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This work proposes a convex cooperative control scheme for a multiagent system of differential mobile robots in a leader–
follower formation. First, the kinematic model of the differential robots is obtained in a linear parameter varying represen-
tation. Next, a reference model approach is considered to track the desired trajectory. The paper’s contribution is then to
derive conditions to guarantee the convergence of the convex controller, which is achieved using a non-quadratic Lyapunov
function. Subsequently, this control law is integrated into the agent that leads a distributed control protocol based on graph
theory designed to reach the consensus of the followers. Simulations of five mobile robots are performed to illustrate the
effectiveness of the proposed method.
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1. Introduction
The consensus problem of multiagent systems (MASs)
has been a topic of interest in recent decades due to
its potential applications in industry, aeronautics, and
search and rescue. An example was seen recently during
the Tokyo Olympics, where 1800 aerial drones were
synchronized to form the earth’s surface. Consensus
is a distributed protocol that is related to synchronizing
each agent of a network topology by converging its states
with those of neighboring agents (Lewis et al., 2013).
The consensus state can depend on the interest of all
agents (leaderless consensus) or be given by one or
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multiple agents (leader–follower consensus). Leaderless
and leader-following consensus protocols for MASs can
be found in the work of Liu et al. (2020), Zhang et al.
(2021), Ai and Wang (2021), Ahmed et al. (2023) or Gong
et al. (2023).

Regarding the leader-following consensus, some
works in the field of MASs have recently been
reported. For instance, Ollervides-Vazquez et al. (2020)
propose a formation control for multiple unmanned
aerial vehicles using a sectorial fuzzy controller validated
with real experiments on a Parrot ARDrone. Yao
et al. (2022) dedicated their work to solving the
three-dimensional formation problem for multiple aerial
robots in environments with obstacles. González-Sierra
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et al. (2021) focused on developing ground vehicle
formations for precise trajectory tracking. Furthermore,
Zhang et al. (2022) delved into cooperative attitude
control within satellite arrays, further enriching the
field. Ahsan Razaq et al. (2020) advanced the field
by presenting a robust H∞ leader-based consensus
framework capable of rejecting external disturbances and
adapting to a switching topology. Complementing this,
Rehan et al. (2019) and Razaq et al. (2023) proposed an
innovative approach for observer-based leader-following
consensus control, addressing challenges related to input
saturation. For a more comprehensive and in-depth
exploration of these contributions, interested readers may
refer to the recent survey by Amirkhani and Barshooi
(2022). In the scope of our work, we focus on a group
of differential-drive robots in a leader–follower consensus
context. These robots exhibit nonholonomic properties
and nonlinear kinematics, adding to the complexity of the
multi-agent system.

The collaborative control for differential-drive robots
has received attention recently since each robot in
the system must autonomously control its velocity and
orientation to reach a consensus among all the robots.
Some methods used in the literature to achieve this
are mentioned next. In the work of Abdulwahhab
and Abbas (2018), a fractional-order state feedback
controller is designed for trajectory tracking. Dian et al.
(2019) investigated the trajectory tracking problem for
nonholonomic systems with uncertainties using fuzzy
and sliding mode techniques, obtaining a robust adaptive
controller. González-Sierra et al. (2021) focused on
control strategies for trajectory tracking based on an
extended kinematic model and an observer that predicts
the attitudes of each robot of the MAS. In the work of
Manoharan and Chiu (2019), a consensus-based control
tracks dynamic trajectories for differential robots. A
distributed control law for a leader–follower formation
is used by Miao et al. (2018). Moreno-Valenzuela
et al. (2022) propose a saturated proportional-integral (PI)
controller that provides robustness against disturbances
with bounded control signals for a differential robot
system to follow a defined trajectory. In the work of
Nuno et al. (2020), a proportional controller affected by
communication delays while each robot seeks to reach
a desired position and orientation is presented. Wu
et al. (2018) design an observer-based controller for a
leader–follower formation of two-wheeled robots to avoid
obstacles. It is important to note that a critical part of
the consensus is controlling the leader robot, as the leader
error is transferred to the followers, and most approaches
consider linear controllers for this task. However, a
more precise leader controller would improve the overall
performance.

Controllers based on convex linear parameter varying
(LPV) models can improve the leader’s performance.

These models comprise a set of local linear models
interpolated by scheduling functions. The main
advantage of LPV system representations is that
powerful linear tools, such as linear matrix inequalities
(LMIs), can be used to design controllers for nonlinear
systems without the need to handle pure nonlinear
models (with their associated complexity) in the design
stage. Few works in the literature consider an
LPV-based controller approach applied to MASs. For
example, Attallah and Werner (2020) proposed an
event-triggered formation control for nonholonomic MAS
by modeling the dynamics of unicycle robots with an
LPV approach. In the work of Saadabadi and Werner
(2021), an event-triggered distributed control strategy for
a homogeneous nonholonomic MAS is proposed, leading
to a set of LMIs that guarantee the controller performance.
Subiantoro et al. (2020) proposed a distributed LPV
model predictive controller for the consensus of a group of
mobile robots. In the work of Zakwan and Ahmed (2019),
a distributed output feedback control of four differential
mobile robots is presented where Lyapunov–Krasovskii
functionals were considered to formulate the controller
solution regarding LMIs. Recently, Moradi et al. (2022)
proposed a switching distributed LPV controller for the
consensus of LPV multiagent systems applied to a vertical
take-off and landing helicopter. Zhu and Tan (2023)
introduced an unknown input LPV observer to realize the
MAS consensus; however, only a numerical example was
considered to validate the method. Although there have
been some contributions, the issue remains unresolved,
especially for nonholonomic systems, where challenges
of uncontrollability persist due to their nonlinear nature.

This work proposes a control strategy that comprises
a convex quasi-LPV (qLPV) controller for the leading
robot and a MAS distributed control strategy to achieve a
consensus among the following robots using graph theory.
The first contribution is related to the design of the leader
controller, which is based on a reference model of the
path following error that splits the controllable and the
uncontrollable part. The former is rewritten by hiding
the nonlinear terms on the scheduling functions; as a
result, a controllable convex qLPV model is obtained.
Then, a non-quadratic Lyapunov function is considered
to derive a set of feasible linear matrix inequalities
that guarantee the performance and convergence of the
controller. Second, this control law is integrated into
the agent that leads a distributed control protocol based
on graph theory designed to reach the consensus of the
followers. The goal is for all followers to reach a
consensus considering only the information provided by
their neighbors. Finally, simulations are performed in a
virtual environment developed in Matlab to illustrate the
method’s effectiveness.

The rest of the paper is organized as follows:
Section 2 provides a summary of graph theory and
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convex models; Section 3 presents problem formulation;
Section 4 is devoted to the convex model derivation
of the differential robot and the convex state feedback
control law design for the leader agent; Section 5 develops
the distributed control protocol of the follower agents;
Section 6 shows the results obtained from a numerical
example of both the leader and the followers; finally,
Section 7 includes the conclusions and outlines future
work.

2. Preliminaries
2.1. Graph theory. Graph theory is used to illustrate
the communication and information among the agents.
A graph is defined by the pair Ḡ = (R̄, Ē), where
R̄ = {r0, r1, . . . , rN} is the group of N + 1 nodes and
Ē ⊆ (R̄ × R̄) is a group of edges. Ē is composed
of elements (ri, rj) representing the connection between
nodes ri and rj . Ḡ can be represented by an associated
matrix W = [aij ] with weights aij > 0 if (rj , ri) ∈ Ē,
aij = 0 otherwise, and aii = 0. The weighted in-degree
of node ri is the sum of the elements of the i-th row
of W : di =

∑N
j=1 aij , and the diagonal matrix of the

graph is D = diag{di}. We define the Laplacian matrix
L = D − W . Furthermore, it is necessary to define a
diagonal matrix M = diag{m1,m2, . . . ,mn} called the
leading adjacency matrix with mi ≥ 0 for any i. If the
leader is a neighbor of node ri, then mi > 0; otherwise,
mi = 0.

2.2. Convex representation. Given a nonlinear
system ẋ(t) = f(x(t))+g(x(t))u(t), y(t) = s(x(t)), it is
possible to represent it as a convex Takagi–Sugeno system
as follows (Lendek et al., 2011; Bernal et al., 2019):

ẋ(t) =

l∑

i=1

ρi(ζ(t))(Aix(t) +Biu(t)),

y(t) =

l∑

i=1

ρi(ζ(t))(Cix(t)),

(1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

l is
the input vector, y(t) ∈ R

q is the output vector and
ζ(t) =

[
ζ1(t) ζ2(t) . . . ζp(t)

]T ∈ R
p is the vector

of bounded functions that encompass the nonlinearities
of the system. Ai ∈ R

n×n, Bi ∈ R
n×l and Ci ∈

R
q×n are constant matrices, ρi(ζ(t)) are the membership

functions that must comply with the convex sum property
∑l

i=1 ρi(ζ(t)) = 1 and ρi(ζ(t)) ≥ 0, ∀i = 1, . . . , l,
which are defined as follows:

ρi(ζ(t)) =

p∏

j=1

δij(ζj(t)), (2)

Convex
Controller

������
��	�


Distributed
Control

Robot N

Robot �

Fig. 1. Collaborative control scheme composed of a convex and
a distributed controller.

where δij(ζj(t)) is ηj0(ζj(t)) or ηj1(ζj(t))

ηj0((ζj(t)) =
ζj − ζj(t)

ζj − ζj
,

ηj1((ζj(t)) = 1− ηj0((ζj(t)),

(3)

with ζj(t) ∈ [ζj , ζj ] being the lower and upper limits of
the nonlinearity ζj(t).

3. Problem formulation
The proposed method is illustrated in Fig. 1. It is
composed of two controllers. One is a convex qLPV
controller for the leader, which considers the trajectory
error (e(t)) as the controller input. The error is computed
from the reference (qr(t)) and the actual (q(t)) trajectories
of the robot. The controller input (ub(t)) is formed out
of the linear (v(t)) and angular velocities (ω(t)) such
that the leader converges asymptotically to the reference
trajectory. The other part is composed of a distributed
controller for the follower agents. Graph theory is
considered to model communication and interconnection
among agents. The next sections elaborate on each of
these controllers.

4. Convex controller
4.1. Convex quasi-linear parameter varying (qLPV)
model. Consider a mobile robot as shown in Fig. 2; the
kinematic model of the robot is (Blažič and Bernal, 2011)

q̇(t) =

⎡

⎣
ẋ(t)
ẏ(t)
ϕ̇(t)

⎤

⎦ =

⎡

⎣
cosϕ(t) 0
sinϕ(t) 0

0 1

⎤

⎦
[
v(t)
ω(t)

]

, (4)

where (x(t), y(t)) is the position and ϕ(t) is the
orientation of the robot in the plane; v(t) and ω(t) are
the linear and angular velocities, respectively, and q(t) is
the vector of generalized coordinates.

The goal is for the robot to follow the desired
trajectory, so it is necessary to define the reference

qr(t) = [xr(t) yr(t) ϕr(t)]
T , (5)
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Fig. 2. Diagram of a differential mobile robot.

where (xr(t), yr(t)) is the desired position and ϕr(t) is
the desired orientation for the robot, whose dynamic is
given by

ẋr(t) = vr(t) cosϕr(t),

ẏr(t) = vr(t) sinϕr(t),

ϕ̇r(t) = ωr(t),

(6)

where vr(t), ωr(t) are the desired linear and angular
velocities, respectively, defined by

vr(t) =
√
ẋ2r(t) + ẏ2r(t),

ωr(t) = tan−1

(
ẏ2r(t)

ẋ2r(t)

)

.
(7)

The mathematical model of the tracking error
between (5) and q(t) = [x(t) y(t) ϕ(t)]T is defined by

e(t) = Rz(ϕ(t))(qr(t)− q(t))

= Rz(ϕ(t))

⎡

⎣
xr(t)− x(t)
yr(t)− y(t)
ϕr(t)− ϕ(t)

⎤

⎦ .
(8)

The rotation matrix about the z-axis is defined as
(Corke, 2017)

Rz(ϕ(t)) =

⎡

⎣
cosϕ(t) sinϕ(t) 0
− sinϕ(t) cosϕ(t) 0

0 0 1

⎤

⎦ . (9)

Expanding and deriving (8), we have

ėx(t) = ω(t)
(− (xr(t)− x(t)) sinϕ(t)

+(yr(t)−y(t))cosϕ(t)
)

+ (ẋr(t)− ẋ(t))cosϕ(t)

+ (ẏr(t)− ẏ(t)) sinϕ(t),

= ω(t)ey(t) + vr(t)(cosϕr(t) cosϕ(t)

+ sinϕr(t) sinϕ(t))

− v(t)(cos2 ϕ(t) + sin2 ϕ(t)),

ėy(t) = −ω(t)((xr(t)− x(t)) cosϕ(t)

+ (yr(t)− y(t)) sinϕ(t))

− (ẋr(t)− ẋ(t)) sinϕ(t),

= −ω(t)ex(t) + vr(t)(− sinϕ(t) cosϕr(t)

+ sinϕr(t) cosϕ(t))

− v(t)(cosϕ(t) sinϕ(t)

− cosϕ(t) sinϕ(t)),

ėϕ(t) = ωr(t)− ω(t).

(10)

The expression (10) can be simplified by using the
trigonometric identities

1 = cos2 ϕ(t) + sin2 ϕ(t),

cos (ϕr(t)− ϕ(t)) = cosϕr(t) cosϕ(t)

+ sinϕr(t) sinϕ(t),

sin (ϕr(t)− ϕ(t)) = sinϕr(t) cosϕ(t)

− sinϕ(t) cosϕr(t),

and eϕ(t) = ϕr(t)− ϕ(t); then,

ėx(t) = ω(t) ey(t) + vr(t) cos(eϕ(t))− v(t),

ėy(t) = −ω(t) ex(t) + vr(t) sin(eϕ(t)),

ėϕ(t) = ωr(t)− ω(t).

(11)

For convenience, a change of variables is considered
to be able to split the non-controllable part of the error
model. Then, ϕ(t) is substituted by two new variables:

s(t) = sinϕ(t), c(t) = cosϕ(t),

whose derivatives are

ṡ(t) = ϕ̇(t)c(t) = c(t)ω(t),

ċ(t) = −ϕ̇(t)s(t) = −s(t)ω(t),

and the kinematic model (4) becomes
⎡

⎢
⎢
⎣

ẋ(t)
ẏ(t)
ṡ(t)
ċ(t)

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

c(t) 0
s(t) 0
0 c(t)
0 −s(t)

⎤

⎥
⎥
⎦

[
v(t)
ω(t)

]

. (12)

The new trajectory errors are

ex(t) = c(t)(xr(t)−x(t)) + s(t)(yr(t)−y(t)),
ey(t) = −s(t)(xr(t)−x(t)) + c(t)(yr(t)−y(t)),
es(t) = sr(t)c(t) − cr(t)s(t),

ec(t) = cr(t)c(t) + sr(t)s(t),

(13)
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and the error dynamics are given by

ėx(t) = ω ey(t) + vr(t)ec(t)− v(t),

ėy(t) = −ω ex(t) + vr(t)es(t),

ės(t) = ec(t)(ωr(t)− ω(t)),

ėc(t) = −es(t)(ωr(t)− ω(t)).

(14)

The control law is defined as v(t) = vr(t)ec(t) +
vb(t), and ω(t) = ωr(t) + ωb(t), such that (14) becomes

ėx(t) = ey(t)ωr(t) + ey(t)ωb(t)− vb(t),

ėy(t) = −ex(t)ωr(t)− ex(t)ωb(t) + vr(t)es(t),

ės(t) = −ec(t)ωb(t),

ėc(t) = es(t)ωb(t),

(15)

where ub(t) =
[
vb(t) ωb(t)

]T is the feedback signal.
Note that (15) can be expressed in state-space form as
⎡

⎢
⎢
⎣

ėx(t)
ėy(t)
ės(t)
ėc(t)

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0 ωr(t) 0 0
−ωr(t) 0 vr(t) 0

0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

ex(t)
ey(t)
es(t)
ec(t)

⎤

⎥
⎥
⎦

+

⎡

⎢
⎢
⎣

−1 ey(t)
0 −ex(t)
0 −ec(t)
0 es(t)

⎤

⎥
⎥
⎦

[
vb(t)
ωb(t)

]

.

(16)

The model (16) is divided into two subsystems to separate
the non-controllable part ėc(t) = es(t)ωb(t), such that the
controllable part is given by
⎡

⎣
ėx(t)
ėy(t)
ės(t)

⎤

⎦ =

⎡

⎣
0 ωr(t) 0

−ωr(t) 0 vr(t)
0 0 0

⎤

⎦

⎡

⎣
ex(t)
ey(t)
es(t)

⎤

⎦

+

⎡

⎣
−1 ey(t)
0 −ex(t)
0 −ec(t)

⎤

⎦
[
vb(t)
ωb(t)

]

.

(17)

The model (17) can be converted into a convex qLPV
model by choosing ωr, vr, ex, ey , ec as nonlinear terms,
which are bounded; this is possible because it is assumed
that a controller will keep the system close to the desired
trajectory. The qLPV is represented through the following
form:

ė(t) =

l∑

i=1

ρi(ζ(t))(Aie(t) +Biub(t)),

y(t) = Ce(t),

(18)

where ζ(t) =
[
ωr(t) vr(t) ey(t) ex(t) ec(t)

]T

contains the nonlinear terms. The intervals of the elements
of ζ(t) are defined according to the physical constraints of
the differential mobile robot.

The convex matrices are

Ai =

⎡

⎣
0 ζ1(t) 0

−ζ1(t) 0 ζ2(t)
0 0 0

⎤

⎦ ,

Bi =

⎡

⎣
−1 ζ3(t)
0 −ζ4(t)
0 −ζ5(t)

⎤

⎦ .

Then, by evaluating the state matrices on the bound of the
nonlinear term, 32 local models are obtained, which are
blended by scheduling functions ρi(ζ(t)) defined as

ρi(ζ(t)) =

5∏

j=1

δij(ζj(t)), i = 1, . . . , 32,

δij0(ζj(t)) =
ζj − ζj(t)

ζj − ζj
,

δij1(ζj(t)) = 1− δij0(ζj(t)), j = 1, . . . , 5.

The scheduling function satisfies the convex property:

l∑

i=1

ρi(ζ(t)) = 1, ρi(ζ(t)) ≥ 0, i = 1, . . . , l, ∀t.

(19)

4.2. Control law. To guarantee the asymptotic
convergence of the tracking error, a feedback convex
control law is considered for the system (18):

ub(t) = −
l∑

i=1

ρi(ζ(t))Fie(t), (20)

such that the closed-loop system is obtained as follows:

ė(t) =
l∑

i=1

l∑

j=1

ρi(ζ(t))ρj(ζ(t))(Ai −BiFj)e(t). (21)

Typically, quadratic Lyapunov functions are considered
to find matrices Fi, but as the number of local models
increases, so does conservatism due to a large number
of the resulting LMIs. Non-quadratic Lyapunov functions
can be considered to address this issue. A non-quadratic
Lyapunov function is defined as

V (e(t)) =

l∑

i=1

ρi(ζ(t))e(t)
TPie(t), (22)

where Pi = PT
i > 0 are unknown constant matrices

of suitable dimensions. These functions are a fuzzy
combination of multiple quadratic Lyapunov functions.
As a result of the non-quadratic Lyapunov function (22),
sufficient conditions can be obtained for the asymptotic
convergence of the states in the form of LMIs, as
described by the following result:
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Theorem 1. If |ρ̇δ| ≤ φ holds with δ = 1, . . . , l, where
|ρ̇δ| is the modulus of the derivatives of the membership
functions, and given the values σ and μ and the matrix
G, the closed-loop LPV system (21) with the controller
(20) is asymptotically stable if it is possible to obtain the
matricesN,O,K, I,X, Si = IFi and Pi = PT

i > 0 such
that the following is satisfied:

Pδ −
l∑

i=1

Pi

l
+
X

l
> 0, δ = 1, . . . , l, (23)

Ψi < 0, i = 1, . . . , r, (24)

where

Ψi =

⎡

⎢
⎢
⎢
⎢
⎣

ψ11 ∗ ∗

ψ21 O +OT ∗

ψ31 σITGT +K −BT
i O

T ψ33

⎤

⎥
⎥
⎥
⎥
⎦
, (25)

with

ψ11 =φX +GSi + ST
i G

T − (NAi +AT
i N

T ),

ψ21 =NT + Pi −OAi + σGSi,

ψ31 =−BT
i N

T −KAi + ITGT + μSi,

ψ33 =μ(I + IT )−KBi −BT
i K

T .

(26)

Proof. The proof is adopted from the work of
Vafamand and Shasadeghi (2017). The time derivative of
the Lyapunov function candidate (22) is (to simplify the
notation, functional dependencies are removed)

V̇=2eT

(
l∑

i=1

ρiPi

)

ė+eT
l∑

δ=1

ρ̇δ

(

Pδ+
X

l
−

l∑

i=1

Pi

l

)

+2
{
eTN+ėTO+uTK

}
{

ė−
l∑

i=1

ρi{Aie+Biu}
}

+2{eTGI + ẋTσGI + uTμI}
{

u+

l∑

i=1

ρiFie

}

=eT
l∑

δ=1

ρδ

(

Pδ+
X

l
−

l∑

i=1

Pi

l

)

e+

l∑

i=1

ρi

{
eTPiė

+ėTPie+ eTNė+ ėTNT e− eT (NAi+A
T
i N

T )e

−eTNBiu−uTBT
i N

T e+ėT(O+OT )ė−ėTOAie

− eTAT
i O

T ė− ėTOBiu− uTBT
i O

T ė+ uTKė

+ ėTKTu− uTKAie− eTAT
i K

Tu

− uT (KBi +BT
i K

T )u+ eTGIu+ uT ITGT e

+ eT (GIFi + FT
i I

TGT )e + ėTσGIu

+ uTσITGT ė+ ėTσGIFie+ eTσFT
i I

TGT ė

+uTμ(I+IT )u+ uTμIFie+ eTμFT
i I

Tu
}
. (27)

Fig. 3. Graph of the multiagent system.

Assuming that (23) and (24) hold, we get

l∑

δ=1

ρδ

(

Pδ +
X

l
−

l∑

i=1

Pi

l

)

≤
l∑

δ=1

φ

(

Pδ +
X

l
−

l∑

i=1

Pi

l

)

= φ

(
l∑

δ=1

Pδ +

l∑

δ=1

X

l
+

l∑

δ=1

l∑

i=1

Pi

l

)

= φ

(
l∑

δ=1

Pδ −
l∑

i=1

Pi +X

)

= φX. (28)

From (27) and (28) it follows that

V̇ ≤
l∑

i=1

ρi

{
eTPiė+ė

TPie+e
TφXe+eTNT ė+ėTNT e

− eT (NAi +AT
i N

T )e − eTNBiu− uTBT
i N

T e

+ė(O +OT )ė−ėTOAie−eTAT
i O

T ė−ėTOBiu

−uTBT
i O

Tė+uTKė+ėTKTu−uTKAie−eTAT
iK

Tu

− u(KBi +BT
i K

T )u+ eTGIu+ uT ITGT e

+eT (GIFi + FT
i I

TGT )e+ėTσGIu+uTσITGT ė

+ ėTσGIFie+ eTσFT
i I

TGT ė+ uTμ(I + IT )u

+ uTμIFie+ eTμFT
i I

Tu
}

=
l∑

i=1

ρi
[
eT ėT uT

]
ψi

[
eT ėT uT

]T
. (29)

Since ρi ≥ 0, (29) is positive definite if ψ < 0. Defining
Si = IFi and substituting the result into ψi, the LMI (24)
is obtained. The proof is completed. �

5. Distributed control
The graph of the multiagent system in question is shown
in Fig. 3. Assuming that the lead agent is governed by
the control law of (20), the following control laws are
proposed for the follower agents:
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ϕ̇i(t)=

N∑

j=1

aij(ϕj(t)− ϕi(t))

+mi(ϕ0(t)− ϕi(t)), (30)

v̇i(t) =

N∑

j=1

aij(vj(t)− vi(t))

+mi(v0(t)−vi(t)), (31)

with i = 1, . . . , N and where the terms aij are the edge
weights of the graph in Fig. 3; mi’s are the fixed gains
of the agents that receive information directly from the
leader; (ϕi, vi) belongs to the agent that receives the
information and (ϕj , vj) belongs to the one that sends it;
finally, (ϕ0, v0) are the state and input associated with the
lead agent. Expanding (30), we get

ϕ̇i(t) =
∑

j∈Ni

aij(ϕj(t)− ϕi(t)) +mi(ϕ0(t)− ϕi(t))

=− ϕi(t)
∑

j∈Ni

aij +
∑

j∈Ni

aijϕj(t) +miϕ0(t)

−miϕi(t)

=− diϕi(t) +
[
ai1 . . . aiN

]

⎡

⎢
⎣

ϕ1(t)
...

ϕN (t)

⎤

⎥
⎦

+
[
m1 . . . mN

]

⎡

⎢
⎣

ϕ0(t)
...

ϕ0(t)

⎤

⎥
⎦

− [m1 . . . mN

]

⎡

⎢
⎣

ϕ1(t)
...

ϕN (t)

⎤

⎥
⎦ ,

(32)

where di is the number of edges that reach agent i.
Thus, with the diagonal matrix of the graph D, the global
angular velocity dynamics can be obtained:

ϕ̇(t) = −Dϕ(t) +WΦ(t) +MΦ0(t)−MΦ(t)

= −(D −W )Φ(t) +MΦ0(t)−MΦ(t)

= −LΦ(t) +MΦ0(t)−MΦ(t)

= −(L+M)Φ(t) +MΦ0(t),

(33)

where the leader’s state is

Φ0(t) =
[
ϕ0(t) . . . ϕ0(t)

]T
,

with appropriate dimensions, and

Φ(t) =
[
ϕ1(t) . . . ϕN (t)

]T ∈ R
N .

Similarly, for the input vi(t) in (31) with

Υ0(t) =
[
v0(t) . . . v0(t)

]T

��

�����

������

Fig. 4. Graph of the multiagent system for the numerical exam-
ple.

as the leader’s input and

Υ(t) =
[
v1(t) . . . vN (t)

]T ∈ R
N

as the global vector of the input, the global linear velocity
dynamics can be obtained:

v̇(t) = −(L+M)Υ(t) +MΥ0(t). (34)

Combining (33) and (34), the general control law
applied to the follower agents is obtained:

[
ϕ̇(t)
v̇(t)

]

= −(In ⊗ (L+M))

[
Φ(t)
Υ(t)

]

+ (In ⊗M)

[
Φ0(t)
Υ0(t)

]

,

where In is the identity matrix of dimension n = 2, L
and M are the matrices associated with the graph, and the
symbol ⊗ corresponds to the Kronecker product.

6. Results
A numerical example is considered to demonstrate
the effectiveness of the proposed methodology. First,
the convex controller performance is evaluated on an
individual agent who will be the MAS leader. Second, the
distributed controller is implemented on five differential
robots to follow the leading agent, constituting the
leader–follower formation as shown Fig. 4. Similar robots
are considered to have a homogeneous MAS.

6.1. Numerical example for the convex control
of the leader. This example demonstrates the control
designed for the leading agent represented in the graph
with the subscript 0. The objective is to track the
desired trajectory represented by a circle of four meters
in diameter. The convex model is obtained by evaluating
the varying matrices of (18) on the intervals ζ1 ∈
[−π, π] rad/s, ζ2 ∈ [0, 0.2] m/s, ζ3 ∈ [−4, 4] m,
ζ4 ∈ [−6.5, 4] m and ζ5 ∈ [0.1, 1] rad, which relies
on 32 local models. Local matrices are not displayed
here, but can be obtained by substituting the scheduling
parameters ζ on Ai, Bi. These intervals were selected
by considering the physical constraints on the robot’s
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Fig. 5. Trajectory made by the leader.

angular and linear displacements and velocities. After
evaluating the controllability of (18), the gain matrices of
the control law in (20) are computed by solving the LMIs
of Theorem 1 using the SeDuMi solver (Sturm, 1999) and
the YALMIP Toolbox (Lofberg, 2004). The following
values of μ, φ, and σ were considered for the LMI:

G =

⎡

⎣
−700 0
0 −600
0 0

⎤

⎦ ,

μ = 102, φ = 10−3, σ = 10.

The resulting gain matrices are displayed in
Appendix. Initial conditions for the position (x(t),
y(t)) and the orientation ϕ(t) of the robot are
(x(0), y(0), ϕ(0)) = (2, 2, π/2) for the simulation. The
result is shown in Fig. 5. The desired trajectory is depicted
with a dashed line, while the path followed by the robot
is represented with a solid line. As evident from the
results, the agent precisely follows the desired trajectory,
achieving a low root-mean-square error (RMS) of just
0.0145 m for the x-axis position and 0.0261 m for the
y-axis position. The results demonstrate the effectiveness
of the convex controller, which is crucial because the
leader describes the desired performance of the followers.
Figure 6 shows the time evolution of the vehicle’s x and
y positions during the validation for the same trajectory.
It also offers valuable insights into the essential control
inputs. This visualization demonstrates how each axis
is effectively stabilized in accordance with the desired
reference.

6.2. Distributed control protocol for consensus. This
simulation illustrates the leader–follower performance
of the MAS in Fig. 4. The objective is for the
leader to perform the desired trajectory, and the five
follower agents must follow the leader without knowing
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Fig. 6. Position and velocities for the leader.

the trajectory. The initial conditions for the followers
are (x1(0), y1(0), ϕ1(0)) = (4, 0, π/2) for Agent 1;
(x2(0), y2(0), ϕ2(0)) = (0, 0, π/2) for Agent 2;
(x3(0), y3(0), ϕ3(0)) = (5,−1, π/2) for Agent 3;
(x4(0), y4(0), ϕ4(0)) = (2,−2, π/2) for Agent 4; and
(x5(0), y5(0), ϕ5(0)) = (−2,−2, π/2) for Agent 5. The
matrices associated with the graph in Fig. 4 are

W =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦
,

D =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦
,

L =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 0 0
0 0 0 0 0
−1 0 1 0 0
0 −1 0 1 0
0 −1 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦
,

M =

⎡

⎢
⎢
⎢
⎢
⎣

m1 0 0 0 0
0 m2 0 0 0
0 0 m3 0 0
0 0 0 m4 0
0 0 0 0 m5

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦
.

The results are shown in Fig. 7. Every mobile robot
faithfully replicates the leader’s trajectory and maintains
the formation, showcasing the efficiency of the proposed
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approach. It should be emphasized that only the leading
agent possesses the knowledge of the trajectory, whereas
the subsequent agents rely exclusively on information
exchanged with their neighboring agents. In this case,
Agents 1 and 2 receive the velocity data from the leader,
Agents 3 and 4 receive information from Agent 1, and
Agent 5 from Agent 2. The virtual simulation can be
consulted at https://youtu.be/V1l_6Qv7rKQ.
As can be observed, all robots maintain the desired
formation and orientation. Figure 8 provides a
visualization of the consensus achieved regarding each
robot’s linear velocity and orientation. Notably, the linear
velocities of all the robots converge to the same value
and remain stable throughout the simulation. A minor
steady-state error in orientation is observed primarily
because the leader adheres to a circular reference, causing
continuous changes in the orientation values.

It is important to note that this research deals with
the challenging problem of achieving convex control
for nonholonomic systems by considering a realistic
nonlinear kinematic model, unlike most existing works
that rely on linear models or simplified numerical
examples. This issue is of primary importance because the
nonholonomic nature poses some controllability problems
from the theoretic point of view, which are solved by
splitting the controllable and the uncontrollable parts.
Nevertheless, it is essential to acknowledge the limitations
of our method. For instance, robustness to measurement
noise and external disturbances remains an area of
concern, potentially diminishing its practical applicability.
This is a critical point for improvement, and future work
will address this challenge, enhancing our approach’s
overall efficacy and utility. Also, there is an implicit
assumption that agent communication is ideal, i.e., no
delays, data loss, etc. are considered. In such cases,
additional strategies not covered in this work are required.
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7. Conclusions
In this work, a convex control scheme for the leading
differential robot of a multiagent system of five mobile
follower robots using non-quadratic Lyapunov functions
was designed for the follower robots, and distributed
control protocols are used for the leader–follower
consensus. These algorithms manage to control the states
of the agents in the formation and follow predefined
trajectories (in this case, a circle with a diameter of
four meters). The controller gain matrices guarantee
the asymptotic convergence of the following error.
However, the results also revealed crucial areas for
further development and enhancement; to practically
implement the consensuses protocol, it is essential
to consider robustness against sensor noise, external
disturbances, and uncertainties that arise from real-world
robots and obstacle avoidance capabilities. Future work
will incorporate H∞ performance criteria and trajectory
planning (Liu et al., 2022) to reach these goals.
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Appendix

Gain matrices
Gain matrices K1 to K32 obtained for the example:
[−6.950 0.190 0.0008
−0.020 −6.238 −0.0015

]
,

[−6.951 0.190 0.0007
−0.020 −6.237 −0.0015

]
,

[−6.950 0.187 0.0007
−0.018 −5.855 0.0010

]
,

[−6.950 0.187 0.0007
−0.018 −5.855 0.0009

]
,
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[−6.952 −0.146 −0.0011
−0.019 −6.237 −0.0014

]
,

[−6.952 −0.146 −0.0011
−0.019 −6.237 −0.0014

]
,

[−6.952 −0.144 −0.0013
−0.018 −5.855 0.0008

]
,

[−6.952 −0.144 −0.0013
−0.018 −5.855 0.0008

]
,

[−6.950 0.190 0.0008
−0.020 −6.238 −0.0027

]
,

[−6.951 0.190 0.0007
−0.020 −6.237 −0.0027

]
,

[−6.950 0.187 0.0008
−0.018 −5.855 −0.0002

]
,

[−6.950 0.187 0.0007
−0.018 −5.855 −0.0003

]
,

[−6.952 −0.146 −0.0011
−0.019 −6.237 −0.0026

]
,

[−6.952 −0.146 −0.0011
−0.019 −6.237 −0.0026

]
,

[−6.952 −0.144 −0.0013
−0.018 −5.855 −0.0004

]
,

[−6.952 −0.144 −0.0013
−0.018 −5.855 −0.0004

]
,

[−6.951 0.146 0.0008
0.018 −6.238 −0.0015

]
,

[−6.951 0.146 0.0007
0.018 −6.237 −0.0015

]
,

[−6.951 0.144 0.0008
0.019 −5.855 0.0009

]
,

[−6.951 0.144 0.0008
0.019 −5.855 0.0008

]
,

[−6.952 −0.190 −0.0012
0.018 −6.237 −0.0014

]
,

[−6.952 −0.190 −0.0011
0.018 −6.237 −0.0014

]
,

[−6.952 −0.188 −0.0013
0.019 −5.855 0.0008

]
,

[−6.952 −0.188 −0.0013
0.019 −5.855 0.0007

]
,

[−6.951 0.146 0.0008
0.018 −6.238 −0.0027

]
,

[−6.951 0.146 0.0007
0.018 −6.237 −0.0027

]
,

[−6.951 0.144 0.0008
0.019 −5.855 −0.0003

]
,

[−6.951 0.144 0.0008
0.019 −5.855 −0.0004

]
,

[−6.952 −0.189 −0.0012
0.018 −6.237 −0.0026

]
,

[−6.952 −0.190 −0.0011
0.018 −6.237 −0.0026

]
,

[−6.952 −0.188 −0.0013
0.019 −5.855 −0.0004

]
,

[−6.952 −0.188 −0.0013
0.019 −5.855 −0.0005

]
.
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