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Unmanned underwater vehicles are typically deployed in deep sea environments, which present unique working conditions.
Lithium-ion power batteries are crucial for powering underwater vehicles, and it is vital to accurately predict their remaining
useful life (RUL) to maintain system reliability and safety. We propose a residual life prediction model framework based on
complete ensemble empirical mode decomposition with an adaptive noise-temporal convolutional net (CEEMDAN-TCN),
which utilizes dilated causal convolutions to improve the model’s ability to capture local capacity regeneration and enhance
the overall prediction accuracy. CEEMDAN is employed to denoise the data and prevent RUL prediction errors caused
by local regeneration, and feature expansion is utilized to extend the temporal dimension of the original data. The NASA
and CALCE battery capacity datasets are used as input to train the network framework. The output is the current predicted
residual capacity, which is compared with the real residual battery capacity. The MAE, RMSE and RE are used as the
evaluation indexes of the RUL prediction performance. The proposed network model is verified on the NASA and CACLE
datasets. The evaluation results show that our method has better life prediction performance. At the same time, it is proved
that both feature expansion and modal decomposition can improve the generalization ability of the model, which is very
useful in industrial scenarios.

Keywords: lithium-ion battery, remaining useful life, complete EEMD with adaptive noise, temporal convolutional net.

1. Introduction

Unmanned underwater vehicles (UUVs) are increasingly
being utilized in marine engineering projects as a pivotal
instrument for human cognition and ocean exploration,
particularly in deep sea environments. Effective operation
of UUVs necessitates a power source with the requisite
levels of stability and endurance.

Lithium-ion batteries have emerged as the
predominant power source for underwater robots,
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owing to their exceptional features such as high power,
capacity, and energy density, as well as their ability to
avoid memory effects, exhibit low self-discharge rates,
and sustain long recyclable lifetimes. The performance
of lithium-ion batteries will be decreased as the battery
is continually cycled due to obstruction of its internal
diaphragm, which results in a steady loss in its capacity
and increases the risk of failure or fire (Hong et al., 2022).

As a result, it has become critically important to
predict the remaining useful life (RUL) of Li-ion batteries
with precision, to ensure secure and stable operation of
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energy storage systems. A thorough understanding of
the factors that influence the RUL of such batteries can
significantly enhance the reliability and safety of UUVs
and other underwater robotic systems.

Currently, there are two main methods for predicting
the remaining useful life of lithium-ion batteries:
model-driven and data-driven approaches (Cao et al.,
2021). The former predict battery RUL by constructing
a model of the battery capacity decline. This method is
well-established and has reached a relatively mature stage
of development (Seybold et al., 2015). In contrast, the
latter approaches do not require a complex battery model,
but instead investigate the relationship between external
parameters and internal states to infer the battery RUL.

Owing to its robust feature extraction and nonlinear
trend approximation capabilities, a family of neural
networks have been widely employed in the domain of the
RUL prediction. As RUL primarily entails a regression
problem involving time series data, the innate capacity
of a model to effectively learn temporal information is
vital to its predictive performance (Ye and Dai, 2018).
Recently, recurrent neural networks (RNNs) and their
various derivatives (e.g., LSTM, GRU, etc.) have
gained prominence in the field of prognostics and health
management (PHM) due to their ability to fully leverage
temporal information.

To develop a lifetime prediction model for
lithium-ion batteries, Park et al. (2020) integrated
the long short-term memory (LSTM) technique with
multiple measured data types, including voltage,
current, temperature, and charging curve. Li et al.
(2019) employed a long short-term memory recurrent
neural network (LSTM-RNN) to uncover the long-term
dependence of lithium-ion battery capacity degradation.
Addressing the issue of capacity regeneration during the
lithium battery life decline, Zhang et al. (2018) combined
empirical mode decomposition (EMD) with LSTM and
Elman neural networks. They utilized the EMD method
to decompose battery capacity sequences into intrinsic
mode functions (IMFs), and constructed low-frequency
and high-frequency prediction models for capacity
data. To tackle the time series prediction challenge,
Bai et al. (2018) introduced a temporal convolutional
network (TCN) algorithm, demonstrating its superior
performance over traditional recursive architectures
such as LSTM and RNNs. In an effort to mitigate the
RUL prediction errors caused by local regeneration,
Zhou and Huang (2016) proposed a prediction model
based on the TCN and employed the EMD technique
for data denoising, resulting in a model with minimal
starting point dependence, high prediction accuracy, and
robustness.

The conventional EMD algorithm is prone to
modal confusion during the smoothing process, hindering
accurate battery lifetime predictions based on capacity

degradation rates. In contrast, the complete ensemble
EMD with adaptive noise (CEEMDAN) algorithm
incorporates white noise’s IMF components into each
decomposition. To extract complex sequence fluctuation
patterns, the added noise’s IMF component is gradually
diminished, simultaneously reducing residual noise in the
intrinsic modal components. This effectively lowers the
reconstruction error, enhances decomposition, and yields
improved prediction outcomes. Upon extensive testing
and analysis, the TCN model outperforms the LSTM and
GRU baseline models in terms of prediction accuracy
and resilience, demonstrating its potential to capture local
regeneration phenomena in RUL prediction.

The main contribution of the study can be attributed
to the following three aspects:

1. Based on the TCN network, this paper proposes a
convolutional network structure for time series to
improve the accuracy of time series.

2. At present, the combination of RNNs or multiple
traditional models is commonly used to reduce the
rebound effect of battery capacity. This paper
proposes a new improvement idea, which can more
effectively solve the influence of this phenomenon on
battery RUL prediction and improve the robustness
of the model.

3. Combined with CEEMDAN, the global degradation
and local regeneration of battery capacity are
separated, and this process mitigates the influence of
the original data’s volatile components and extends
the training set sample features by increasing the
sample count in the feature dimension based on the
original time series dimension, which improves the
prediction accuracy of the TCN model of lithium-ion
battery RUL.

2. Capacity degradation dataset
2.1. RUL prediction results and analysis.

2.1.1. RUL definition. The remaining useful life
predictor is an essential tool for battery risk notification
(Zhou et al., 2020). The state of health (SOH) of a
battery is a health indicator of battery ageing, representing
the battery’s condition during each charge-discharge cycle
(Park et al., 2020). RUL is defined as the capacity ratio

SOH =
Ct

C0
× 100%, (1)

where C0 denotes the rated capacity and Ct stands for the
measured capacity of cycle t.

The capacity of a battery decreases with increased
charging and discharging. The end of life (EOL), which is
closely related to a battery’s capacity (Chen et al., 2022),
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Fig. 1. Example of RUL prediction.

is characterized as the time when the battery’s remaining
capacity reaches 70–80% of its initial capacity. Figure 1
illustrates an RUL prediction.

2.2. Dataset.

2.2.1. NASA dataset. The National Aeronautics and
Space Administration (NASA) provided an open dataset
of lithium-ion batteries for this study, and four groups of
batteries labeled B0005, B0006, B0007, and B0018 were
selected as the research objects (Saha and Goebel, 2007).

The charging process was conducted at a constant
voltage of 4.2 V until the battery voltage reached 1.5 V, at
which point the charging current was reduced to 20 mA
(Ren et al., 2018). The batteries were tested at a
temperature of 24◦C. Batteries B0005, B0006, B0007 and
B0018 were discharged using a continuous current mode
of 2 A until their voltages fell to 2.7 V, 2.5 V, 2.2 V and
2.5 V, respectively. A battery was considered to have
reached the end of its useful life when its rated capacity
fell to 30% of its initial capacity or when it reached a
capacity between 2 Ah and 1.4 Ah.

Figure 2 illustrates the variation in battery capacity
for the four groups of batteries with respect to the number
of charging and discharging cycles. Detailed information
on the NASA batteries is presented in Table 1.

2.2.2. CALCE dataset. For this study, four batteries
were selected from the battery cycle test dataset (CALCE)
of the Advanced Life Cycle Engineering Center at
the University of Maryland, namely, CS2 35, CS2 36,
CS2 37 and CS2 38 (Pecht, 2017).

The battery voltage was charged in a constant current
mode of 1 C until it reached 4.2 V, while the testing
temperature was 1◦C. Once the charging current reached
50 mA, the battery was charged in constant voltage
mode. The battery voltage was discharged in continuous

Fig. 2. NASA dataset battery capacity degradation curve.

current mode at 1 C until it reached 2.7 V. A battery was
considered to have reached the end of its useful life when
its rated capacity reduced to 30% of its initial capacity,
ranging from 1.1 Ah to 0.77 Ah.

Figure 3 depicts the battery capacity degradation
curve for the four selected batteries as they approached
the end of their useful life. Detailed information on the
CALCE batteries is presented in Table 2.

3. Basic theories and methods
3.1. CEEMDAN. Huang et al. (1998) proposed
an adaptive signal time-frequency processing method
known as empirical mode decomposition (EMD), which
decomposes signals based on their intrinsic time scale
without the need for any pre-set basis functions (Cao
et al., 2019).

Despite the advantages of EMD in handling
nonstationary and nonlinear signals, it still suffers from
the problem of “mode mixing.” Mode mixing refers to
the presence of oscillations with similar amplitudes across
modes, or vice versa. The ensemble empirical mode
decomposition (EEMD) algorithm effectively reduces
mode mixing in the EMD algorithm by incorporating
Gaussian white noise into the data (Wu and Huang,
2009). However, after signal reconstruction, the EEMD
method cannot completely eliminate Gaussian white
noise, resulting in reconstruction errors.

Building on EMD and EEMD methods, the
CEEMDAN theory was developed, which successfully
addresses the issues of mode aliasing, incomplete
decomposition, and significant reconstruction errors. It
offers the benefits of fast operation speed, a good
mode spectrum separation effect, and small reconstruction
errors (Torres et al., 2011; Huang et al., 1998) and is
frequently used for non-stationary and nonlinear data
processing. The specific steps of CEEMDAN are as
follows:
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Table 1. Parameters for the NASA lithium-ion batteries.

Battery
Test

temperature
Minimal

charge current
Constant

discharge current
Initial/cut-off
rated capacity

Charge/discharge
cut-off voltage

B0005 24 ◦C 20 mA 2 A 2 Ah/1.4 Ah 4.2 V/2.7 V
B0006 24 ◦C 20 mA 2 A 2 Ah/1.4 Ah 4.2 V/2.5 V
B0007 24 ◦C 20 mA 2 A 2 Ah/1.4 Ah 4.2 V/2.2 V
B0018 24 ◦C 20 mA 2 A 2 Ah/1.4 Ah 4.2 V/2.5 V

Table 2. Parameters for the CALCE lithium-ion batteries.

Battery
Test

temperature
Minimal

charge current
Constant

discharge current
Initial/cut-off
rated capacity

Charge/discharge
cut-off voltage

CS2 35 1◦C 50 mA 1 C 1.1 Ah/0.77 Ah 4.2 V/2.7 V
CS2 36 1◦C 50 mA 1 C 1.1 Ah/0.77 Ah 4.2 V/2.7 V
CS2 37 1◦C 50 mA 1 C 1.1 Ah/0.77 Ah 4.2 V/2.7 V
CS2 38 1◦C 50 mA 1 C 1.1 Ah/0.77 Ah 4.2 V/2.7 V

Step 1. Adding white Gaussian noise ε0ωi(t) with the
initial amplitude of ε0 to the Lithium-ion battery capacity
sequence S(t), Si(t) = S(t) + ε0ωi(t), (i = 1, 2, . . . , I)
can be obtained; using EMD to decompose Si(t) to get
i modal components IMFi

1 in the first stage, and take the
average value of IMF1 to get the first modal component
IMF1 as

IMF1 =
1

I

I∑

i=1

IMFi
1. (2)

Step 2. Calculate the first residual as

R1(t) = Si(t)− IMF1. (3)

Step 3. Use Ek(·) to represent the k-th modal component
obtained after EMD processing, and decompose the
signal R1(t) + ε1E1 (ωi(t)) to obtain the second modal
component as

IMF2 =
1

I

I∑

i=1

E1 (R1(t) + ε1E1 (ωi(t))) . (4)

Step 4. For k = 1, 2, . . . , n, calculate the k-th

residual as

Rk(t) = Rk−1(t)− IMFk. (5)

Step 5. The signal Rk(t) + εkEk (ωi(t)) is decomposed
and the (k + 10)-th modal component is

IMFk+1 =
1

I

I∑

i=1

E1 (Rk(t) + εkEk (ωi(t))) . (6)

Step 6. Steps 4 and 5 is repeated until the final Rn(t)
cannot be decomposed, and the final residual is obtained
as

Rn(t) = Si(t)−
n∑

k=1

IMFk, (7)

where n is the total number of modal components.

Fig. 3. CALCE dataset battery capacity degradation curve.

3.2. Temporal convolutional network (TCN). The
temporal convolutional network (Bai et al., 2018), which
is a descendant of the convolutional neural network
(CNN), is made up of 1D convolutional layers with
inflated causality and the identical input and output
lengths. It is well suited for processing time series data.
In order to fulfill the two conditions for processing timing
issues the following is performed:

(a) The network begins predicting with the input
x0, . . . , xt, and outputs y0, . . . , yt of the same size;
x represents the data on lithium battery capacity, and
y represents the projected lithium battery capacity.

(b) Temporal prediction necessitates that the forecast of
yt at time t can only be assessed by the input of x1 to
xt−1 before time t.

The temporal convolutional network (TCN) is
primarily composed of three core components (Li et al.,
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2023): causal convolution dilated convolution, and a
residual block.

Causal convolution. To overcome the issue of potential
data leakage in battery capacity predictions, the TCN
incorporates causal convolutions as shown in Fig. 4. This
approach ensures that only past data prior to the prediction
time t are utilized in generating predictions, as captured
by the following formula for causal convolution:

P (xt) =
T∏

t=1

P (xt | x1, x2, . . . , xt−1) . (8)

Here P (xt) denotes the estimated probability while T
represents the total duration or number of moments under
consideration.

Dilated convolution. Using only causal convolution for
historical capacity data in the TCN leads to an increase
in the network depth. To address this issue, the TCN
employs dilation convolution, which enables the model to
capture dependencies across longer input sequences.

The TCN convolution operation is based on
one-dimensional convolution, with dilation allowing
convolution of input interval sampling. The sampling rate
is controlled by parameter d, as shown in Fig. 5.

As the dilation level d increases, the range of
expansion grows, resulting in an exponential increase in
the effective window size as layers are added. By using
fewer convolution layers, the network can achieve a large
receptive field

d = 2i, (9)

where i is the number of layers of the network.
Dilated convolution is calculated as

F (xt) =

k−1∑

i=0

f(i)xt−di , (10)

where F (xt) represents the network output resulting from
the dilated convolution process, while k signifies the
filter’s dimensions. Furthermore, f(i) denotes the filtering
operation being conducted, and t − di implies that the

ytyt-1. . .

xtxt-1xt-2. . .

Input

Output

Hidden Layer

d=4

d=2

d=1

Hidden Layer

x1 x2 x3 xt-3

Fig. 5. Dilated convolution.

convolution operation is solely applicable to previous
input data.

Residual block. In the TCN, residual connections are
employed in place of convolutional layers, enabling the
transfer of experimental data across layers. Figure 6
illustrates a residual block (He et al., 2016), which
consists of two layers built of a convolution and
a nonlinear mapping, with additional regularization
networks, such as WeightNorm (Salimans and Kingma,
2016) and Dropout (Srivastava et al., 2014), connected to
each layer to enhance the generalization capability of the
TCN structure.

The use of residual blocks can prevent the
degradation of performance and gradient disappearance
resulting from an increase in the network depth. By
facilitating the flow of information through the network,
residual connections improve the TCN ability to learn
from long input sequences

It is obvious that the simple TCN layer connection
has been replaced by the residual structure,

O = Activation(x+ F (x)). (11)

As the number of channels between x and F (x) might not
be the same, a 1 × 1 Conv1 was developed to perform a
simple transformation on x so that the modified version of
x and F (x) can be added (Bai et al., 2018).

The TCN offer several advantages, including the
following:

(i) Parallel processing. The TCN can process data
in parallel rather than sequentially, resulting in faster
computations.

(ii) Flexible receptive field. The receptive field of a
temporal convolutional network is dictated by factors
such as the quantity of layers, the dimensions of the
convolution kernel, and the dilation coefficient. These
parameters can be tailored to suit specific requirements
and limitations in diverse contexts.

(iii) Stable gradients. Unlike the recurrent neural network
(RNN), the TCNs suffer less from the issue of gradient
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vanishing or exploding, making them more reliable in
training and optimization.

(iv) Memory efficiency. When RNNs are employed,
information from each time step must be stored, leading
to high memory consumption. However, in the TCNs, the
convolution kernel is shared across one layer, resulting in
lower memory usage.

4. RUL prediction results and analysis
4.1. Analysis of the capacity sequence decomposi-
tion results of the CEEMDAN lithium-ion batteries.
In this study, the capacity signal of lithium-ion batteries
was decomposed into multiple intrinsic mode function
(IMF) signals and a residual signal (Res), with frequencies
arranged in descending order. Specifically, we utilized
four groups of battery capacity attenuation data from the
NASA and CALCE datasets. Figures 8 and 9 display
the decomposition results of the battery capacity data and
the resulting instantaneous frequencies of all IMFs, using
batteries B0006 and CS2 35 as examples.

Figure 10 illustrates the results of using the
CEEMDAN method for modal decomposition and data
dimension expansion. It can be seen that the number
of feature samples expands to four times the number
of original data samples. By giving more diversity and
flexibility to the model through data expansion, model
generalization is improved, more data are used to train the
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Fig. 7. Temporal convolutional network.

model, and the accuracy of the model in the prediction is
improved.

The results show that the CS2 35 battery capacity
mode decomposes into seven IMF components and
one residual signal, while the B0006 battery capacity
mode only decomposes into four IMF components
and one residual signal. The components are
arranged in descending order of instantaneous frequency,
with the residual signal after decomposition removing
interference from the capacity rebound phenomenon.
This significantly reduces the negative effects of residual
noise generation during the decline in the lithium-ion
battery capacity, improving the reliability of battery life
prediction.

However, signal decomposition may lead to some
loss of original data, and using only the decomposed
signals for training may result in inaccurate prediction
results due to the inclusion of both real data information
and noise. To address this issue, CEEMDAN mode
decomposition was performed on the original data training
and testing sets based on reconstructed signals, extending
the sample characteristics of the training set to increase
the feature dimension sample size while maintaining the
original time series dimension. This approach helped us
to enhance the prediction fitting precision of the neural
network model.

4.2. Model prediction process design. CEEMDAN
was employed to decompose the electric capacity data of
all four battery groups into N components, denoted as
IMFi. The first two high-frequency components were then
averaged and combined with the last trend component for
data reconstruction.

One set of the reconstructed data was selected for
analysis, while the remaining data were used as the
training and validation sets. CEEMDAN was applied
simultaneously to the training and validation sets, and the
reconstructed data were added as a feature dimension to
expand the dataset.

The expanded training and validation sets were used
to fit the TCN network, and the neural network model was
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Fig. 8. Modal components of B0006 battery capacity decomposition (a) and instantaneous frequency (b).

(a) (b)

Fig. 9. Modal components of CS2 35 battery capacity decomposition (a) and instantaneous frequency (b).
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(a) (b)

Fig. 10. Datasets extension rendering based on the CEEMDAN method: NASA datasets (a), CALCE datasets (b).

established and utilized for prediction. The performance
of the prediction model was evaluated using actual data,
which served as the evaluation criterion.

4.3. Model evaluation. In order to comprehensively
analyze the effectiveness of the selected method, the mean
absolute error (MAE), relative error (RE) and root mean
square error (RMSE) are selected as model evaluation
indexes in this paper, and the calculation formula are as
follows:

MAE =
1

n

n∑

t=1

|Ct − Ĉt|, (12)

RMSE =

√√√√ 1

n

n∑

t=1

(
Ct − Ĉt

)2

, (13)

RE =
|RULpred − RULture |

RULture , (14)

where the initial battery capacity value is indicated by
Ct, the expected value is denoted by Ĉt. The expected
remaining useful life is represented by RULpred, while
the true remaining useful life is represented by RULtrue.
The accuracy of RUL prediction increases when the
MAE, RMSE, and RE approach zero. The outcomes are
displayed in Algorithm 1.

Four network models, namely, the
CEEMDAN-TCN, EMD-TCN, TCN, and LSTM,

were employed in this study to predict the RUL of
the NASA and CALCE datasets. Table 3 presents the
prediction evaluation metrics for each model on the
NASA dataset; in the case of B0006 battery, the MAE is
reduced to 0.0689, the RMSE is reduced to 0.0828, and
the RE is reduced to 0.0526. Table 4 shows the evaluation
metrics for each model on the CALCE dataset.

Figures 12, 13 and 14 show how the LSTM,
EMD-TCN and our approach fit the NASA and CALCE
datasets. The results demonstrate that our method has
a significantly better fitting influence than LSTM and
EMD-TCN.

Comparing the prediction performance of the LSTM,
TCN and EMD-TCN models on the NASA and CALCE
datasets in Tables 3 and 4, we observe that the TCN
model has a slight advantage over the LSTM in terms of
accuracy. This demonstrates the superiority of the TCN in
processing time-series battery data.

In terms of combining methods, the prediction
error of the neural network model after CEEMDAN
decomposition is lower than that of the single neural
network model. The MAE, RMSE and RE error indicators
are also superior to those of the single neural network
model. To make the results more discernible, the basic
parameters of the model used were configured as follows:
number of iterations: 1000, size of the kernel: 3 × 1,
Input channel: 1, Output channel: 10, Optimizer: Adam.
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Algorithm 1. Proposed RUL prediction model.
Require: Extract battery capacity decay data, x; divide

these datasets into training and testing sets.
Ensure: RUL prediction curves and evaluation index

results.
1: Input battery capacity attenuation data set x.
2: Use IMF1 = 1

I

∑I
i=1 IMFi

1 to get n modal
components IMFi by CEEMDAN decomposition.

3: Use IMFi to reconstruct datasets after data expansion.

4: Obtain output of the final battery capacity prediction
data y processed by the TCN activation.

5: Calculate the RMSE, MAE, RE.
6: return RUL.

The performance of RUL prediction for all combined
techniques on B0006 and CS2 35 is shown in Fig. 15. The
experimental results show how well the CEEMDAN-TCN
proposed in this study predicts the RUL of batteries
and how highly accurate the prediction results are
in comparison with a single model. The evaluation
indicators demonstrate that our suggested model can make
predictions that are more accurate. The NASA datasets
show that the MAE and RMSE for the RUL of lithium-ion
batteries are both below 0.0689 and 0.0828. The MAE and
RMSE in the CALCE datasets are both below 0.0559 and
0.0736, respectively. The results show that our method’s
predictive performance is significantly greater and has
stronger robustness when compared with a single neural
network, suggesting that both feature extension and modal
decomposition can improve model generalization.

5. Conclusions
In recent years, there has been growing interest in the
prediction and health management (PHM) of lithium-ion
batteries, where remaining useful life prediction is a
critical means to ensure system security. Providing
accurate RUL predictions is crucial for maintaining
system reliability and safety.

Due to capacity regeneration and other objective
factors, the original battery data are frequently noisy. In
addition, the precipitation of lithium metal on the surface
of the negative electrode results in a nonlinear decline in
the lithium-ion battery capacity, which has an impact on
the battery capacity reduction’s ability to learn. The data
can be expanded and the noise of the battery data can
be reduced using CEEMDAN decomposition, which also
helps the model perform better. The data can be increased
to four times its original amount.

The TCN has a flexible receptive field that can be
adjusted based on the number of layers, the size of
the convolutional kernel, and the expansion coefficient
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Leave a evaluation

Capacity Sequence 
CEEMDAN 

Decomposition

IMF1 IMF2 ...

Refactoring Data

New Battery Datasets

TCN Prediction Model

Battery RUL

MAE RMSE RE

Model Evaluation

IMF3 IMFn

Fig. 11. Technology roadmap.

to accommodate various task-specific characteristics.
Although recurrent neural network architectures are still
commonly used in deep learning for sequence modeling,
empirical evidence has demonstrated that the TCN can
surpass these models in many tasks in terms of the
predicted performance and efficiency.

A CEEMDAN-TCN framework for predicting the
remaining useful life of lithium-ion batteries based on
empirical modal decomposition and machine learning
algorithms was proposed. Battery capacity was
selected as the health indicator, and each fluctuation
component of the battery capacity sequence data was
decomposed using the CEEMDAN method to calculate
their interpretation degree to the original data for
integration and reconstruction. Feature dimensions are
added to the time dimension of the original data to realize
data expansion. The TCN model is then employed to
predict the remaining service life of lithium-ion batteries.
The validity of the proposed model is verified using the
NASA and CALCE dataset collections, and the results
show that the CEEMDAN-TCN framework is effective in
predicting the RUL of lithium-ion batteries.

However, although our proposed network model is
successful in the experiments of the existing NASA and
CALCE datasets, there are still more possibilities to
explore. We look forward to using more lithium battery
data in a real environment to verify this method, which
also requires more resources and hardware support. In the
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Table 3. NASA prediction and evaluation index results.
Battery number Neural network model MAE RMSE RE

B0005

LSTM
TCN

EMD-TCN
Our approach

0.0750
0.0570
0.0547
0.0513

0.0876
0.0695
0.0685
0.0617

0.2609
0.2065
0.1236
0.0326

B0006

LSTM
TCN

EMD-TCN
Our approach

0.2623
0.1129
0.1037
0.0689

0.2812
0.1332
0.1289
0.0828

1.0000
0.1437
0.1711
0.0526

B0007

LSTM
TCN

EMD-TCN
Our approach

0.1314
0.955

0.0711
0.0506

0.1391
0.1089
0.0908
0.0654

0.5474
0.4808
0.3942
0.2044

B0018

LSTM
TCN

EMD-TCN
Our approach

0.0305
0.0740
0.0549
0.0478

0.0362
0.0892
0.0681
0.0612

0.0620
0.2188
0.0938
0.0156

Table 4. CALCE prediction and evaluation index results.
Battery number Neural network model MAE RMSE RE

CS2 35

LSTM
TCN

EMD-TCN
Our approach

0.0746
0.0713
0.0467
0.0393

0.1010
0.0904
0.0603
0.0499

0.1638
0.1207
0.0039
0.1090

CS2 36

LSTM
TCN

EMD-TCN
Our approach

0.1327
0.0962
0.0882
0.0536

0.1684
0.1267
0.1113
0.0736

0.1744
0.1703
0.1670
0.1331

CS2 37

LSTM
TCN

EMD-TCN
Our approach

0.0293
0.0694
0.0311
0.0270

0.0347
0.0844
0.0392
0.0352

0.0169
0.1816
0.0529
0.0894

CS2 38

LSTM
TCN

EMD-TCN
Our approach

0.0721
0.0685
0.0700
0.0559

0.0797
0.0651
0.0906
0.0538

0.1061
0.0738
0.1563
0.0673

future research, we will also consider further prediction
of the number of battery life cycles and the state of
charge of the battery to improve the prediction accuracy
and performance of the overall algorithm model under
different conditions.
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