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An electrocardiogram (ECG) is an essential medical tool for analyzing the functioning of the heart. An arrhythmia is a
deviation in the shape of the ECG signal from the normal sinus rhythm. Long-term arrhythmias are the primary sources
of cardiac disorders. Shockable arrhythmias, a type of life-threatening arrhythmia in cardiac patients, are characterized by
disorganized or chaotic electrical activity in the heart’s lower chambers (ventricles), disrupting blood flow throughout the
body. This condition may lead to sudden cardiac arrest in most patients. Therefore, detecting and classifying shockable
arrhythmias is crucial for prompt defibrillation. In this work, various machine and deep learning algorithms from the
literature are analyzed and summarized, which is helpful in automatic classification of shockable arrhythmias. Additionally,
the advantages of these methods are compared with existing traditional unsupervised methods. The importance of digital
signal processing techniques based on feature extraction, feature selection, and optimization is also discussed at various
stages. Finally, available databases, the performance of automated algorithms, limitations, and the scope for future research
are analyzed. This review encourages researchers’ interest in this challenging topic and provides a broad overview of its
latest developments.
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1. Introduction

Cardiovascular diseases (CVDs) are the leading cause of
high mortality rates, accounting for an estimated 17.9

*Corresponding author

million deaths each year. The World Health Organization
(WHO) ranks CVD mortality as the highest among all
causes of death (WHO, 2021). Cardiac arrhythmias,
deviations from the heart’s normal rhythm, present a
significant clinical challenge. Of particular concern are
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shockable arrhythmias. CVDs occur when the blood
supply to the heart muscle is obstructed or diminished
in the coronary artery, which supplies blood to the heart.
Heart disease, a type of CVD, refers to a wide range of
disorders that impair the anatomy and functioning of the
heart. However, not all heart diseases are cardiovascular
diseases.

Arrhythmia, an irregular heartbeat, can be caused
by heart disease in the atrium or ventricular region, and
known as is a supraventricular (atrium) or ventricular
arrhythmias, respectively (Kandukuri et al., 2023).
A complex electrical conduction system governs the
rhythmic beating of the heart. Shockable arrhythmias
result from severe heart electrical system disruptions,
causing chaotic or excessively rapid signals in the
ventricles. When these abnormal electrical patterns
prevent the heart from contracting effectively, the result
is a sudden loss of blood flow and, consequently, cardiac
arrest. The only definitive treatment for shockable
arrhythmias is defibrillation, the delivery of a controlled
electrical shock to reset the heart’s rhythm. Shockable
arrhythmias represent a true medical emergency. The
rapid deterioration from a chaotic or excessively fast heart
rhythm to full cardiac arrest underscores the importance
of swift diagnosis and intervention. Each minute
that passes without treatment significantly decreases the
chance of survival. For this reason, early recognition of
shockable arrhythmias and the immediate availability of
defibrillators are crucial in both healthcare settings and the
community.

1.1. Background and motivation. Ventricular
arrhythmias (Marsman et al., 2014), VT and VF
are recognized as lethal cardiac irregularities that can
precipitate SCA, a condition resulting in sudden cardiac
death within minutes if left untreated (John et al.,
2012). Globally, SCA accounts for approximately
five million fatalities annually (de Luna et al., 1989).
Prompt intervention is paramount during SCA, with time
being of the essence. Immediate treatment options
such as CPR (Fumagalli et al., 2018), AEDs, and
implantable cardioverter-defibrillators (ICDs) (Josephson
and Wellens, 2004) are most effective in restoring normal
cardiac rhythm (Nichol et al., 2017). AEDs and ICDs,
capable of analyzing the heart’s rhythm and delivering
electrical shocks if necessary, are pivotal life-saving
technologies (Didon et al., 2021).

Ventricular arrhythmias may deviate from the typical
sinus node initiation (Islam, 2021), possibly originating
from Purkinje fibers, leading to premature ventricular
contractions (PVCs) (Krause, 2023). In some instances,
PVCs progress to sustained VT, a precursor to VF (Boston
Scientific, 2024), which induces ineffective ventricular
contractions and impedes sufficient blood circulation. The
utilization of the ECG for arrhythmia analysis is common

practice, but identifying shockable rhythms presents
challenges to clinicians (Huang et al., 2019), necessitating
meticulous examination of ECG recordings. This process,
often conducted over extended periods using devices
like Holter monitors, is susceptible to human error due
to fatigue, prompting the exploration of computational
methods for automated classification. Timely recognition
of shockable arrhythmias via the ECG holds promise in
saving lives.

Moreover, VF waveform characterization, noted for
its nonlinear, nonstationary, and chaotic nature, has
been the focus of extensive research efforts aimed at
enhancing detection algorithms for VT and VF (Small et
al., 2000; Patro et al., 2022). Improving the accuracy
of these algorithms, particularly in distinguishing
shockable arrhythmias from non-shockable ones such
as asystole, has emerged as a significant research
endeavour (Hajeb-M et al., 2022; Lu et al., 2022). This
motivation underscores the exploration of ventricular
arrhythmias in the present survey, which delves into
methodologies for examining VF waveforms. The survey
encompasses a comprehensive review of techniques
ranging from traditional signal processing methods to
advanced machine learning (ML) and deep learning (DL)
models, including HPO algorithms. These techniques are
instrumental in the classification of shockable arrhythmias
against non-shockable ones. Figure 1 illustrates a
generalized block diagram derived from the literature,
offering insights into the development of autonomous
systems for arrhythmia identification using ECG signals.
This entails preprocessing and segmentation of signals,
feature extraction, feature selection for ML and DL
models, and, ultimately, arrhythmia classification.

1.2. Pre-processing. The frequency range of the
ECG signal is around 0.5–100 Hz. Most of the
relevant information on heart functioning is located in this
complex. In many cases, the QRS complex is corrupted
by noise, making pre-processing crucial to eliminate the
contaminated noise before classification (Shi et al., 2021;
Wang et al., 2022; Shridhar et al., 2019). Familiar
noise sources include muscular artifacts (MAs), baseline
wander (BW), and electrode motion (EM), which can be
both low-frequency and high-frequency noises. Various
established techniques for denoising ECG data include
adaptive Fourier decomposition (Wang et al., 2016), the
S-transform (Ari et al., 2013), the wavelet transform
(WT), and empirical mode decomposition (Kabir and
Shahnaz, 2012). Additionally, wavelet Wiener filtering
(Smital et al., 2013) is used to decrease electromyography
noise in ECG readings.

In the literature on shockable arrhythmia
classification, specific filters are used to remove noise
from the ECG signal. To remove power line interference,
fifth-order moving average filters (Amann et al., 2007;
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Fig. 1. Classification of shockable arrhythmias.

2005b; 2005a; Arafat et al., 2011; Sinha and Das,
2021) and notch filters (Thakor et al., 1990; Zhang
et al., 1999; Krasteva and Jekova, 2005) are
commonly used. To suppress BW, a high-pass filter
(HPF) with a 1 Hz cut-off frequency (Jekova and
Krasteva, 2004; Clayton and Murray, 1999; Figuera
et al., 2016; Wang et al., 2001; Noruzi et al., 2017)
is applied. A Butterworth low-pass filter with a 30
Hz cut-off frequency (Myers et al., 1986; Selvakumar
et al., 2007; Li et al., 2012; Okai et al., 2018; Mohanty
et al., 2019; Ibtehaz et al., 2019; Noruzi et al., 2017)
is used to suppress MA. Furthermore, Daubechies
wavelets (Oh et al., 2017) and orthogonal wavelet filters
(Sharma, 2020; Sharma et al., 2019) are also employed.

CPR can corrupt the morphology of the ECG signal,
resulting in false decisions in AED rhythm analysis. To
address this issue, researchers have used condition-based
filtering algorithms (Hajeb-Mohammadalipour et al.,
2021) and adaptive filtering methods (Gong et al.,
2017) to enhance ECG signals. In addition, they have
implemented new algorithms (Hu et al., 2019; Didon
et al., 2011) and employed the frequency of compressions
to gauge the CPR artifact (Irusta et al., 2009). A least
mean squares (LMS) filter has been used to dynamically
adapt and estimate CPR artifacts (Eilevstjønn et al.,
2004), and a multichannel adaptive filter, precisely
the multichannel recursive adaptive matching pursuit
(MC-RAMP) algorithm, has been utilized to remove CPR
artifacts (Gong et al., 2016). This study introduces
an improved adaptive filtering technique designed to
mitigate CPR artifacts. Compared with the conventional
adaptive filter, the proposed method has achieved a
1.7 dB enhancement in the signal-to-noise ratio (SNR)
and a 5.6-point increase in accuracy. These findings
demonstrate the efficacy of our approach in effectively
attenuating artifacts associated with chest compressions
and enhancing the precision of rhythm analysis during

continuous CPR.
Before extracting features, authors have decomposed

ECG signals into segments or beats, referred to as window
sizes, typically ranging from 2 to 10 seconds.

1.3. Contribution of the paper. This study aims
to contribute to the expanding knowledge on the
early detection of shockable arrhythmias by examining
real-time ECG signals. Our contributions to this field can
be summarized as follows:

• An overview of shockable arrhythmias, their
waveforms, and the immediate lifesaving
technologies used to treat them is provided.

• The shockable arrhythmia detection model is
discussed using ECG signal analysis. We present
detailed literature on ECG analysis work for
detecting shockable arrhythmias, ranging from
traditional signal processing to advanced ML and DL
techniques, including an overview of HPO.

• ECG datasets used in the state-of-the-art methods
to detect shockable arrhythmias are discussed and
summarized.

• Techniques for denoising the ECG signal to
improve classification and eliminate false alarms are
provided.

• A detailed review of traditional signal processing
and machine learning feature extraction-based ECG
classification algorithms is provided and their
performance metrics are summarized. Moreover, we
provide the pros and cons of the ML and DL methods
and future directions.

• An overview of HPO techniques and their advantages
is presented and some of the MA used in the ML
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and DL algorithms to detect lethal arrhythmias are
discussed.

• The limitations, challenges, and future scope of
this field of study are discussed, and a comparative
summary graph is provided.

This study reviews the literature on shockable
arrhythmia classification methods and highlights the
key approaches developed to create these automatic
systems. The most prominent databases and performance
measures used for shockable arrhythmia classification
are also included. This study mainly focuses on
shockable arrhythmia classification techniques. The
issues, advantages, and future trends concerning the
assessment of modern ML and DL methodologies
reported in the literature are also examined. In addition, an
overview of HPO techniques is also discussed. Although
there are just a few review articles (Hammad et al., 2021;
Dahal and Ali, 2022) in the literature on this subject, they
only address some of these aspects. To enable readers
to quickly find the desired information without having
to search through various articles, this work provides
an overview of all shockable arrhythmia classification
techniques as a single resource that reviews all the aspects
of ECG-based ventricular arrhythmia classification.

1.4. Paper organization. This paper is organized
as follows. Section 2 discusses standard ECG signals
as well as shockable arrhythmia signals and their
representation. Sections 3–6 cover the databases, feature
extraction, and classification of shockable ECG signals
using traditional signal processing methods, ML methods,
and performance metrics, respectively. Additionally,
Sections 7 and 8 delve into DL methods and the use
of HPO methods, respectively. Finally, Sections 9,
10, and 11 comprise the paper’s discussion, limitations,
conclusion, and future scope.

2. Difference between a normal ECG and a
shockable arrhythmia

In general, the recorded electrical activity of the heart
is visualized on a graph sheet, allowing doctors to
easily observe all ECG episodes. Over a century
ago, Dutch scientist Willem Einthoven developed
electrocardiography. We have different types of lead
systems to record the ECG signal from patients, such as
single lead, three lead, and 12-lead, etc. Traditionally, the
12-lead system is more efficient for acquiring the ECG
signal (Rangayyan, 2015). ECG signals are classified into
two types based on the recording duration, i.e., resting
and ambulatory. The duration of a resting ECG is around
5–10 minutes, whereas it is 24 to 48 hours for ambulatory
ECG records. Ambulatory records are helpful in detecting

long-term cardiac disorders during the patient’s daily
activities.

Most ambulatory ECG records are recorded using
a Holter monitor. The shape of the ECG signal and
the heart rate both indicate the functioning status of
the heart (Dinakarrao et al., 2020), and distinct regions
of the heart produce various segments of the ECG
signal. A normal cycle of the ECG wave, non-shockable
rhythm, ventricular fibrillation (VF), and ventricular
tachycardia (VT) are visualized in Fig. 2, sourced from
the PhysioNet publicly available databases. P, Q, R,
S, and T are the five primary fiducial components
(Rangayyan, 2015) of a standard ECG signal in healthy
individuals; the R component can readily be distinguished
from the others due to its high amplitude. Ventricular
fibrillation is presented with non-uniform characteristics
in OHCA, and variations in ventricular fibrillation
amplitude specific to populations may influence survival
outcomes. International guidelines advise against the
initial defibrillation of rhythms assessed by AEDs with
low amplitudes (≥ 0.2 mV) (Nehme et al., 2021).

ECG analysis and classification activities can be used
in various applications, such as disease categorization
(Shadmand and Mashoufi, 2016a), heartbeat type
detection (Dutta et al., 2011), biometric identification
(Tantawi et al., 2015), and emotion recognition (Long
et al., 2010). The detailed differences between shockable,
non-shockable, and normal rhythms are depicted in
Table 1. The duration and number of beats of ECG signal
experimentation are mentioned in Table 2.

3. Databases
In cardiology, shockable arrhythmias are extremely
dangerous heart rhythm disturbances that require
immediate electrical intervention (defibrillation) for
survival. Two of the most critical shockable arrhythmias
include VF, characterized by a chaotic, uncoordinated
quivering of the heart’s ventricles, leading to effectively
stopped blood pumping—a primary cause of sudden
cardiac arrest. Another is VT, an abnormally rapid heart
rhythm originating in the ventricles. VT can be sustained
(lasting over a few seconds) or non-sustained. Sustained
VT often deteriorates into VF if untreated. PhysioNet
(https://physionet.org) is an invaluable
resource for researchers studying cardiovascular diseases
and developing life-saving algorithms. It offers precious
databases for shockable arrhythmia research.

• MIT-BIH Arrhythmia Database: A classic, this
database contains diverse ECG recordings, including
examples of shockable arrhythmias.

• MIT-BIH Malignant Ventricular Ectopy Database
(MVED): its focuses specifically on ventricular

https://physionet.org
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Fig. 2. Illustration of ECG signals from publicly available Physionet databases (CU ventricular tachycardia): non-shockable arrhyth-
mia (a), ventricular tachycardia (b), ventricular fibrillation (c), normal sinus rhythm (d).

arrhythmias with a high risk of leading to sudden
cardiac arrest.

• Creighton University Ventricular Tachyarrhythmia
Database (CUDB): Another database specializing in
VT recordings.

4. Feature extraction and shockable
arrhythmia classification using
traditional signal processing methods

4.1. Time domain methodologies. Amplitude
analysis details the signal’s instantaneous amplitude
across time, and the corresponding graph represents the
propagation of the signal. Time domain representation
provides details about the momentary amplitude of the
signal across time, and the corresponding graph also
represents the signal’s propagation. This time-domain
analysis describes the temporal features of the ECG.
Digital information collection has made measuring the
VF signal amplitude easy, simplifying and expanding the
analysis.

Time-domain methods involve analyzing signals in
the time dimension, focusing on characteristics and
patterns that occur over time in the ECG signal without
considering frequency information. ECG characteristic
points, such as the P wave, QRS complex, and T
wave, are crucial landmarks in the ECG waveform that
represent specific events in the cardiac cycle. Several
algorithms are commonly used for the detection of ECG

signal characteristics in time-domain analysis. These
algorithms are designed to identify key features such
as the P wave, QRS complex, and T wave, which
are essential for diagnosing various cardiac conditions
(Christov et al., 2006). Some widely employed algorithms
for ECG characteristic point detection in time-domain
analysis include the Pan–Tompkin algorithm, which
mainly focuses on QRS complex detection, a real-time
QRS detection algorithm employing a bandpass filter,
derivative, squaring, moving window integration, and
adaptive thresholding to identify the QRS complex.
Hamilton–Tompkin’s algorithm mainly focuses on P
and T wave detection. Adaptive threshold techniques,
template matching methods, and wavelet transform-based
methods are used for QRS complex detection. Table 3 lists
the techniques with performance metrics employed by the
researchers to extract the time domain features.

In the regression on the ACF (Chen et al., 1987),
peaks are randomly distributed for VF, whereas they
are linearly distributed for normal arrhythmia and VT.
Ripley et al. (1992), introduced three approaches to
analyzing the ECG’s amplitude distribution, irregularity,
and rate. Thakor et al. (1990) developed sequential
hypothesis testing, which calculates the period that
crosses a threshold between consecutive pulses. The
authors used a 20% threshold voltage of each one-second
segment’s highest absolute values. Similar to the TCI
parameter, Arafat et al. (2011) developed the TCSC as
an improved method of the reported work by Thakor
et al. (1990) through limited modifications, including the
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Table 1. Detailed differences between shockable, non-shockable and normal ECG signals.
S. no. Feature Shockable rhythm Non-shockable rhythm Normal ECG

1 QRS complexes Irregular Regular Regularly spaced, upright

2 Heart rate Increased (often >100 bpm) Slow (often <60 bpm)
or absent (asystole)

60–100 bpm

3 QRS amplitude May be large May be low Moderate amplitude

4 P wave Often absent May be present and normal Upright and precedes
QRS complex

5 PR interval Variable May be normal Constant and within
a specific range

6 ST segment May be elevated
or depressed

May be slightly elevated
or depressed

Isoelectric (flat)

7 T wave Often absent or distorted May be present
and normal

Upright and follows
QRS complex

Table 2. Details about the input and duration of the fragment from the state-of-the-art techniques.
S. no. Literature Database Input Duration [s]

1 Acharya et al. (2018) CUDB, MITDB, and VFDB Fragment 2

2 Sinha and Das (2021) CUDB, MITDB, and VFDB Fragment 2, 5, and 8

3 Tipathy et al. (2016) CUDB, MITDB, and VFDB Fragment 5 and 8

4 Rahul and Sharma (2022) CUDB, VFDB, and AFDB Fragment 5

5 Mathunjwa et al. (2021) AFDB, CUDB, VFDB, and MITDB Fragment 2

6 Nguyen et al. (2018a) CUDB, VFDB Fragment 8

7 Shen et al. (2023) Real-time and publicly available Fragment 7

usage of a three-second wide window size rather than a
one-second wide window size as well as positive side and
negative side thresholds rather than considering positive
threshold values. Amann et al. (2007) developed a PST
method for detecting VFs, which performed well on all
databases, but the proposed method was sensitive to noise
and artifacts. Overall, the amplitude analysis is sensitive
to the morphology and dynamics of the ECG. During
amplitude analysis, the waveform’s temporal information
is disregarded by Chen et al. (1987). Moreover, the VF
amplitude is affected by the patient’s size and shape. This
makes it a limited estimator of the VF duration and a
poor predictor of defibrillation outcomes. To address these
problems, researchers have explored other characteristics
of VF waveforms, using transformation techniques to
interpret them.

4.2. Frequency domain methodologies. The
Fourier transform (FT) is the foundation for frequency
domain analysis. It decomposes the ECG signal into
its constituent sinusoidal components, revealing the
amplitude and phase information for each frequency.

The FT helps identify dominant frequencies associated
with normal heart rhythm (P waves, QRS complex and T
waves) and potential arrhythmias.

A short-time Fourier transform divides the ECG
signal into smaller windows, performs FT on each
window, and provides a spectrogram that shows how the
frequencies change over time. This is useful for analyzing
transient events like arrhythmias. Features like heart
rate variability (HRV) can be extracted by analysing the
power within specific frequency bands. HRV reflects the
fluctuations between heartbeats and is a marker of cardiac
health.

Techniques like the Hilbert transform can be used
to analyze the instantaneous frequency of the ECG
signal, aiding in QRS complex detection and morphology
analysis, which is crucial for arrhythmia classification.
Frequency domain methodologies provide valuable tools
for ECG feature extraction beyond what time domain
analysis alone can offer. By understanding the frequency
components of the ECG signal, healthcare professionals
and researchers can gain deeper insights into heart
function and identify potential cardiac abnormalities.
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Table 3. Time domain methodologies used for detecting shockable ECG rhythms.

Author Approach Database R W [s] Performance (%)
ACC SEN SPE

Chen et al. (1987) ACF,
regression analysis

Sample data 31 1.5 NA 86 100

Thakor et al. (1990) Sequential hypothesis
testing or TCI

Sample data 180 7 100 NA NA

Chen et al. (1996) Sequential hypothesis
testing with
blanking variability

VFDB 22 10 95 NA NA

Zhang et al. (1999) CPLX Sample data, MITDB 204 8 100 100 100

Amann et al. (2007) PSR MITDB, CUDB, AHA 128 8 96.2 83.8 97.8

Amann et al. (2005b) SCA, MEA, STE MITDB, CUDB, AHA 128 8 96.2 98.5 71.2

Arafat et al. (2011) TCSC MIT-BIH, CUDB 83 3 98.14 80.97 98.51

Lee and Yoon (2016) Adaptive threshold MIT-BIH, CUDB NA 4 NA 95.77 NA

The total amplitude of the signal is calculated with
time domain approach directly using the time samples. In
the frequency domain, mathematical functions or signals
are analyzed with attention to frequency rather than time.
Spectral analysis explains the distribution of signal energy
in a range of frequencies. Table 4 employs frequency
or spectral analysis methodologies to extract or choose
features and detect shockable arrhythmias.

Myers et al. (1986) developed a vital tool for
predicting VF, a power spectral method of heart rate
variability applied to 24-hour ambulatory ECG signals.
Clayton et al. (1993) discussed VF filter leakage, a narrow
band-stop filter response, and VF leak, which determines
the ECG segment’s mean frequency area. Using Fourier
analysis, the spectral technique calculates the content of
energy and power over a range of frequencies. Prony
modelling (Chen, 2000) provides a higher frequency
resolution than FFT approaches. Compared with standard
FFT or threshold crossing methods, the higher resolution
capabilities may result in more precise rate estimates
and better detection/discrimination for rhythmic (VT, VF,
SVT) anomalies.

Jekova and Krasteva (2004) developed an algorithm
that combines a slope variability analyzer with a bandpass
digital filter for AEDs. It addresses the Hilbert
transform’s restriction, and the results have shown that
it is sensitive to ECG amplitude regularity; moreover, it
could be made more robust using an extensive database.
Requena-Carrión et al. (2013) introduced a new method
based on four spectral indices—the dominant frequency,
peak frequency, median frequency, and organization
index. According to the authors, unlike other spectral
indices, the lead configuration does not affect the

dominant frequency. Overall, the challenges associated
with amplitude analysis are addressed by employing
frequency analysis to evaluate the VF waveform. The
method is reliable and less vulnerable to external
factors. However, FFT analysis encounters fundamental
limitations. Frequency domain analysis is effective
only for stationary signals with constant waveforms.
Additionally, the Fourier spectrum can only provide
globally averaged information over the examined ECG
trace segment, implying that any location-specific data
present in the waveform is lost.

4.3. Time-frequency methodologies. Owing to
the problem of losing location-specific information,
wavelet processing has supplanted Fourier analysis as
the preferred method. Due to its ability to clarify local
spectral and temporal information inside a signal, it has
increased in value and was first formed in the early 1980s.
Wavelet approaches have solved engineering, medicine,
science, and finance issues. EEGs, EMGs, and 12-lead
ECGs are all used in the medical field. The last of those
has experienced a surge in popularity in recent years,
and it is currently being utilized to examine sinus rhythm
and its constituent parts, VT and VF. The time-frequency
methodologies are listed in Table 4. Due to its ability to
clarify local spectral and temporal information within a
signal, wavelet processing has increased in value since its
inception in the early 1980s.

Wavelet approaches have addressed engineering,
medical, scientific, and financial challenges. To
evaluate the time-frequency distributions (TFD) of sinus
rhythm, VT, and VF, Tompkins (1995) examined
STFT, SPWVD, and CKD. The findings revealed that
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SPWVD and CKD exhibited beneficial characteristics,
but more discriminative features were needed for better
categorization. Similarly, Balasundaram et al. (2013)
analyzed the time series of VF by comparing linear
and nonlinear analysis of the ECG during human VF.
For linear analysis, the authors used the magnitude of
the smoothed Wigner distribution, while for non-linear
analysis, they employed a recurrence plot and correlation
dimension for the time series, which describe the
complexity and existence of nonlinear dynamics of VF.
With the provided technique, the authors found that
both linear and nonlinear signal processing methodologies
demonstrate order in the ECG during human VF.
Additionally, recurrence plot analysis has proven reliable
for the time series analysis of ventricular arrhythmias.

A new technique described by Balasundaram et al.
(2013) is a local and global pattern classification approach
for identifying recurrent ECG signal patterns during
ventricular arrhythmias. A wavelet-based approach was
developed to automate the pattern detection process using
ECGs. This suggested approach may be utilized to
evaluate the proposed patterns on a broader database and
conduct subgroup classifications to link clinical data with
signal patterns.

Okai et al. (2018) proposed a method for fatal
arrhythmias that extracts meaningful and effective
spectrum characteristics of the ECG using the Gabor
wavelet transform (GWT). The newly extracted
parameters are essential for increasing recognition
performance and decreasing calculation time. However,
the wavelet methodology is more computationally
efficient due to its excellent localization properties.
Nevertheless, the challenge with this methodology lies in
selecting the mother wavelet and determining the level of
decomposition.

4.4. Empirical mode decomposition (EMD). Any
non-stationary time series is adaptively and locally
decomposed into a composition of intrinsic mode
functions (IMFs) with zero-mean amplitude and
frequency-modulated features. The original signal is
recreated without losing information or distortion by
superimposing each recovered IMF with the residual
component. Table 5 represents the EMD methods
for detecting shockable arrhythmias. Orthogonality is
characteristic of identifying VF from NSR, and vice versa
(Arafat et al., 2009). The lower-order IMFs of NSR are
not-orthogonal compared with the IMFs of VF. Anas
et al. (2011) used the angle between the signal and its
IMFs as a performance metric. Overall, in conventional
signal processing, manual analysis of the morphological
alterations related to various fatal arrhythmias is sensitive,
qualitative, and prone to errors. The classification of VF
and VT from other arrhythmias could be instantaneous
and accurate. A CAD (Mandal et al., 2021) is used in

AEDs to accurately classify shockable rhythms.

5. Machine learning methodologies for
shockable arrhythmia classification

The researchers have integrated the collected ECG
features of conventional signal processing with ML
algorithms such as decision trees, random forests, SVMs,
and KNN classifiers to categorize shockable arrhythmias.
A crucial part of ML is the feature extraction stage. There
are four types of features extracted in the literature: (i)
temporal or morphological feature methods (as explained
in Section 4.1), (ii) spectral feature methods (as explained
in Section 4.2), (iii) time-frequency features (as explained
in Section 4.3), and (iv) nonlinear features or complexity
features. The most common complexity features are
entropy-based ones such as Shannon entropy (Oh et al.,
2017), fuzzy entropy (Oh et al., 2017), Renyi entropy
(Panigrahy et al., 2021), sample entropy (Rajesh and
Dhuli, 2017), approximate entropy (Sinha and Das,
2021), permutation entropy (Wang et al., 2001), modified
multiscale entropy (Wang et al., 2001), higher-order
spectra (Mendel, 1991), and energy (Oh et al., 2017).

5.1. Feature selection. The feature selection stage
in a machine learning algorithm is significant for
improved model performance. Reducing the number
of features can prevent overfitting, especially when
dealing with high-dimensional datasets. It helps the
model generalize better to new, unseen data, leading
to improved performance. Selecting relevant features
also reduces the computational cost of training a model.
The training process becomes faster with fewer features,
making it more scalable, especially for large datasets.
Models with fewer features are often more interpretable
and easier to understand. Feature selection allows
focusing on the most relevant variables, facilitating the
interpretation of the model’s predictions. Additionally,
feature selection helps identify and remove redundant
or highly correlated features. Redundant features do
not contribute additional information, and their inclusion
may lead to computational inefficiency and potential
model instability. The number of data points needed
to obtain reliable estimates grows exponentially in
high-dimensional spaces.

Feature selection helps mitigate the curse of
dimensionality by focusing on the most informative
features, making the learning task more manageable.
The feature selection process reduces the number of
redundant and uninformative features, thereby lowering
the computational load and improving the system’s overall
performance. The following feature selection methods
are used in the literature: (i) filters, (ii) wrappers
(deterministic and randomized), and (iii) embedded
methods. The techniques involved in filter-type feature
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Table 5. Empirical mode decomposition methodologies used for detecting shockable ECG rhythms.

Author Approach Database R W [s]
Performance (%)
ACC SEN SPE

Arafat et al. (2009) EMD, Bayes
decision theory

MITDB 48 7 NA 99.50 99

Anas et al. (2011) EMD MITDB, CUDB, VFDB 105 2 98.62 99.02 82.89

Anas et al. (2010) EMD function
and mean signal

MITDB, VFDB, CUDB 48 8 99.21 91.09 99.42

Kaur and Singh (2013) EMD and
approximate entropy

VFDB, CUDB 57 NA 90.98 91.34 90.54

selection include chi-square (Cai et al., 2021), analysis
of variance (Desai et al., 2016), fuzzy clustering
(Alonso-Atienza et al., 2014), information gain-based
selection (Rahman et al., 2015), and Fisher score (Desai
et al., 2016). The relevant set of features is also
chosen using statistical analysis in this procedure. The
deterministic wrapper technique uses common methods
include the sequential feature selection method (Mar
et al., 2011) and forward selection (Marcano-Cedeño
et al., 2010; Nguyen et al., 2017). The genetic
algorithm (Li et al., 2014) is the preferred method for
randomized wrappers. The standard approach for the
embedded method is regularization (Sharma et al., 2017).
After feature selection, the dimensionality of the chosen
features is reduced through feature reduction. The best
examples of this process are principal component analysis
(Ebrahimzadeh and Pooyan, 2011) and linear discriminant
analysis (Wang et al., 2013).

6. Classification
After selecting the significant features, classification
becomes the final step in categorizing the incoming
ECG data. Leveraging existing data to classify fatal
arrhythmias can yield predefined results. Hence, most
authors in the literature use supervised ML algorithms,
including the ANN, SVM, KNN, DT, and RF. Moreover,
regression (Pulluri and Kumar, 2022) is also employed
in the supervised ML approach. All the advantages,
disadvantages, and future directions of ML methods are
presented in Table 6.

6.0.1. SVM classifier. The SVM is known as a linear
classifier, as it separates classes by creating a hyperplane
in high-dimensional space. Additionally, it can function
as a nonlinear classifier using kernel functions such
as sigmoid and Gaussian radial basis functions. The
SVM has been widely utilized in shockable arrhythmia
classification studies (Zhang et al., 2011; Hou and Zhang,
2014; Alonso-Atienza et al., 2012a; 2012b; Kavya and

Karuna, 2023).

6.0.2. KNN classifier. KNN classifies feature vectors
in the feature space based on the labels of neighboring
training data. Using Euclidean distance, it calculates
the distances between an unknown feature vector and
each other vector in the training set. The class that
the nearest k samples mostly correspond to is then
assigned to the unidentified feature vector, resulting in
a scenario of majority voting. The positive integer k
has a well-known influence on classification accuracy and
must be a positive value. KNN is commonly employed
in shockable arrhythmia classification studies (Kinoshita,
2006; Ibaida and Khalil, 2013; Ebrahimzadeh and Pooyan,
2011; Mjahad et al., 2022; Sidharth et al., 2023; Picon
et al., 2019; Kwok et al., 2022).

6.0.3. Decision tree classifier. The goal of DT
learning, as outlined by Mohanty et al. (2019), is
to establish connections between observations and
interpretations. These interpretations can either be a
desired value or a desired class label, resulting in
structures known as classification trees or regression trees,
depending on the type of conclusion. In classification
trees, the leaves display class labels, while in regression
trees, they represent continuous values.

6.0.4. Random forest classifier. A random forest
(Desai et al., 2016) utilizes averaging as a meta-estimator
to fit multiple decision tree classifiers on different subsets
of the dataset, thereby enhancing prediction accuracy and
reducing overfitting. One of the ensemble classifiers
employing multiple decision trees is the RF tree. By
training various decision trees using diverse subsets of
training data, this method determines the output class
label based on the percentage of votes cast across all trees.

6.0.5. Artificial neural network (ANN). An ANN
(Noruzi et al., 2017) is a mathematical model based
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on the functioning principles of biological neural
networks. It is one of the most popular pattern
classifiers, utilizing interconnected artificial neurons with
trainable weights. The network typically consists of
input, output, and hidden layers. With a variety of
network architectures and learning techniques, ANNs can
effectively address problems involving both linear and
nonlinear classification.

6.1. Performance metrics. The performance of the
machine and deep learning classifiers are validated using
the following metrics: accuracy, positive predictivity,
sensitivity, specificity and F1-score. These are calculated
with the help of a confusion matrix. The fundamental
confusion matrix is shown in Fig. 3. The table is
divided into four quadrants there. Each one represents
a combination of a data point’s actual class (positive
or negative) and the prediction made by a classification
model. A detailed explanation of the contents is explained
as follows:

• True positive (TP): This quadrant (upper left)
represents the number of cases where the model
correctly predicted a positive class.

• False positive (FP): This quadrant (upper right)
represents the number of cases where the model
incorrectly predicted a positive class while the data
point actually belonged to the negative class (Type I
error).

• True negative (TN): This quadrant (lower left)
represents the number of cases where the model
correctly predicted a negative class.

• False negative (FN): This quadrant (lower right)
represents the number of cases where the model
incorrectly predicted a negative class while the data
point actually belonged to the positive class (Type II
error).

By analyzing the distribution of values across these
four quadrants, we can gain valuable insight into the
performance of a classification model, helping us assess
how well the model identifies both positive and negative
cases. Classification metrics are often used to compare
and track performance in production. These metrics may
be applied in a wide range of situations. The following
are some measures used to evaluate an ECG classification
task.

Accuracy (ACC). The accuracy of a classifier is
simply the number of times it predicts accurately.
Mathematically, it the number of correct predictions
divided by the total number of forecasts,

Accuracy =
TP + TN

TP + TN + FP + FN
. (1)

Fig. 3. Basic representation of the confusion matrix.

Precision or positive predictivity (PP). The number of
correctly predicted situations that turned out to be positive
is explained by precision. Precision is beneficial when
the risk of a false positive is greater than that of a false
negative. It is given by

Precision =
TP

TP + FP
. (2)

Recall or sensitivity. The term recall refers to how
many of the actual positive cases the model was able to
accurately anticipate. It is a good statistic to utilize when
a false negative is more problematic than a false positive.
It is given by

Sensitivity =
TP

TP + FN
. (3)

Specificity. It is the percentage of negative cases predicted
as negative. It is also known as the true negative rate. It is
computed as

Specificity =
TN

TN + FP
. (4)

F1-score. It is the harmonic mean of precision and recall:

F1-Score =
2× Precision × Recall

Precision + Recall
. (5)

Table 6 illustrates how proper selection of robust
features influences the performance of machine learning
algorithms (Mohanty et al., 2019; Mohanty, 2018; Sinha
and Das, 2020), which can be obtained using non-linear
signal processing methods. Therefore, it relies on the
practitioner’s ability to make optimal choices. Notably,
the SVM classifier is preferred by many authors due to its
exceptional binary classification performance, although
it has demonstrated poor accuracies when applied to
short segments of the ECG signal. Most approaches
perform well with smaller datasets, but prediction
accuracy tends to gradually decline as the dataset size
increases. To overcome these limitations, employing,
testing, and deploying appropriate DL models is essential
for achieving good prediction accuracy.
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6.2. Impact of supervised and unsupervised learning
techniques on classification performance. Supervised
learning techniques include SVMs, KNN, DTs, naive
Bayes, and random forests. These methods require
labelled data where examples are already categorized
(e.g., shockable vs. non-shockable arrhythmia). This
allows the model to learn the relationship between features
and class labels, achieving high accuracy for classification
tasks. For instance, Choi et al. (2024) used a linear
kernel SVM classifier to achieve an accuracy of 99.28%
in classifying shockable arrhythmias. Similarly, Nguyen
et al. (2018b) employed SVMs, KNNs, and RFs to
detect sudden cardiac arrest, with all classifiers exceeding
99% accuracy. On the other hand, unsupervised learning
techniques like K-means clustering, fuzzy c-means
clustering, hierarchical clustering, and Gaussian mixture
models do not require labeled data. These methods
are valuable for data exploration, feature engineering
(creating new informative features from existing data),
and data augmentation (increasing the size and diversity
of datasets). Ultimately, unsupervised learning can
aid supervised learning models in achieving better
classification performance by providing insights into
the data structure and facilitating the creation of more
effective features.

7. Deep learning methodologies for
shockable arrhythmia detection

A neural network is an artificial intelligence tool that
teaches machines to analyze information like the human
brain does. A specific type of ML technology called
deep learning uses interlinked nodes in a layered pattern
to imitate the human brain. Deep neural networks
are established using more than two fully connected
multilayer perceptrons. DL networks are classified
as convolutional, fully connected, and belief networks
depending on the architecture. The major advantage of the
DL network is that it does not need handcrafted features,
since it forms them automatically. In the literature,
researchers have mostly used the CNN model. The basic
CNN architecture is illustrated in Fig. 4. The CNN has
a signal input layer to hold the raw signal samples and
a convolution layer that performs the feature extraction
and selection process. Moreover, filters are learned in
the CONV layer. The input is convolved with each filter,
and the dot product between the weights of the filters and
the input signal is computed. Next, pooling is used to
reduce the size of the parameters and the computational
complexity.

However, it also reduces overfitting problems. In a
fully connected layer, all activations in the preceding layer
are entirely connected (Li et al., 2016). Thus, matrix
multiplication can be used to identify their activations.
The advantages, disadvantages, and future directions of

DL methods for shockable arrhythmias are listed in Table
8. Acharya et al. (2018) used an 11-layer CNN, and
this approach obtained the highest accuracy in detecting
shockable arrhythmias against non-shockable rhythms but
it obtained less accuracy on short segments of ECG
signals. To boost the performance of CNNs, Sakr et al.
(2023) and to reduce noise, researchers have converted
1D signals to 2D signals. The optimized 2D CNN model
Lai et al. (2021) showed better results in short ECG
segments (3 s). Hammad et al. (2022), to avoid overfitting
problems in DL, converted the 1D signal to a 2D image
and used a hybrid model (combining two learning models)
for classification. The hybrid model combines the feature
extraction of the CNN with the feature memorization
of the convolutional long-short term memory (LSTM)
network.

Picon et al. (2019) proposed a novel deep learning
architecture that integrates 1D-CNN blocks with an
LSTM network, leveraging data from the OHCA
database. This innovative approach significantly enhances
efficacy compared with certain prior deep learning
methods, some of which being tailored for the detection
of life-threatening ventricular arrhythmias. Meanwhile, to
reduce the training time and obtain better results, Tripathi
et al. (2022) used pre-trained CNN architectures such as
Alexnet, DenseNet201, and GoogLeNet, and converted
the 1D signal to 2D images using the superlet transform.
Mathunjwa et al. (2022) converted the 2 s segment 1D
signal to a 2D image using a recurrence plot. In this
approach, VF is classified at the first stage classification
using ResNet-18, which supports more convolutional
layers in the CNN.

Effective management of the resuscitation protocol
during OHCA is crucial during CPR. Jekova and Krasteva
(2021) used an optimized end-to-end convolutional neural
network (CNN) without pre-filtering or additional sensors.
Isasi Liñero et al. (2020) developed a CNN algorithm
to generate dependable decisions regarding shock or
no-shock scenarios during CPR. Chest compression
artifacts were eliminated by applying a recursive least
squares filter. The resulting filtered ECG data was
then inputted into a CNN classifier comprising three
convolutional blocks and two fully connected layers
for shock or no-shock classification. Shen et al.
(2023) devised and authenticated the effectiveness of
a convolutional neural network (CNN) for diagnosing
shockable arrhythmias within a groundbreaking, compact
AED. Krasteva et al. (2023) employed three convolutional
neural networks (CNNs) with raw ECG input (lasting
five, 10, and 15 s) to make shock advisory decisions
during CPR, with 26 consecutive analyses conducted at
one-second intervals.

The integration of the CNN with a recurrent neural
network (RNN), as opposed to utilizing the CNN in
isolation, markedly improved sensitivity values Andersen
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Table 6. Machine learning methodologies used for detecting shockable ECG rhythms.
Author Database Classifier Advantage Remarks Performance

metrics
Li et al. (2009) MITDB, CUDB SVM along with PSR,

Hurst index features
1. Fastest algorithm
2. Obtained good
results with fewer
features

Poor
performance
on 3 s window length

ACC: 90.5
SEN: 90.2
SPE: 90.7

Mohanty (2018) VFDB, CUDB SVM along with DWT,
VMD features

1. Effective features
were extracted

Time-consuming
to find weights
and ranks

ACC: 99.13
SEN: 90.2
SPE: NA

Nguyen et al. (2018a) VFDB, CUDB SVM with a combination
of features

1. No overfitting
2. Less complexity

1. Less accuracy
2. Used public
database without
a clinical
environment

ACC: 95.7
SEN: 90.8
SPE: 96.9

Sharma et al. (2019) MITDB, VFDB SVM along with
Wavelet decomposition,
entropy-based features

1. Obtained better
results on short
window length
2. No need for
preprocessing

Small dataset used
for the implementation

ACC: 98.9
SEN: 99.66
SPE: 98.35

Mohanty et al. (2018) VFDB, CUDB Cubic SVM and C4.5 1. Less complexity
2. C4.5 got good results

More effective
features are needed

ACC: 97.02
SEN: 97.86
SPE: 90.97

Mohanty et al. (2019) MITDB, CUDB, VFDB Decision tree, C4.5,
SVM along with DWT

1. High accuracy
2. Easy to implement

Time-consuming ACC: 99.23
SEN: 98.0
SPE: 99.32

Ibtehaz et al. (2019) VFDB, CUDB SVM along with
EMD, DFT features

1. Overfitting eliminated
2. Classified both
classes accurately

Small datasets used
for developing
the method

ACC: 99.19
SPE: 99.98
SEN: 98.40

Sinha and Das (2020) MITDB, CUDB SVM along with
DWT features

1. Various ECG
arrhythmias
are extracted

1. Complex
2. More feature
combinations
are needed

ACC: 98.82
SPE: NA
SEN: NA

Sharma (2020) MITDB, CUDB, VFDB SVM along with
orthogonal
wavelet features

1. No need for
preprocessing
2. Obtained better
results on short
window length

Used much
less data

ACC: 98.10
SPE: 97.32
SEN: 98.25

Hammad et al. (2021) MITDB, CUDB, VFDB SVM along with
nonlinear features

1. No need for
finding large peaks
2. More robust

Required
more time

ACC: 90.14
SEN: NA
SPE: NA

Panigrahy et al. (2021) CUDB, VFDB, MITDB SVM along with
adaptive boosting
algorithm

1. With fewer features
obtained better
results
2. Needs less
memory for
real-time
implementation

Worse performance
on short WL

ACC: 98.25
SEN: 98.18
SPE: 98.20

Tripathy et al. (2016) CUDB, MITDB, VFDB Random forest
along with VMD

1. Capture the clinical
parameters of ECG
from various modes
2. Each mode
provides
distinct features

Smaller
dataset used

ACC: 97.23
SEN: 96.54
SPE: 97.97

Oh et al. (2017) CUDB, MITDB, VFDB K-NN along with
nonlinear feature
extraction

1. Cost effective
2. Exceptionally good
at capturing
shocking rhythms

Complex ACC: 98.32
SEN: 95.16
SPE: 99.20

Chen et al. (2022) CUDB, PTBDB Fuzzy c-means
clustering

Robust, and
classification
is possible before
the occurrence
of an event

Only four features
extracted

ACC: 98.4
SEN: 97.5
SPE: 99.1
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Table 7. Effects of machine learning algorithms on classification performance.
Learning approach Data labeling Applications Benefits for classification
Supervised learning Required Classification tasks High

(labelled) (e.g., arrhythmia detection) accuracy

Unsupervised learning Not required Data exploration, feature engineering, Improved feature
(unlabelled) data augmentation representation

Input Layer

Convolutional layer

Pooling layer
Fully connected  layer Output layer

C
la

ss
if

ic
a
ti

o
n

Fig. 4. Architecture of the basic convolutional neural network.

et al. (2019). DL algorithms surpass traditional ML
algorithms in detecting shockable arrhythmias, yielding
more robust and reliable results. The primary limitation
of deep learning is the lack of extensive training data
required to achieve high efficiency. Additionally, training
the model is a time-consuming process.

8. Hyperparameter optimization methods
The performance of any model (ML and DL) depends
on its HPO capability (Claesen and De Moor, 2015).
In general, creating an effective model is a complex
and time-consuming task, including selecting
the best algorithm and fine-tuning the model’s
hyperparameters to achieve the best architecture.
Fine-tuning hyperparameters is essential to creating
a successful ML model, particularly for deep neural
networks and tree-based ML models that include
many hyperparameters. Due to the use of many types
of hyperparameters in ML algorithms (for example,
categorical, discrete, and continuous hyperparameters),
the techniques for tuning them vary. DL models work
based on the theory of ANNs. Since the fundamental
neural network architecture is the same for all of these
DL models, their hyperparameters are also similar. DL
models gain more from HPO than other ML models since
they frequently have an abundance of hyperparameters
that need tuning.

Hyperparameters are required since they specify the
model architecture and cannot be directly predicted from
data learning. They must be defined before training an

ML model (Yang and Shami, 2020). To find the best
hyperparameter, the proper optimization method must be
used. Since many HPO problems are non-convex and
non-differentiable optimization problems, conventional
optimization techniques may not be suitable for them and
may instead produce a local rather than a global optimum.
A traditional optimization gradient-based method can
optimize the learning rate in a neural network.

Many additional optimization techniques, such
as decision-theoretic techniques, Bayesian optimization
algorithms, multi-fidelity optimization algorithms, and
MAs, are more appropriate for HPO problems than
standard optimization methods such as gradient descent
(Decastro-Garcia et al., 2019). Decision-theoretic
approaches are grid search (Bergstra et al., 2011;
Nguyen et al., 2018a; Madan et al., 2022) and random
search (Bergstra and Bengio, 2012; Krasteva et al.,
2020) optimization methods. They are founded on
creating a hyperparameter search space, finding the
hyperparameter combinations inside the search space,
and then choosing the hyperparameter combination that
performs the best. Each hyperparameter configuration is
addressed independently in the grid search and random
search. Compared with the former, the best results
were obtained using the latter in arrhythmia detection
(Valarmathi and Sheela, 2021).

Contrary to GS and RS, the Bayesian optimization
(Eggensperger et al., 2013; Elola et al., 2019) model
chooses the next hyperparameter value based on the
outcomes of the previous hyperparameter values, avoiding
numerous unnecessary evaluations. As a result, Bayesian
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Table 8. Deep learning methodologies used for detecting shockable ECG rhythms.
Author Database Classifier Advantage Remarks Performance
Acharya et al. (2018) MITDB, VFDB, CUDB CNN 1. No need for

handcrafted
features

Need a large
database
and training
time is longer

ACC: 93.18
SEN: 93.24
SPE: 96.24

Tseng and Tseng (2020) CUDB, MITDB Deep CNN 1. Low compu-
tation cost
2. Predict the
VF before
the onset

Multicentre
collaboration
is used for
data collection

ACC: 97
SEN: NA
SPE: NA

Panda et al. (2020) CUDB, VFDB CNN along with
FFREWT
decomposition

Possibility of
multi-scale
signal analysis

Less data
used

ACC: 99.03
SEN: NA
SPE: NA

Jaureguibeitia et al. (2020) OHCA CNN Data segments
of 1 s are used

1. Single device
model is used
for data collection
2. Noise was not
eliminated

ACC: 98.6
SEN: NA
SPE: NA

Mathhunjwa et al. (2021) AFDB, CUDB, VFDB,
MITDB

CNN 1. No need
for noise
elimination
and feature
extraction
2. Data augmen-
tation was used

1. Complex
2. High compu-
tational cost and
requires more
memory

ACC: 98.41
SEN: NA
SPE: NA

Lai et al. (2021) MITDB, CUDB,
VFDB, AHADB

Optimized 2D
deep CNN

1. Obtained better
results on the
short segment
2. Robust

Time consumption
and complexity

ACC: 98.82
SEN: 95.05
SPE: 99.43

Dahal and Ali (2023) AHADB, VFDB, CUDB Wasserstein
conditional
generative
adversarial
network, DNN

The proposed
approach
outperformed
compared
with hybrid models

The proposed method
was implemented
only on 4 s segments

ACC: 99.45
SEN: 99.18
SPE: 99.7

Rahul and Sharma (2022) CUDB, VFDB, MITBIH 1D-CNN,
Bi-LSTM

1. Comparated
with 2D-CNN, the
computational
cost is lower
than for 1D-CNN

The overfitting
problem arose

ACC: 99.41
SEN: NA
SPE: NA

Rajeshwari and Kavitha (2022) AHADB, VFDB DNN 1. Selected only
related features
2. No overfitting
problem in the
training

1. Low performance
on ventricular
arrhythmia
classification
2. Computational
time is high
and lower
performance
on lower data

ACC: 98.23
SEN: 92.71
SPE: 95.71

Nguyen et al. (2018a) CUDB, VFDB CNN Detection improved More complex
and more
time-consuming
to train the
classifiers

ACC: 99.26
SEN: 97.07
SPE: 99.44

Nasimi and Yazdchi (2022) MITDB, VFDB, CUDB CNN 1.Implemented
the proposed
model on the
Raspberry Pi
2. No prepro-
cessing stage

More complex ACC: 99.1
SEN: 96.13
SPE: 99.64
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optimization can identify the ideal hyperparameter
combination in fewer iterations than grid search and
random search. It is critical to parallelize Bayesian
optimization models because they balance exploring
unfamiliar areas with exploiting parts that have already
been evaluated.

Researchers have adopted multi-fidelity optimization
algorithms to handle problems with limited data.
Hyperband (Li et al., 2017; Han et al., 2020)
is an improved version of random search, and it
eliminates ineffective hyperparameter configurations in
each iteration to conserve resources and time. Another
alternative solution for HPO is MAs, a class of
techniques used to tackle complex, ample search space
and nonconvex optimization problems. MAs are classified
as single solution or trajectory method population-based
algorithms. Single-solution MAs begin with a single
starting solution and move away from it, describing a
trajectory in the search space (Jaddi and Abdullah, 2020).
Population-based metaheuristic algorithms consider a
group (population) of solutions. However, the most
commonly used algorithms in classifying shockable
arrhythmias are population-based metaheuristic ones
such as evolutionary computation (Cuevas et al., 2017)
and swarm intelligence (Chakraborty and Kar, 2017).
Under evolutionary computation, the genetic algorithm
(Mirjalili, 2019; Katoch et al., 2021; Haupt and Haupt,
2004) is a part of the field, which is inspired by Darwinian
evolution in biology and recombination. Mutation
operators change a population of individuals. Swarm
intelligence aims to generate computational intelligence
through simple analogues of social interaction instead
of purely individual cognitive abilities (Chakraborty and
Kar, 2017).

To detect shockable arrhythmias, Li et al. (2014) and
Nguyen et al. (2017; 2018b) used a genetic algorithm for
optimal feature selection purposes. The problem with the
genetic algorithm is that it works efficiently for sequential
execution but not for parallelization. Genetic algorithms
may sometimes be inefficient due to their very low
convergence speed (Haupt and Haupt, 2004). Another
more popular type of evolutionary algorithm is differential
evolution (Karaboğa and Ökdem, 2004). Panigrahy et al.
(2021) used a differential evolution algorithm to select
the best feature combination. Tashan et al. (2019)
proposed an immune proportional-integral-derivative
control system to regulate heart rate. In this study,
the authors used a differential evolution algorithm to
optimize the controller parameters. The limitations
of these techniques are due to the stagnation of the
population and slow convergence. The other class of
MAs that has recently gained more popularity for optimal
feature selection and optimizing hyperparameters in
classifiers for the classification of ventricular arrhythmias
covers swarm intelligence techniques. The foundation of

swarm intelligence is the assertion that social interaction
in a social environment is the source of intelligent
human cognition. Numerous algorithms use this
sociocognition and can be applied to various optimization
challenges. The individual swarm members operate
autonomously, each exhibiting stochastic behaviour in
their perception of their natural neighbourhood. The
collective group intelligence of swarms allows them to
use their environment and resources efficiently. A swarm
system’s primary trait is self-organization, which aids
in evolving global-level responses through local-level
interactions. There are numerous optimization techniques
presented, motivated by metaphors of swarming activity
in nature, including particle swarm optimization
(Shadmand and Mashoufi, 2016b; Kaliappan et al., 2022),
whale optimization (Rana et al., 2020), grasshopper
optimization (Rajeshwari and Kavitha, 2022; Sharma
et al., 2021), and grey wolf optimization
(Nadimi-Shahraki et al., 2021; Karthiga et al., 2022),
which are used in the classification of shockable
arrhythmias. Moreover, ant colony optimization
(Korürek and Nizam, 2010), migration-modified
biogeography-based optimization (Kaliappan
et al., 2022), bacterial foraging optimization (Kora
et al., 2020), bee colony optimization (Karthiga
et al., 2022), artificial immune systems (Sengur, 2008),
biogeography-based optimization (Kaliappan
et al., 2022), and cuckoo optimization (Sharma
et al., 2021), are used in other arrhythmia classifications
of ECGs.

9. Discussion
SCA primarily arises from VAs, emphasizing the critical
importance of timely intervention. AEDs play a critical
role in identifying cardiac irregularities and delivering
well-timed shocks to restore normal heart rhythms.
Accurate discrimination of shockable and non-shockable
arrhythmias is important within the short duration of ECG
segments. The research rate on shockable arrhythmias
is increasing exponentially, as shown in Fig. 5. From
the literature, we can say that shockable arrhythmias are
classified more accurately using deep learning techniques
over traditional and machine learning techniques. Figure 6
shows the average classification accuracies obtained using
all the discussed methods from the literature.

In time-domain methodologies, TCI and TCSC
obtained high accuracies but considered only positive
peaks and 1 s window analysis, which may not include the
R peaks when the heart rate is too low (less than 60 bpm).
In the TCSC method, the authors considered positive
and negative peaks but did not consider the signal’s
shape. The frequency-domain methodologies, VF filter,
and power spectral analysis are suitable for stationary
signals where the waveform is not altered. In the
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Table 9. Details of ECG databases used for shockable arrhythmias.
Author Database Records Subjects Duration

[min]
Sampling
frequency
[Hz]

Digitization
resolution
[bit/sample]

Channels Arrhythmia
type

Moody and Mark (2001) MIT-BIH 48 47 30 360 11 2 Normal, other
arrhythmias

Goldberger et al. (2000) CUDB 35 – 8 250 12 1 VT, VF, VFL

Greenwald (1986) VFDB 22 16 30 250 12 2 VT, VF, VFL

Greenwald (1986) AHADB 80 – 5 250 12 2 Ventricular
arrhythmias

Greenwald (1986) NSRDB 18 18 24 h 128 – 2 NSR

Greenwald (1986) AFDB 25 25 10 h 250 12 2 AF

1990-1995
7%

1996-2000
9%

2001-2005
12%

2006-2010
16%

2011-2015
23%

2016-2023
33%

���������	�
����������

Fig. 5. Research rate progress in the area of shockable arrhyth-
mia detection.

time-frequency domain, performance accuracy improved,
but problems were faced in selecting the mother
wavelet and decomposition level. The authors proposed
signal-driven multiscale analysis methods such as EMD
and VMD for signal decomposition. Multiscale analytic
techniques show improved classification performance but
have more computing complexity for detecting shockable
arrhythmias. Later, authors proposed ML algorithms
with a combination of traditional methodologies. Most
authors used moving average, notch filters, and low-pass
Butterworth filters in the preprocessing stage to remove
artifacts. The performance metrics for the preprocessing
stage are the root mean square and signal-to-noise ratio.
Moreover, decomposition techniques have been used
before feature extraction.

The feature extraction phase stands as a pivotal
juncture in machine learning algorithms. Nevertheless,
various factors, including the application relevance,
classification technique, and computational efficiency,

weigh significantly in determining the appropriate feature
extraction approach. Some authors have extracted time,
frequency, wavelet, and nonlinear features. Nonlinear
features have shown better accuracies in the classification
of shockable arrhythmias. If the extracted feature set
has high dimensionality, it becomes a critical problem
for the analysis of the ECG signal. Feature selection
and dimensionality reduction methods have been used
to overcome the problem of high dimensionality. The
majority of classifiers used for ECG analysis are the SVM,
KNN, DT, RF, and Bayesian classifiers in ML. In DL,
the most commonly used classifier is the CNN for the
detection of shockable arrhythmias. We recommend using
CNN with other classifiers (hybrid model) to boost the
model’s efficiency. We also recommend the usage of
large databases such as PTB-XL (Wagner et al., 2020),
real-time data, or constructing new large ECG datasets.

In addition, researchers have recently focused on
HPO methods to enhance the performance of ML
and DL models. Compared with grid, random,
Bayesian, and hyperband algorithms, MAs have a more
remarkable ability to solve nonconvex, non-smooth,
and discontinuous problems. However, algorithms
like genetic and particle swarm optimization methods
have more complexity but eventually perform better
for more complex optimization problems. These
metaheuristic algorithms are recommended for all types
of hyperparameters, and are especially suitable for large
configuration spaces, as they can obtain near-optimal
solutions even after very few iterations. They are
restricted to HPO and used for feature selection purposes.
Apart from particle swarm optimization, all other swarm
intelligence algorithms, such as grasshopper, wolf, honey
badger, and ant colony, are also used for HPO. In fact,
these MA algorithms work very effectively when solving
large-scale optimization problems.

Hybrid optimization methods are among the most
fascinating recent trends (Kavya and Karuna, 2024).
Indeed, an increasing number of articles are being
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Fig. 6. Comparison of average performance metrics of all
shockable arrhythmia methods (Hammad et al., 2021).

published about combining metaheuristics with different
optimization techniques. Different metaheuristics can
be used, and hybrid algorithms can also integrate
metaheuristics with local search or exact algorithms
(Blum et al., 2011). Furthermore, combining ideas from
other metaheuristics and research fields might result in
novel and intriguing approaches, such as the integration of
fuzzy logic with several optimization techniques. These
hybridizations can boost the algorithm’s efficiency for
better and more effective problem-solving by utilizing the
advantages of each algorithm.

Accuracy, precision, sensitivity, specificity,
F-measure, and area under the curve are all success
measures for ECG analysis and classification. The
most commonly used measures among all the metrics
are accuracy, sensitivity, and specificity. However,
researchers have used more than one metric to present the
performance.

10. Limitations
After conducting a comprehensive review of a large body
of existing studies in the field of shockable arrhythmia
classification analysis, where several approaches have
been compared and contrasted, one can observe that
most authors have used the Physionet public database.
Hence, the validity of all detection techniques is limited
to the available public dataset only. Moreover, limited
subjects have been used to develop the model. Denoising
methods are crucial for successful detection of shockable
arrhythmias, and good-quality ECG signals are very
important. Therefore, the morphology of the ECG
signal is affected by the position of ECG leads, power
line interference, muscle noise, and other artifacts.
Additionally, issues regarding the lack of globally
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Fig. 7. Average accuracies of shockable arrhythmia detection of
ECG signals on different window sizes (Sinha and Das,
2021).

consistent regulatory norms for the quantity of ECG leads,
databases, ECG analysis technologies, unified evaluation
metrics, and security mechanisms are also a concern.

For quick inference, a short segment length is always
preferred. However, the foremost limitation is the poor
accuracy of the ECG signal’s short segments (window size
2 s or less than 2 s), as shown in Fig. 7. Furthermore,
a more detailed feature set is crucial. A VF signal is
nonlinear and nonstationary exhibiting chaotic behaviour.
The literature shows that an exhaustive set of nonlinear
features (entropy-based, Lyapunov exponents, detrended
fluctuation analysis, etc.) provides good classification
results. Traditional signal processing methods might not
be as accurate as advanced deep and machine learning
methods, although most researchers have used the same
features of traditional signal processing methods. The
limitation lies in the usage of a more informative set of
features in ML and DL techniques, and in a few models,
the same data have been used for training and testing
the models. DL methods extract the features in the
process itself, but they require a large dataset and more
computational time, and have higher complexity. The
complexity of the majority of DL models prevents their
use in practical applications. Moreover, many ML models
are unreliable in facing overfitting problems, making them
unsuitable for practical applications.

The majority of earlier studies gathered ECG signals
from small datasets, such as the MIT-BIH database,
resulting in poor classification results, especially when
employing DL approaches. Moreover, no generalized
methodology for data collection and organisation makes
it challenging to compare data across different databases.
Most of the datasets used belong to imbalanced
data. Despite the general popularity of metaheuristic
algorithms, there will always be disputes about a
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particular metaheuristic’s suitability for handling a variety
of issues. Additional limitations in the context of this
survey paper include the fact that only the classification of
shockable arrhythmias has been evaluated despite the vast
body of ECG arrhythmia-related investigations published
in the literature.

11. Conclusion and future work
An ECG is a valuable and noninvasive method for
diagnosing heart abnormalities. Ventricular arrhythmias
are a critical cause of cardiac arrest. Early detection of
lethal or shockable arrhythmias, followed by proper shock
therapy using AEDs or ICDs, can save patients’ lives.
However, manually reading ECG signals in acute settings
remains challenging. Therefore, automatic ML and DL
detection methods could help doctors accurately screen
and identify lethal arrhythmias.

This review paper comprehensively summarises
methods ranging from traditional signal processing
methodologies to advanced ML and DL models for
classifying shockable arrhythmias against non-shockable
rhythms. This enables readers to understand easily,
progressing from time-domain techniques to advanced
DL models due to the reported advantages, disadvantages,
and future trends of ML and DL approaches. We
provide detailed information on stages such as
preprocessing, feature extraction, feature reduction,
and classification. Additionally, we offered an overview
of some existing proper hyperparameter optimization
techniques (including metaheuristics), which reduces the
burden of manual tuning. Furthermore, we summarize the
databases and performance metrics used in the literature.

In summary, this review paper serves as a
valuable resource for interested readers, providing the
development and understanding of methodologies for
shockable arrhythmia classification from a single source.
Additionally, we hope it will contribute to a better
understanding of the difficulties associated with the
classification of shockable rhythms, motivating future
research on hybrid DL and ML models with proper
metaheuristic optimization techniques along with large
datasets.
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Appendix
In this review paper, all the abbreviations utilized in the
script are shown in Table A1.
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Table A1. List of abbreviations utilized throughout this manuscript.

Abbreviation Full form Abbreviation Full form

ACC Accuracy MEA Modified exponential algorithm

ACF Autocorrelation function MIT-BIH Massachusetts Institute of
Technology–Beth Israel Hospital

AED Automatic external device MITDB MIT-BIH arrhythmia database

AFDB MIT-BIH atrial fibrillation database ML Machine learning

AHA-ADB American Heart Arrhythmia
Association database

PVC Premature ventricular
contractions

AI Artificial intelligence PSR Phase space reconstruction

ANN Artificial neural network RF Random-forest classifier

CAD Computer-aided diagnosis system R Number of records used

CKD Cone-shaped kernel SCA Signal compression algorithm

CNN Convolutional neural network SCA Sudden cardiac arrest

CPLX Complexity measure SCD Sudden cardiac death

CPR Cardiopulmonary resuscitation SEN Sensitivity

CVD Cardiovascular disease SPE Specificity

CWD Choi William’s distribution SPWVD Smoothed pseudo Wigner–Ville distribution

CUDB Creighton University ventricular
tachyarrhythmia database

STE Standard exponential algorithm

CV Cross-validation STFT Short-time Fourier transform

DL Deep learning SVM Support vector machine classifier

DNN Deep neural network TCI Threshold crossing interval

DT Decision tree classifier TCSC Threshold crossing sample count

EWT Empirical wavelet transforms TFD Time-frequency distribution

EMD Empirical mode decomposition VF Ventricular fibrillation

F Number of features extracted VFDB MIT-BIH malignant ventricular
arrhythmia database

FFREWT Fixed frequency range empirical
wavelet transform

VF-Filter Signal content outside
the mean frequency

HPO Hyperparameter optimization VMD Variational mode decomposition

KNN k-Nearest neighbour classifier VT Ventricular tachycardia

MA Metaheuristic algorithms W(s) Window length in seconds
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