

b(T(t),2) = —pa(pa(t), 2) + Ka(Sea(t), 2)
— r2(8(t), 2) — K3 (V2 (1), 2)
— p(G(t),2), 9)
(T(t),s) = (S(t) — aSzx(t),s), (10)

where the displacements and the porosity are then recov-
ered from the relations

u(t) = t v(s)ds +u°,
/Ot (1D
o) = [ els) s+

3. Numerical analysis: Fully discrete
approximations and a priori error
estimates

In this section, fully discrete approximations of
Problem VP are introduced and numerically analyzed.
In order to provide the spatial approximation, let the
interval [0, /] be partitioned into M subintervals denoted
byay =0 < a3 < ... < apy = ¢ with a uniform length
h = a;11 — a; = /M. The variational spaces V, E and
Y are then approximated by the finite dimensional spaces
Vh cV,E" C Eand W" C Y given by

V= {w" e C([0,4) : wffli,am] € Pi([ai, aiv1],
i=0,...,M—1, w"(0)=w") =0}, (12)
E" = {r" € C'([0,£)) n H*(0,¢) :

T‘ﬁli>ai+1] €P3([ai,ai+1]), 1=0,...,M—1,

r(0) = i (€) = r"(0) = r"(£) = 0}, (13)
Wh={i" e L*([0,4]) : I, ..., € Pi((ai, aipa)),
i=0,...,M—1}, (14)

where the set P.([a;,a;t1]) denotes the space of a
polynomials of degree less than or equal to r for each
subinterval [a;, a; 1], i.e., the finite element space V" is
composed of continuous and piecewise affine functions,
E" made of C'' and piecewise cubic functions, and "
by L? and piecewise affine functions.

In the above definitions, as usual A > 0 represents
the spatial discretization parameter. Furthermore, we
construct the discrete initial conditions u®", v, gbOh,
@O" 6O and TOM as

uh = Phf,
Oh _ ph, 0
12 - Pl ’

v = Phy,
Oh _ phyo
0" ="Py0°,

¢Oh — Ph (2507
TOh — 'P12hT0 (15)
where P! and P} are the finite element projection
operators over VP and W', defined, for instance, in the
paper by Clément (1975).
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Now, to obtain the discretization of the time
derivatives, we consider a uniform partition of the time
interval [0, 7], denotedby 0 = tg < t1 < ... <ty =T,
with time step size k = T/N and nodes t, = nk for
n=20,1,..., N. Here, n is the time step index.

Therefore, using the implicit Euler scheme, we
obtain the fully discrete approximations of Problem VP,
which leads to the following discrete problem.

Problem VP"*.  Find the discrete velocity v'* =
{vhFy N —o C V. the discrete porosity speed o"* =
{on k}N 0 C Vh the discrete thermodynamic temper-
ature "% = {OMAN_ - Wh the discrete induc-
tive temperature "% = {9"FIN_ - Eh the discrete
thermodynamic microtemperature T"* = {Thk}N_ -
W" and the discrete inductive microtemperature S =
{SIMAN_ < E" such that vl* = %", ohF = 01,
96”“ = Y%, Té”“ = T% and, Sor all wh,mh e VP and
rhorh 10 st e Whiandn=1,..., N,

< (6v1}zk7 wh) + N((Uzk)x» w;}EZ)

= po((¢3")z, w") (16)
+ 60(92k7w2) + p(anwh)v

J(BolF m™) + ag((¢1F)e, m") + £(1F, m")
= —po((ulF) o, m") + pa (TP, mM) + B1(O1F, m")
er(Ln»m)»
(17)
a(éezk’T ) (( ) ) ﬁl(‘Pn T )
((ﬂh’“)m, ")+ K1 ((SPF) gz, ")
+ p(Qn,7),
(18)
(O0F 1) = (00F — a2 ) 2, 1), (19)
bOT)*, 2") = —po((01F) e, 2") + Ka((SEF ), 2™)
— Ko (SIF,2M) — K3 ((90F)a, 2")
— p(Gn, 2",
(20)
(T)F, ") = (SPF — a(S)F)ae, s™), 1)

where, for a continuous function z(t), we use the notation

_ N — _
zn = z(t,) and, for a sequence {z, },,_g, let dz, = (2,
zn—1)/k be its divided differences. Moreover, the discrete
displacements u”* and the discrete porosity ¢* are now
recovered from the relations

n n
uﬁk:ka;}kwLuOh, (bﬁk:nga?kwL(bOh.
j=1 j=1

(22)

Applying the classical Lax—Milgram lemma, we can

easily deduce that Problem VP"* admits a unique solution
under the assumptions ().

In what follows, we aim to prove some a priori error
estimates on the numerical approximations provided in
Problem VP"*. We note that, for the sake of simplicity
in the calculations, we assume that the supply terms F', L,
Q@ and G vanish.

First, let us obtain the error estimates for the velocity.
Thus, subtracting the variational equation (@) at time ¢ =
t,, for a test function w = w" € V* ¢ V and the discrete
variational equation (I6)), we have, for all w" € V",

p(n — 5“Zka wh) + p((un — uzk)wa U’Z)
7,“0(((2571 - ¢Zk)x7wh) - Bo(an - 02k7w:fcl) = 07
and, therefore, we have, for all w" € V",
p(, — 6vl* v, — vhk)
+ p((un — uhk)w» (vn — U:zbk)w)
hk
- M0(<¢n - (bn )wavn — Uy )
= Bo(Bn — 3%, (vn — v3*)z)

= p(0n — 0V v, — wh)

+ p((un — Uhk)x» (vn — wh)r)
= 110((dn = &1 s vn — w")
— Bo(On — 02%, (v, — w"),).
By using the estimates
(0, — 60M* v, — 0Pk = (0, — dvn, v, — VIF)

+ (6vp, — (5vﬁk,vn — vhk),

n

> o {low = oI = llon-s — o5,
((un uhk) (Un_vzk)w)
> ((un Uhk) (tn, — Sun)z)
o {0l = P = s — w2},

where dv,, = (v, — vp—1)/k and du,, = (uy — un—1)/k,
applying Cauchy’s inequality

((5vn — Sk oy, — vf{k)

1
ab§6a2+4—b2, a,becR, €>0, (23)
€
we find that, for all w" € V',
P
2 {llvm = OBHIIZ = oy — w2 12}
—Bo(0 = O, (v = v")2)
- { = W)l = (s =l )2}
< C(Jlom = 6vall? + (it — Sun) |
Hlon = 0"+ 1l — b |
+H(¢n - ¢Zk)w”2 + Hen - 9Zk||2
+(0v, — 60 v, — w") 4 v, — vf{kﬂz). (24)
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Proceeding in a similar form, we derive the error
estimates on the porosity speed. Therefore, keeping in
mind that

E(dn — G0" 0 — 90"
> f((bn - ¢Zkv¢n - 6¢n)
+ o {ll6n = 6451 ~ llons — 0B, 12},

we obtain now, for all m" € V',

J
Se{len = BHI2 — oy — ¢l 12
i o hky2 _ hk )2
5 {l6m — 85117 ~ 16 n_ln}
ao hky 12 _ .
22 {1(@n = 652l ~ (s
_N2(Tn_Tn ’((pn_spn )1)
< C(lgn = el + (B0 — 560)a?
Hion = m* I+ [1(6n — 615)s

+|605 — 92k||2 + llon — @Zk”2
Fll(un = wp®)el* + 1T — T* (I

+(8pn — 601F 0, — mh)) (25)

where dp,, = (9071 _(Pn—l)/k and 6¢,, = (¢n - ¢n—1)/k'

Now, we obtain the error estimates on the inductive
temperature.  Therefore, subtracting the variational
equation (8) at time ¢t = ¢,, for a test function [ = " €
Wh c Y and the discrete variational equation (19), we
obtain

hE a2}

(6 — 65%,1")
= (9, — 9" —a(9,

- — Y 1, i e W,

so that, we have, for all ¢ € E* (because cWwh,
(071 - ezkv (1971 - ﬁzk)mm)
*(1911 - 192/@ - 05(1977, - ezk)zza (1977, - ﬁzk)zz)

- (en - HZIC, (1911 - fh)xx)
— (O — O — a9y — 0

W )aw, (In = E")aa).
Taking into account that
- (ﬁn - ﬂﬁkv (ﬁn - ﬁﬁk)m)
= (9 — 19Zk)wa (On — 19Zk)m)a
= (U = 03", (0n = €")aa)
= (0 = 90 )a, (O — €")a),

using Cauchy’s inequality (23) several times we find that,
forall " € E,

1@ = O5all? + (O = 9
< C(I0n = €)aall® + 162 — 1512 (26)

+ 10 = €Mall?)

Proceeding in an analogous way, we get the
following estimates for the inductive microtemperature,
for all = € E":

H(Sn - Sﬁk)zH? + ”(Sn - Sgk)m||2
< C(11(Sn = "ol + 1T = T2

+ 11(Sn = E")al?).
(27

Finally, we obtain the estimates on the
thermodynamic temperature and the thermodynamic
microtemperature. We subtract the variational equation
@) at time ¢t = t,, for a test functionr = r* € Wh C Y
and the discrete variational equation (I8)) to obtain

a0 — 001 17 + Bo (v — VR0, ")
+61(90n_902k»7°h) — K((In _19 )ww» h)
— Kjl((S — S )mwa h) =0,

and therefore, we have, for all * € Wh,

a(f, — 50M* 6, — 0"%) + Bo((vy, — vI*),, 60, — O1F)
+ﬁ1( —ork 0, — 1)

(( - ﬁhk)wwve - QZk)
fm((s —Sh )m,en — Ohk)

= a(@n — 69hk 0 —-r ) + 60((7}11 - ’Uzk)wven - Th)

+ﬁ1( Spn ’9 -r )
((1977,*19 )xm»en *Th)
*Hl(( n Sr,};k)xxven *Th)~

Keeping in mind that

a(B, — 36" 6, — 61F)
> a(b, — 66,6, — OF)
a _ phk)2 _ _phk |2
5 {160 = 02F11% = 1001 — 015,12}

it follows, for all ¥ € W, that

{16, — 0412 — 16,0 — 61 12|
+ Bo((vn = 03")a, On — 0,F)

< C (110 — 8012 + 6 — T2 + o — 1|1
1S = Sl + (Ot — ), 0 = 7")
100 = ) |2+ (0 — 002)a, 00 — 7"

i = B 2).
(28)

aamcs
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Similarly, we also find, for all 2P € W, that

b
e Tn_Thk: 2 T, _Thk 2}
{0 = TR = Ty = T
+p2((n — @Zk)ran - lezk)
< C (I = OTall? + T = 212 + lln — £

+H(Q9n - ﬁzk)m|‘2 + HSn - szbk”2
+((dun — 5uzk)x»Tn - Zh) +1[(Sn — Szk)xx”Q
(8T, — 5Tk, T, — zh)). (29)

Combining the estimates @24), 23D, 28) and 29)), it

follows that

p
2 {Jlon = OBF2 — oy = ol )12}

2k
- { = W)l = (s =l )]}
- {llon = @I = llno — b, 12}
o {l6n = G212 = g1 — o552}
52 {1(6n = Sl = N(dn-r — 9151 )2 2
5 {160 = O3 = 161 — 025 2
o LI — T — Ty — 712}

k
< C(Jlim = Bvnll? + 11 = Sun)a |2 + [l — w" [}

Hl(un = ug®)e | + 1160 — 05512 + lon — on®||®
+(¢n — ¢Zk)w”2 + (6vp, — (51)2]@,1}” - wh)

+lon = nll® + 1(dn — 66n)zl® + llon — m" |3,
+((Fun = 6up?)z, T = 2") + [lon — ¥

+10n = 60n]* + 116 — |1 + |1 T — 2|12
+(n — 5%%» $n — mh) + [ (Fn — ﬂﬁk)ml\2
+|(Sn — Sﬁk)mHQ + ((Oun — 5uzk)z,9n - Th)

+ T = 6Tn || + (36, — 567%, 0, — ™)

H[Sn = SREIP + 1T — TRF |2

+(8T, — 6T, T, — zh)>.

Multiplying the above estimates by k£ and summing
up to n, we have

lvn = w12+l (un = ug®)ell* + llon — £3*1°
Hign = 65" 17 + 11(dn — &™)l + 1160 — 63512
HI T = T2

< CkY (Il = 0vi 12 + 11y — 65

Jj=1

Hllvg — w3 + (g — wf*)|®

+116; — 7% + vy — v} ¥

+[(d5 — ¢F)all” + (6v; — S0*, 05 — w)

+ldj = 011> + 15 — 665)= 1 + llps — mf 113
+los — S I7 + 1T — TP*I1° + 1165 — 36,1
+H6; =7} + (85 — 8¢, 05 —m]})
(05 = 9F)aal|® + (565 — 607%,0; —r't)
H(S; = S1F)aall® + (6uj — 6u)e, 0; —rl))
H Ty = 6T + 1Ty — 25|17

+((0u; — 5u?k)z,Tj — z;’)

118 = SE| + (OT; — 6T, Ty - 21)
+C(I® = o2 + Jlu® = w®P | + [l — O

16 = 63 + 16° — 02 + |70 — 7)),

Now, from the above estimates as well as (26)) and 27),
we find that

[on = op® 12 + || (un — uf®)2 )l + llon — ¥
Hllon — G512 + [1(dn — E2F)all® + 1160 — 6%
T = T + 11(Sn — SE9)2 12
(S0 = S )ael? + (190 — 92F) |12
) (In = 92 g ||

< kY (s — vyl + 1 — Gy )
7j=1

oy = wll} + [l (s — w2

+16; = 2*]12 + [|o; — v} *||2

+(8v; — dup*, vy — wl) + @5 — by

Hlps = mEIY + llps — 12 + |15 - TP42
+[10; = 30,112 + 116, — r} |1

+(8p; — 0", 05 —ml)
N5 = 9|+ 11(S5 = S|
(85 = )l + ((6u; — 6uk),, 0; = r})
+(80; — 601F, 05 — rl) + | Ty — 6Ty
H1T5 = 212 + (6u; — ul*)e, Ty — 2J)
+1S; =S¥+ (6T — 6TPF, T — 21
(5 = 003)all?) + € (1l0” = 02 + u® — w3
+H® = @17+ 11¢° — ™[I + [16° — ™"

HIT® = T2) + C (110 =%

19— €113).
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Keeping in mind that

(v, — vﬁk,vn — wZ) + (v — vo,v1 — wy)
n—1
hk h h
+Z(Uj — 0", v —wi = (Vi1 — wiig)),
j=1

(n — @F, 0 —mh) 4 (%" — @, 1 —ml)

n—1
hk h h
+ Z(%‘ — ;"5 —mi — (@41 — mji1)),
j=1

NE

(0; — 0" — (0,21 —07%),0, =)

<.

(B — 016, — 1) + (0 — 60,6, — )

n—1

+D (0, = 00,0, — v — (041 —1740),

j=1

(Tj - Tjhk - (Tj*1 - T]h—kl)vTj - Z;Z)

I

Jj=1
= (T —T}*, T, — 21) + (T = T°, Ty — =)
n—1
+ Z(TJ — Tjhk7Tj — Z;Z — (Tj+1 — Z;-Z+1)),
j=1

Sy =l = (ujoa =) 0 = 11)

(W =), Ty - =)

1
> ((uy —ul®)e, Ty — 2l = (Tj1 = 200)),

j=1
and applying a discrete version of Gronwall’s inequality
(see, e.g., Campo et al., 2006) we have thus proved our
main a priori error estimates result.

Theorem 2. Let the assumptions of Theorem 1
still hold. If we denote by (u,v,¢,9,0,9,T,5)
the solution to the problems Q)—(1) and by
(ulk phk ghk ohk ghk 9 T SPk)  the  solution to
the problems ([[6)—«22) , then we have the following a
priori error estimates, for all w" = {w]h ;}/207 mh =

{m?}j-vzo cCVh ot = {rﬁ‘ Mo 2h = {z]h}jvzo c wh

and ", =h € E",

hk hk hk
Jmax Ll = o2+ = iR + o — @3

o lem — B 1R + 180 — 01512 + 1T, — T2
([0 = 2% + 115, — SEFI1% |

N
< k> (I = dus1? + iy — g1} + llog — w1
j=1

+ lg; — 0i I + 1185 — 66511 + Il — m2 |13
+ 1105 — 66;11° + 16; — 11 + |75 — 67512
+ 17— 212)

+ = 3 (I = w) = g = )IP

+ g = mlt = (1 = ml)?

+016; =7 = (0501 =l )P

11T = 2 = (T = 2)I?)

+ O (Jlo = w2 + [l — 3

119 — 2+ 190 — 6O 3+ 160 — 672

+ |70 = T?) +C max (flon —wh
0<n<N

+ ln = 2 + 180 — 7212 + 1T — 2111)

+C(11Sn = EI% + [19n - €"1%).

where C' is a positive constant which does not depend on
the discretization parameters h and k.

By using the above estimates, we can derive the
convergence order of the approximations given by the
discrete problems (16)-22). As an example, if we assume
the following additional regularity:

u, ¢ € H*(0,T4;Y) N H?(0,Ty; V)
NCH ([0, Ty); H?(0,0)),

0.7 € H*(0,Ty;Y) N H ([0, T¢]; H'(0,¢)),
S,9 € CH([0,Ty); H*(0,0)),

we have that convergence of the algorithm is linear. This
can be proved by applying some well-known results on the
approximation by finite elements (see, e.g., Ciarlet, 1993)
and some estimates already used by Campo et al. (2006).
Therefore, we can conclude that there exists a positive
constant C' > 0 such that
hk hk hk
Jmax Ll =¥+ flun =l v + llon = 1
Hidn = Gntllv + 1160 — 0551 + 1T — T3
90 = 95 s + S0 =SBl } < Clh + ).

aamcs
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4. Numerical results

In this section, we present several numerical simulations
to show that the exponential decay predicted theoretically
as well as the linear convergence of the approximation are
achieved. We also perform a parametric study to show
different behaviours of the solution, depending on the
model parameters.

All simulations were computed on a PC with a
1.8 GHz processor using MATLAB. A typical run (h =
k = 10~2) with a final time 7 = 1 and length 1 took 1.5
seconds of CPU time.

4.1. Approximation accuracy. To show numerically
the accuracy of the approximation, we performed a test
with a known analytical solution. We manufacture the
following analytical function for v, ¢, ¥ and S, for all
(x,t) € (0,1) x (0,0.5):

v(x,t) = @(x,t) = 9(x,t) = S(x,t) = 23(1 —z)3 e’

Then, given the following model parameters:

J=1, a=1, ay=1, a=1, b=1,
ﬂoZL ﬂlzl, I<;:5, I<31:1, I<62:1,
k3 =1 kKa=1, p=10, po=1, pr=1,

p:17 5:17

we compute variables 6 and 7', for all (z,t) € (0,1) x
(0,0.5),

O(x,t) = T(x,1)
= zef(—a® + 3% 4 272 — 5922 + 362 — 6),

as well as the supply terms F, L, Q and G using Eqn. ().
The initial conditions for the simulation are obtained from
those manufactured functions (at ¢ = 0).

We run the simulation up to a final time of Ty =
0.5 with a domain of unit length, and compute the error
between the numerical approximation and the analytic
solution by using the expression

Jmax {lon = v+l = by + llon = 23]

+lién = S5¥Ilv + 1160 — B5E1 + 1T — T
10 — 055 + 115w — S2¥]1 1 .

The errors for different timesteps and element sizes are
summarized in Table[T] In Fig.[Il the diagonal of the table
is plotted against h+-%. Here, the linear convergence of the
algorithm shown in the previous section is clearly seen.

4.2. Exponential decay. To show the exponential
decay of the solution, we perform some simulations with

0.12

0.012

0.1 -0.008 1
0.006

| 0.004

o
=3
®

0.002

0
0 0.005 0.01 0.015 0.02 0.025 0.03 4

Numerical error
o
[=]
&
T

o

o

R
T
L

0.02 - T

I I I I I I
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
h+k

Fig. 1. Convergence of the numerical error depending on pa-
rameter h + k.

the following parameters:

J=1, a=1, a=1, b=1, fy=1,
61:1, mle, I<01:1, I€2:1, I<J3:1,
k=1, p=10, p=1, p=1, p=1,

£€=1, k=0.0001, h=0.01,
Ty =100, ¢=1.

Following the continuous case (see Ferndndez and
Quintanilla, 2021a), we define the discrete energy in the
following form:

1

B = 2 (pllof 12 + JlIeh 12 + ll a1
+ €llnt I + 200((ul)e, 81F) + aoll6hH 17
el 0| + b TR).

The results of those simulations, regarding the energy
of the system, are shown in Fig. [2| for different values
of ag. After an initial fast decay, when the variables
stabilize from the initial conditions to the oscillatory
state (as shown in the next section), the exponential
decay is achieved. This decay is clearly seen in the
semi-logarithmic graph (right). Here, after a certain time
(in this example it depends on the value of a), all the lines
become straight.

4.3. Parameric study. We complete the numerical
experiments with a parametric study depending on
parameter J (which corresponds to the equilibrated
inertia). The simulation is done using the same parameters
as in the previous case, with ¢y = 10. In Fig. 3| we
show the evolution of the energy (top) and the evolution
of the H'-norm of variable ¢ (bottom). The nature of
the equation for the evolution of ¢ (second order in time)
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Fig. 2. Exponential decay of the energy for different values
of aop.

produces oscillations as time evolves. The amplitude
and frequency of these oscillations are affected by the
parameter J, but the energy depends on the mean value
of the oscillations.

5. Conclusions

In this work, we studied, from the numerical point of view,
a new two-temperature thermoelastic model, including
the so-called microtemperatures, which was recently
introduced by Ferndndez and Quintanilla (2021a). The
approximations were obtained by using the finite element
method for the spatial variable and the implicit Euler
scheme for the time discretization, although the coupling
among the inductive and usual thermal variables required
the use of piecewise constant functions. An a pri-

0.12
J=1
............. J=10
——m T =100
0.1F S J = 1000
0.08

0 5 10 15 20 25 30 35 40
t
0.01
A J=1
00091 /] N R —— =T =100
- i A —mme J = 1000

Fig. 3. Different behaviours of the discrete energy (top) and the
solution (bottom) depending on J.

ori error analysis was provided, obtaining the linear
convergence with respect to the time step and mesh size
under adequate regularity conditions. Some numerical
simulations were presented to demonstrate the accuracy
of the approximation (first example), the behavior of the
discrete energy for different values of the constitutive
coefficient ag (second example) and the dependence of
the solution on the porosity function (third example). In
particular, it is worth noting how the energy rate varies
when the equilibrated inertia increases, maybe due to the
oscillations of the porosity.

Even if we had used the well-known implicit
Euler scheme for the time discretization, another time
discretization scheme, such as the Crank—Nicolson
method, could have been applied. We note that the a pri-
ori error analysis should be modified accordingly.
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Table 1. Numerical errors for different values of h and k.

hlik— [5x102 1x102 5x10% 1x107% 5x107* 1x10%* 5x107°
1x10~1 | 0.106101 0.114777 0.117589 0.120745 0.121229 0.121641 0.121695
5x 1072 | 0.033437 0.034783 0.035505 0.036322 0.036450 0.036561 0.036575
2 x 1072 | 0.013247 0.009044 0.008995 0.009089 0.009111 0.009130 0.009133
1x 1072 | 0.010828 0.004392 0.003947 0.003806 0.003806 0.003808 0.003809
5x 1073 | 0.010043 0.002852 0.002138 0.001784 0.001769 0.001763 0.001762
2 x 1073 | 0.009671 0.002174 0.001303 0.000739 0.000681 0.000659 0.000674

Finally, although undoubtedly this is a theoretical
numerical analysis, we think that there will be real-world
applications which will can be simulated with this type
of models; however, we also recognize that there is a
need to obtain experimentally the numerous constitutive
coefficients. Anyway, this two-temperature theory is
really new and, from our point of view, it will gain a great
interest over the next years.
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