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The article presents a comprehensive quantitative comparison of four analytical models that, in different ways, describe
the flow process in transmission pipelines necessary in the task of detecting and isolating leaks. First, the analyzed models
are briefly presented. Then, a novel model comparison framework is introduced along with a methodology for generating
data and assessing diagnostic effectiveness. The study presents basic assumptions, experimental conditions and scenarios
considered. Finally, the quality of the model-based diagnostic estimators is assessed, focusing on their bias, standard
deviation, and computational complexity. Here, several optimality criteria are used as detailed indicators of the quality and
performance of the estimators in a multi-criteria Pareto optimality assessment.
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1. Introduction

One of the most effective ways of transferring a fluid
medium over long distances is through the use of
transmission pipelines. Environmental pollution, millions
of kilometers of pipelines transporting valuable goods
susceptible to theft, and chemical fluids posing potential
hazards and risks of contamination require meticulous
monitoring and rapid detection of leaks. This is crucial
not only from a business point of view, where a leak
means a significant economic loss, but also from an
ecological point of view, where leaks pose a serious threat
to the environment. Therefore, a comprehensive approach
to monitoring and solving problems related to pipeline
safety and ecological pollution is necessary, along with
the implementation of leak detection and isolation (LDI)
systems to detect potential leaks and identify their
parameters. For this purpose, we need the simplest
possible models supporting the LDI methodology.

There are few mathematical models that are
sufficiently reliable and accurate and can be applied in
online practice for pipeline installation and operation
tasks. This work is a comparative study of several
different models suitable for such tasks.

*Corresponding author

The models describing the relationship between
pressure and a flow rate date back to the mid-nineteenth
century. One of the first models was proposed by Hagen
and Poiseuille as well as Darcy and Weisbach (Brown,
2003). These models, due to their simplicity, presented
only generalized relationships and could not express the
full dynamics of the process as well as the effects of the
wide variety of experimental settings occurring during
the pipeline flow. To solve this problem, numerous
domain-specific dynamic models have been proposed,
tailored to the specificity of the LDI task, as shown,
for example, by Billmann and Isermann (1987). The
models have evolved to cover gas (Liu et al., 2005 2017;
Rui et al., 2017; Wii et al., 2020) or liquid (Abhulimen
and Susu, 2004) pipelines, or a general case of fluid
transmission that can be used for both (Gunawickrama,
2001; Kowalczuk and Tatara, 2020; Torres et al., 2021).
Note that there are models that also focus on a more
complex flow, as, for example, the water-glycerol mixture
flow model (Noguera et al., 2019).

There are pipeline diagnostic systems built on a
data-driven approach (see, e.g., Nowicki et al., 2012;
Quiñones-Grueiro et al., 2018). Nevertheless, the
mathematical model is an effective foundational element
of many leak detection concepts. There are a number
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Table 1. Comparison of selected state-of-the-art models for leak detection.

Modeling approach Variables Multiple leaks Branched Source item
Static flow model Pressure and volumetric flow Yes (two) No Ostapkowicz and Bratek, 2023
Quasi steady-state flow model Pressure head and volumetric flow Yes Yes Torres et al., 2021
Pressure drop model for WDN Pressure and fluid velocity Yes Yes Fererdooni et al., 2021
Artificial neural network Pressure head and volumetric flow No No Pérez-Pérez et al., 2021
Transient with leak modeled + EKF Pressure and mass-flow rate No No Doshmanziari et al., 2020

of works covering all or some aspects of this problem
(Kowalczuk and Tatara 2020; 2021; Torres et al., 2021;
2015; Verde and Torres, 2015). These models are
also useful as the basis for simulation and emulation
systems in which we replicate physical processes that
occur in the real world. They can also serve as a
benchmark against which the actual process can be
compared, thereby gaining insight into potential leakage
phenomena. Table 1 summarizes the selected models
used for the pipeline monitoring task, taking into account
the underlying modeling approach, the main variables
monitored, whether the approach is suitable for multiple
leaks, and whether it is applicable to branch pipelines.

Since such models are not the only element of the
fault/leak detection and estimation (FDI/LDI) system that
affects the overall quality of diagnosis, they must be
subject to various conditions and limitations in order to
be objectively assessed in terms of their effectiveness.

Generally speaking, detection tells us whether a fault
has occurred, isolation tells us the type and/or location
of the fault/damage, and identification tells us the extent
of the fault (Kościelny, 1993; Korbicz et al., 1999; 2004;
Gunawickrama, 2001; Kościelny et al., 2016). Therefore,
from the FDI perspective, estimating the location of a leak
means isolating the fault, and assessing the extent of the
leak means identifying the fault.

The novelties introduced in this article are as follows:

(i) comparison of four instrumental analytical and
approximate flow models useful in the task of
detecting, isolating and identifying leakages,

(ii) proposing a framework for the comparative testing of
different models,

(iii) analysis of the pipeline process model carried out in
various experimental conditions, taking into account
the variable impact of noise, and

(iv) comparison of the performance of models in terms of
multi-criteria Pareto optimality.

Therefore, the aim of this paper is to demonstrate
and compare alternative pipeline flow models in terms of
computational complexity and performance for use in a
range of leak detection and isolation tasks. The proposed
framework can be used to compare models under

uncertainty and to demonstrate a quantitative measure of
the model’s noncompliance with reality. The proposed
models are a proven and effective alternative to the
well-known base model, because with comparable results
and operational efficiency they offer lower computational
complexity, which is especially important in the context
of online diagnostic applications.

Our algorithmic approach makes great practical
sense for implementing FDI/LDI methods based
on analytical models, generally called model-based
approaches. This is a typical modern computer-based
method of dealing with signal processing, used in
the construction of controllers, identifiers, estimators,
detectors, etc. The work presented is strongly related to
industrial systems processes, including chemical sciences
and pipeline fluid transport systems.

The article is organized as follows. First, we will
introduce the modeling methodology used for residual
generation. Next, we will bring up ideas related to leak
detection, isolation and identification. It is important
that, with industrial implementations in mind, the methods
considered in this work are based on fundamental
dependencies and are shaped in such a way that they are
characterized by the greatest simplicity.

2. Methodology
This work aims to computationally investigate how
the different instrumental models used in the standard
structure of fault detection and isolation (FDI) projects
affect the resulting system performance. In order to make
the presented methodology comprehensible, the general
LDI computing framework used to conduct our FDI
experiments is first presented. Note that this document
is not intended to describe branched pipelines or multiple
leak scenarios. It focuses on comparing models
under uniform conditions, excluding such complexities.
Additionally, to facilitate comprehensive inclusion of
branches in the analysis, effort must first be put into
developing a good T-junction (three-way branch) model.

The LDI computing framework shown in Fig. 1
consists of a data generation block that provides data to
each of the instrumental models at the same time. After
each step of the simulation process, the same residual
generation and leak assessment method is applied to all
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Fig. 1. Employed LDI computing framework with the same input supplied to each (parallel) path using a different instrumental flow-
process model and a separate processing path consisting of the same processing blocks. The arrows indicate the data flow and
each arrow shade indicates data related to a specific model. Note that the same input values (ũk) containing pressures and
inlet/outlet mass-flow rates (q̃k0 and q̃kN ) are fed to each model in the same way.

instrumental models, each of which predicts the pipeline
output differently, to obtain diagnostic results. Such
outcomes, associated with each model, are then analyzed
and compared in the model comparison block. All
the models considered work under identical conditions
(determined by the physical flow parameters and the
discretization grid).

2.1. Base model. In order to compare the instrumental
models, the one-dimensional (in the spatial sense) base
model was adopted as the starting and reference point.
Based on this, it can be conclusively stated what other
instrumental models offer in relation to the method
reliably established and already validated in the literature.
As the base model is also the starting point for deriving
new models, it is referenced before discussing the
proposed LDI computing framework in detail.

The base model is derived from the following set of
partial differential equations (PDEs) describing the flow in
the pipeline under consideration (Billmann and Isermann,
1987):

S

ν2
∂p

∂t
+

∂q

∂z
= 0, (1)
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− g sinα

ν2
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where S is the cross-sectional area [m2], ν is the surrogate
velocity associated with the isothermal speed of sound in
the fluid [ms ], D is the diameter of the pipe [m], q is
the mass flow [kgs ], p is the pressure [Pa], t is the time
[s], z is the spatial coordinate [m], λ is the generalized
dimensionless friction factor, α is the angle of inclination
[rad], and g is the gravitational acceleration [ms2 ]. Properly
used physical parameters concern not only the geometric
characteristics of the pipeline, but can also reflect the type
of fluid transported in it.

It is worth noting here that the friction coefficient
used here (Darcy friction factor) serves as an aggregator
of many friction-related influences, including, but not
limited to, factors such as viscosity and roughness, which
allows it to be treated as a generalized instrumental
coefficient. A more specialized formula for calculating
the friction coefficient can also be used, such as the
Hazen–Williams equation (for water as a medium) or
the Colebrook–White equation (White, 2011). However,
due to the high level of complexity involved in modeling
and estimating friction, but also taking into account the
diversity of fluids, we do not delve into this area in this
paper. We refer the interested reader to the considerations
contained in the works of Dulhoste et al. (2011), Jiménez
et al. (2017), Santos-Ruiz et al. (2021) and Pahlavanzadeh
et al. (2024) for further exploration of this topic.

To obtain a discrete-time model, the following finite
difference schemes are applied to the continuous-time
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model of (1) and (2): using the second order backward
time scheme (de Vahl Davis, 1986)

∂x

∂t

.
=

3xk+1
d − 4xk

d + xk−1
d

2Δt
(3)

and the second-order scheme in the space domain
(time-averaged over two consecutive time steps)
(Billmann and Isermann, 1987)
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4Δz
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where Δz and Δt are, respectively, the time and
spatial steps, which are referred to as the discretization
parameters.

Leading to relatively low-order systems, the above
schemes provide smaller approximation errors than the
first-order approach (de Vahl Davis, 1986). For brevity, it
is assumed that the subscripts indicate the pipe segment
index and the superscripts denote the step number
in discrete time. After discretization, we obtain the
following nonlinear transition equation (singular due to
the A matrix) in the state space:

Ax̂k = Bx̂k−2+C
(
x̂k−1

)
x̂k−1+Dũk−1+Eũk, (5)

where the state and input vectors are defined as

x̂k =
[
q̂k0 q̂k2 q̂k4 · · · q̂kN

p̂k1 p̂k3 p̂k5 · · · p̂kN−1

]T
,

ũk =
[
p̃k0 p̃kN

]T
,

where p is the pressure and q is the mass-flow rate
(Billmann and Isermann, 1987).

To limit the size of the paper, for a detailed
description of the above matrices, we refer the reader to
the relevant article (Kowalczuk and Tatara, 2021). The
hat symbol (ˆ ) indicates the estimated measures, while
the tilde ( ˜ ) denotes the measured values. As above,
subscripts are spatial coordinates and superscripts are
discrete time moments.

The parameters appearing in the state equations are
directly related to the data resulting from the geometry,
flow characteristics, and discretization constants. The
detailed tuning aspects of these models are thoroughly
covered in our previous work (Kowalczuk and Tatara,
2020), showing, among other things, how to select a
Courant number based on these data. It should be noted
that in flow models there is a friction coefficient, which is
crucial for the reliability of the model and is an important
tool in its adaptability (Kowalczuk and Gunawickrama,
2004; Kowalczuk and Tatara, 2021).

2.2. Data generation. To reliably compare the
performance of the instrumental pipeline-flow models
under different operating conditions, we need input and
reference data. The process of collecting a representative
set of data from real pipelines is both costly and difficult
to coordinate, especially for long transmission pipelines.

On the other hand, extensive and representative data
can be obtained by simulation means. This approach can
provide data from a fully validated source, and at the same
time opens the possibility to tune the flow parameters
in any wide range (allowed for the implemented model).
Certainly, the simulation has a numerical nature and the
gained data will never match perfectly those obtained
from the relevant real pipeline. Nevertheless, due to the
uncertainty of parameters, bias and measurement noise,
also the field signals collected in the real installation
are characterized by high uncertainty and stochasticity.
Therefore, we generally assume that for a sufficiently high
order of the simulation algorithm (relating to the number
of pipeline sections simulated) the data can be sufficiently
accurate, which allows us to objectively compare the
instrumental pipeline-flow models considered.

For the data generation task, a simulator developed
and validated against experimental industrial data by
Gunawickrama (2001) was used. This simulator is suited
for isothermic and incompressible flow and consists of
an adequately modified base model to generate the inlet
and outlet pressures and flow rates. In the PDE model
describing the flow process given by (1) and (2) used in
this simulator, the leakage (qL [kgs ]) can be easily included
in the mass-balance equation as follows:
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After discretization, the above operation implies new
elements in the corresponding difference equation, as a
result of which the state space model (5) is modified by
the expression describing the outgoing mass-flow rate:
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with the matrix Q ∈ R
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where b = 1
4Δz and the vector vk ∈ R

N+1 is given by

vk =
[
0
1×dL−1

2
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0
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2

]T
, (9)
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where the symbol dL (odd number) represents a pair of
consecutive segments (therefore, odd and even) within
which a leak occurs, the total number of such pairs
being N/2 − 1. This pair symbol is sufficient to capture
both relevant variables (pressure and flow rate) evaluated
alternately in consecutive (even and odd) segments.

Consequently (except for the first segment), all odd
segments (3, . . . , N − 1) in (5) and (9) are represented
by their preceding (even) segment marked with the index
dL = 2, 4, . . . , N − 2 (note that flow rate q̂k0 and pressure
p̂k1 are excluded from this leak consideration). In the
simulation, we therefore have a total of N

2 − 1 points
over which the leakage can be distributed. In practice,
qkL(dL−1)

and qkL(dL+1)
placed in odd-numbered segments

in the immediate ‘vicinity’ of the leaky pair of segments
(understood as this segment and the preceding one) are
calculated as follows:

qkL(dL+1)
= qkL

l1
l1 + l2

, (10)

qkL(dL−1)
= qkL

l2
l1 + l2

, (11)

where l1 and l2 are the leakage distances from the left and
right ends of the leaking pair of segments, respectively, as
shown in Fig. 2.

The above formulas can be used both in simulation
and in estimation. It is worth emphasizing here that the
position of the estimated leak does not have to be limited
to the spatial grid used (along the z variable) because,
as shown in the above two equations, any (exact) leak
position in the range [0, L] can be calculated from leak
estimates positioned in the grid.

In the scope of this research, we assume the
existence of two distinct categories of leaks: those that
manifest abruptly and those that develop gradually over
time. These leaks may be conceptualized as sudden or
slow-developing degradation, respectively. While the first
type can be simulated as a step change, the second one can
be modeled as follows:

q̂kL =

{
0 for kΔt < tL,

qL

(
1− exp

(
−kΔt

td

))
for kΔt ≥ tL,

(12)

where tL is the leak occurrence time, and td is the time
constant of leak development understood as the time
required to achieve a 63% of the modeled leak size qL.

To obtain experimental data, the state space model
from (7) with a slowly developing leak (12) is used.
The simulation model used to generate the data has
already been verified in numerous experiments and in the
literature (Gunawickrama, 2001; Korbicz et al., 2004).

2.3. Residual generation and leak detection. As
the basis for the leak detection performed, the residual

signals are calculated by comparing the results of the
instrumental models with the generated measurements. In
order to obtain the appropriate conditions for the intended
residual generation, the parameters and state of the LDI
system must be properly initialized (including steady state
setting), otherwise false detection symptoms can occur. A
detailed description of the leak detection methodology can
be found in the literature (Gunawickrama, 2001; Korbicz
et al., 2004; Isermann, 2011).

2.3.1. Residual generation. After the initialization
phase, the residual signals are calculated in each iteration
of the diagnostic algorithm:

r̂k =

[
r̂ki
r̂ko

]
=

[
q̃ki − q̂ki
q̃ko − q̂ko

]
, (13)

where q̃ki and q̃ko are measurements of the inlet and outlet
mass-flow rates, and q̂ki and q̂ko are the estimates of the
inlet and outlet flow rates obtained from the instrumental
model under test, respectively. Note that the inlet and
outlet flow rates are included in the state vectors of the
model (5) as q̂ki ≡ q̂kN and q̂ko ≡ q̂k0 .

2.3.2. Leak detection. As noted, the leak detection
task is performed on the basis of the residual signals. In
the simplest case, the decision on whether or not to trigger
an alarm can be made on the basis of the raw residuals
(using only low-pass filtration). In the event of a fault or
leak, such values simply deviate from zero. Nevertheless,
due to the presence of different noise signals, the residual
values usually fluctuate and are never really zero. On the
other hand, the results are more reliable when we compute
the cross-correlation of residuals using low-pass filtering
with a forgetting factor βc (Billmann and Isermann, 1987;
Gunawickrama, 2001):

Φk
i,o(τ) = βcΦ

k−1
i,o (τ) + (1− βc) r̂

k−τ
i r̂ko . (14)

Next, the above is summed up for all analysed time shifts
τ = 1, 2, . . . , τmax:

Φk
Σ =

τmax∑

τ=1

Φk
i,o(τ). (15)

With a leakage, the value of the aggregated
cross-correlation index decreases. Then, to detect
leaks, this indicator must be compared with some
threshold Φth:

Φk
Σ < Φth. (16)

Consequently, if the above condition is met, an alarm is
triggered (a leak detection decision is made), followed by
the diagnosis phase.
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Fig. 2. Simulated pipeline with leak size qL distributed in the immediate vicinity, where l1 and l2 are the distances from the right ends
of two consecutive odd segments that are closest to the leak location (Tatara, 2014).

2.4. Leak diagnosis. When a leak is detected, a phase
is performed to isolate and identify the leak. The purpose
of this part of the diagnosis is to determine the location
and size of an existing leak, and to monitor it for further
changes.

2.4.1. Leak location. The location of an existing leak
can be determined by the specific shape of the pressure
distribution along the pipe. According to the established
knowledge (Gunawickrama, 2001), the leak location zL
can be specified as

ẑkL = L

(

1−
(
q̃ki
)2 − (q̂ki

)2

(q̃ko )
2 − (q̂ko )

2

)−1

. (17)

The above can be rearranged to highlight the residuals

ẑkL = L

(

1−
(
q̃ki − q̂ki

) (
q̃ki + q̂ki

)

(q̃ko − q̂ko ) (q̃
k
o + q̂ko )

)−1

= L

(

1− r̂ki
(
q̃ki + q̂ki

)

r̂ko (q̃
k
o + q̂ko )

)−1

.

(18)

This formula can be further simplified assuming that the
leak in question is small. For more information on such
a simplification, the reader is referred to the works of
Billmann and Isermann (1987), Gunawickrama (2001) or
Isermann (2011). Nevertheless, our application assumes
that the above leak location estimate is both feasible and
sufficient.

To further reduce the impact of the measurement
noise, another low-pass filter is implemented in an
iterative form with the forgetting factor βz :

ŵk
z = βzŵ

k−1
z + (1− βz) ẑ

k
L, (19)

where ŵk
z is the filtered estimate of the leak location

variable zkL to be determined. The above filter, given by
(19), will be called the leak location effective estimator.

2.4.2. Leak size. When a leak occurs, the inlet mass
flow rate increases and the outlet mass-flow rate decreases,
and the size of the leak can be easily determined
as the difference between inlet and outlet flow rate
measurements:

q̃kL = q̃ki − q̃ko . (20)

To reduce the variance of this estimate, the improved
balance sheet approach (Gunawickrama, 2001) can be
used instead:

q̂kL = E{r̂ki − r̂ko}, (21)

where E{·} is the expected value operator. This approach
involves the use of certain reference values (in particular,
the output of the instrumental model contained in residual
signals), which can also compensate for the calibration
errors of sensors (Gunawickrama, 2001).

The expectation operator can also be mechanized
using a low-pass filter with a forgetting rate βq:

ŵk
q = βqŵ

k−1
q + (1− βq) q̂

k
L, (22)

which (ŵk
q ) will be referred to as the leak size estimator.

2.5. Estimation of the friction factor. When dealing
with real pipelines, the value of the coefficient of friction
is usually only roughly known. This is due to the complex
(nonstationary nonlinear) nature of this quantity, which
is affected by changes over time, including the aging
of the pipe and its instrumentation. This phenomenon
can be attributed to corrosion, roughness changes, fluid
deposition, tuberculation, and other factors (Larson, 1960;
Vítkovský et al., 2000). To obtain reliable LDI results,
the friction coefficient assessment should be done online
or at least performed at the start of the LDI system
operation. This article uses the methodology described in
a publicly available report (Kowalczuk and Tatara, 2020).
Other approaches that can be used here are discussed by
Dulhoste et al. (2011), Jiménez et al. (2017), Santos-Ruiz
et al. (2021) and Pahlavanzadeh et al. (2024), while the
problem of simultaneous evaluation of leakage parameters
and friction coefficient is considered by Doshmanziari
et al. (2020) and Pérez-Pérez et al. (2021).
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The following is the equation for calculating the
friction coefficient, derived from the Colebrook equation
(Kowalczuk and Tatara, 2020):

λ(p) =

(

−2 log10

[
ε

3.7D
+

2.51μ
√
Lκ(p)

√
2ρD3(pi − po)

])−2

,

(23)
where ε is the roughness height [m] and κ(p) is the
correction factor resulting from the approximate nature of
the Darcy–Weisbach equation given as (Kowalczuk and
Tatara, 2020)

κ(p) =
4

3

(
1− pipo

p2i + 2pipo + p2o

)
. (24)

2.6. Summary of the methodology used. The
experimental data were generated using a verified pipeline
simulator. The resulting pressure measurement samples
(ũk) go to four instrumental models, as shown in Fig. 1.
The vector

ŷk =
[
q̂ki q̂ko

]T

is then constructed from the estimates of the mass-flow
rate at both the ends of the pipe. Ultimately, the mass-flow
measurements and their estimated values are used to
calculate the residual vector of (13).

When the collective cross-correlation computed by
(15) is below a predetermined threshold, an alarm is
triggered and the system proceeds to the next diagnostic
phase in which the practical values of leak location (ẑkL)
and leak rate/size (q̂kL) are computed using the diagnostic
estimators described by (19) and (22), respectively.

3. Analyzed models
Starting with the base model as the most popular
reference, we have developed three other models
that describe the process of isothermal flow of an
incompressible fluid through a pipeline. All these
instrumental models will be validated in the LDI task.
To conduct a comparative study, the LDI computational
framework from Section 1 (Fig. 1) was used, which
allows the analysis of the operation of each of the
described models and evaluation in terms of diagnostic
effectiveness. Below, rather than a full explanation, we
only provide a brief overview of the main ideas behind
each modeling approach, and refer the reader to other
publications for more detailed information.

3.1. Analytic model of diagonal approximation. The
second model is derived on the basis of the assumption
that (5) can be shown in the following (nonsingular) form:

x̂k = A−1
(
Bx̂k−2 +C

(
x̂k−1

)
x̂k−1

+Dũk−1 +Eũk
)
,

(25)

where the recombination (or descriptor) matrix A is
inverted using matrix partitioning (Brogan, 1991).

For the established, specific structure of the matrix
A, one can derive an analytical approximation of its
inverse (by replacing the tridiagonal matrices with their
diagonal equivalents) (Kowalczuk and Tatara, 2016). The
model related to the approximate inverse of the matrix A
is called the analytical model of diagonal approximation
(AMDA). For a complete explanation of this instrumental
model, the reader is referred to our previous work
(Kowalczuk and Tatara, 2016).

3.2. Analytic Thomas model. To reduce the
computational complexity, the sparsity of the matrices
in the state space model given by (5) allows the
re-arrangement of this model to the form corresponding
to the Thomas algorithm (Conte and de Boor, 1980).

The related procedure in the work of Kowalczuk
et al. (2018) takes into account the specific structure of
the submatrices in the recombination matrix A. Two of
them are square and diagonal, whereas the other two are
nonsquare band matrices with the band width equal to 2.
As a result, the model of (5) can be shown as

Ax̂k ≡
[

A1 A2

A3 A4

]
x̂k

= w
(
x̂k−1, x̂k−2, ũk, ũk−1

)
,

(26)

with

x̂k =

[
q̂k

p̂k

]
, w =

[
g
h

]
,

where q̂k ∈ R
N
2 +1 and p̂k ∈ R

N
2 being flow

rates and pressures in subsequent segments in the k-th
computational moment, while g ∈ R

N
2 +1 and h ∈ R

N
2

are collective functions of the elements of the right side
of (5).

By defining

ğ =
g

c
, Ă2 =

A2

c
,

h̆ =
h

a
, Ă3 =

A3

a
,

where
a =

3S

2ν2Δt
, c =

3

2SΔt
,

we eventually get
(
I− Ă2Ă3

)
q̂k = ğ− Ă2h̆, (27)

(
I− Ă3Ă2

)
p̂k = h̆− Ă3ğ. (28)

The results of the matrix multiplications Ă3Ă2

and Ă2Ă3 are tridiagonal, and therefore the expressions
I − Ă3Ă2 and I − Ă2Ă3 are also tridiagonal
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matrices. Hence, the Thomas algorithm (Thomas, 1949)
can be applied assuring the computational complexity
of order O(N) (Conte and de Boor, 1980). The
derived instrumental model, allowing the equivalent
determination of successive state vectors, will be called
the analytic Thomas model (ATM). The full derivation of
this model can be found in our previous work (Kowalczuk
and Tatara, 2017).

3.3. Model of steady state. Suppose the LDI system
is installed in a constant flow pipeline when both pressure
and flow rate remain the same over time (Kowalczuk and
Tatara, 2018). Thus we can consider ∂q/∂t → 0 and
∂p/∂t → 0 in (1) and (2) to be satisfied approximately for
such a constant flow. In such cases, the partial differential
equations are reduced to ordinary differential equations,

dq

dz
= 0, (29)

dp

dz
= −C3

q|q|
p

, (30)

which can be solved for a constant mass-flow rate
and pressure distribution in a pipeline. The resulting
solution can be provided separately for the zero and
nonzero inclination angle cases, as shown below, where
the tilde does not appear over pi and po, highlighting
both the practical (computational and measurement)
and theoretical (physical) aspects of the mathematical
formulas presented below.

3.3.1. Zero inclination angle, α = 0. The constant
mass-flow rate is

q = sign
(
p2i − p2o

)
√∣
∣
∣
DA2

λν2
p2i − p2o

L

∣
∣
∣, (31)

where sign(x) is 1 for x ≥ 0, and −1 otherwise, and the
pressure distribution along the pipeline is

p =

√

p2i −
p2i − p2o

L
z. (32)

3.3.2. Nonzero inclination angle, α �= 0. The
mass-flow rate at a nonzero angle of inclination can be
calculated in accordance with (33), and the corresponding
pressure distribution along the spatial coordinate z is
given by (34).

Note that we have a singularity above for α → 0.
In this case, however, it is recommended to use the other
model suitable for the zero inclination angle (α = 0).

The above dichotomous models describing steady
state flow for zero and nonzero slope angle, respectively,
will be collectively referred to as the analytical model of
steady state (AMSS), whose detailed derivation can be
found in our previous work (Kowalczuk and Tatara, 2018).

4. Validation of the diagnostic models and
estimators

In order to properly evaluate all of the above instrumental
models of the pipeline process for their application to LDI
systems, the influence of system (hyper)parameters on
the desired diagnosis will be investigated. As the system
output variables are strongly influenced by measurement
noise, leak size/rate and leak location, the problem
is multi-folded. Therefore, the practical experimental
settings considered must be adequately reflected by
rationally selected system parameters.

4.1. Statistical characteristics of estimates. Suppose
that pressure and flow rate measurements are subject to
noise, modeled as an additive Gaussian process with zero
mean and variance σ2

m. Additionally, let us assume that
the noise (in percent) for the flow measurement is an order
of magnitude greater than for the pressure measurement
(here you can refer to data provided by manufacturers
(e.g., Omega, 2019; Sensirion, 2019; JUMO, 2019;
VEGA, 2019).

Of course, the assumption of Gaussian noise is
a significant simplification of the problem (e.g., Lam
et al., 2019), where the noise is modeled as a Rayleigh
distribution). Nevertheless, the Gaussian model is widely
used in the literature (Pérez-Pérez et al., 2021) to make
modeling more convenient and to allow researchers to
focus on the fundamental problems that need to be solved.

Diagnostic estimates of the size and location of a leak
are evaluated for the expected bias and standard deviation
of the error obtained. The corresponding systematic errors
are determined as the deviation of the mean value (taking
into account the sign):

ˆ̄wq =
1

n

n∑

j=1

ŵqj − qL (35)

for the estimate of the leak size and

ˆ̄wz =
1

n

n∑

j=1

ŵzj − zL (36)

for the leak location estimator, where n represents the
number of experiment runs performed.

The standard deviation (STD) of estimation errors
can be determined for the leak size estimator as

σ̂q =

√√
√
√ 1

n− 1

n∑

j=1

(
ŵqj − w̄q

)2 (37)

and for the leak location estimator as

σ̂z =

√√
√√ 1

n− 1

n∑

j=1

(
ŵzj − w̄z

)2
. (38)
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q =

√√
√
√
∣
∣
∣
∣∣
2DS2

λν2
g sinα

ν2

(
p2i − p2oe

2 g sinα

ν2 L

e2
g sinα

ν2 L − 1

) ∣∣
∣
∣∣
sign

(
p2i − p2oe

2 g sinα

ν2 L
)
, (33)

p =

√√
√
√e−2 g sinα

ν2 zp2i +

(
p2i − p2oe

2 g sinα

ν2 L

e2
g sinα

ν2 L − 1

)
(
e−2 g sinα

ν2 z − 1
)
. (34)

Table 2. Reference physical parameters of the pipeline flow pro-
cess used in the simulation.

Parameter Value
Length of the pipe L 100km

Diameter of the pipe D 0.4m

Speed of sound ν 350 m
s

Friction factor λ 0.02
Number of segments N 10
Inclination angle α 0◦

Inlet pressure pi 112.28bar

Outlet pressure po 80bar

Leak location zL
{0.1; 4; 13.87; 40;
73.75; 98.2} [km]

Leak size qL
{0; 0.04; 0.1; 0.4; 0.8;
1.6; 2; 4; 8; 16} [kgs ]

Leak occurrence time tL 105.5min

Leak development time td 17.5min

In the summary of LDI: we use two types of
diagnostic estimators to determine the size and location
of the leak. They will be assessed in terms of bias and
standard deviation, as universal measures of estimation
quality.

4.2. Deterministic and stochastic experimentation.
Reference physical parameters of the flow process are
given in Table 2. Using these parameters, simulation data
was generated consisting of pressures and mass-flow rates
at the inlet and outlet of pipelines for various experimental
settings. The number Ns of segments implemented in the
simulator was set to 100. The inlet pressure was selected
so that the resulting flow under leak-free conditions was
approximately 40 kg

s .
Another set of system parameters concerning the

computation and simulation process is shown in Table 3.
Parameters representing the modeled percentage of
measurement noise and its standard deviation in the inlet
and outlet measurements are presented in Table 4.

In the diagram of Fig. 1, pressures and mass-flow

rates are determined in the Data Generation block (with
the simulation environment) and introduced into the
designed LDI systems directly and through appropriate
instrumental models. However, the instrumental models
were first initiated to reach a steady state and estimate
the coefficient of friction, and only then were the models
fed with the generated data. The residual signals were
next calculated. After the leak was detected, appropriate
estimates of the size and location of the leak were made.

Additionally, to visualize the stochastic properties
of the estimates, the error probability distribution of this
estimation was approximated by a Gaussian fit, with the
number n of the runs (exceptionally) set to 1000. The
distribution functions obtained are shown in Fig. 3 for the
leak size estimates, along with their characteristic values
of the systematic error and STD. Taking into account the
shape of the probability distribution functions (PDFs) in
question, the effectiveness of the leak location estimators
was similar; therefore, they are not shown here.

As can be seen, the Gaussian curves fit the data
satisfactorily, so the use of Gaussian PDFs is fully justified
in modeling these quantities, and the resulting bias and
standard deviation are sufficient characteristics of these
probability distribution functions.

The issue of selecting the tool parameters of the
analyzed model and research procedures is very complex.
The reader interested in a deeper analysis of this problem
is referred to our previous work (Kowalczuk and Tatara,
2021). Here we only provide a shortened commentary
showing the general context that is important for correct
implementation of the LDI system tuning process. In
this process, the basic physical and geometric parameters
of the flow process are taken into account, and the
remaining variables are adaptively adjusted. In particular,
the fundamental issue of selecting sampling periods
and sensor locations, determining the granularity of the
temporal and spatial domains (discretization mesh), can
be solved within the Courant–Friedrichs–Lewy condition
(Kowalczuk and Tatara, 2021). Further research on this
topic is ongoing and focuses on finding new conditions
for sampling variables describing the current flow that
guarantee the stability of the discrete flow model. Our
meticulous approach allows us to reconcile the number of
observations with the complexity of the simulated process,
ensuring the stability of the model and the appropriate



400 M.S. Tatara and Z. Kowalczuk

Table 3. Computational parameters of the LDI system used in the simulation study.
Parameter Value
Courant number μ 0.17
Detection threshold Φth 0.01
Forgetting factors βc, βz, βq, βλ 0.99
Maximum shift τmax for cross-correlation 20
Number of runs n 200
Length of segments Δz 10 km
Sampling time/numerical procedure step Δt 4.76 s

Table 4. Statistical indicators of the stochastic experimental system setup.
Indicator Value
Noise percentage w.r.t. pressure readings vrdgp

0.1% of readings
Noise percentage w.r.t. mass-flow rate readings vrdgq

1% of readings
Standard deviation of inlet pressure noise σmpi 0.056bar
Standard deviation of outlet pressure noise σmpo 0.04bar

Standard dev. of inlet mass-flow rate noise σmqi 0.2 kg
s

Standard dev. of outlet mass-flow rate noise σmqo 0.2 kg
s

ATM
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Fig. 3. Gaussian fitting of the estimation errors obtained in the leak size estimators considered based on the four instrumental flow
models, for experimental data from 1000 observations (the values above the graphs are written in E-notation, a form of scientific
notation in which the value before the letter ‘e’ is multiplied by 10 to a power equal to the value after the symbol ‘e’).
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accuracy and usefulness of the research results.

4.3. Assessment of the quality of estimators. The
quality of the estimators is assessed in terms of their
accuracy, reflected in their bias, which tells how the
obtained estimates relate to the actual value they estimate.
Thus, the lower the bias, i.e., the difference between
the actual value and its estimate, the more accurate the
system. In turn, the precision of the estimator is reflected
in its standard deviation, which the smaller it is, the more
accurate the estimator (Bos, 2007).

In our LDI simulation study, the
evaluation was performed for 60 experimental
settings: 10 values of leak size qL ∈
{0, 0.04, 0.1, 0.4, 0.8, 1.6, 2, 4, 8, 16} [kgs ], and six
of leak locations zL ∈ {0.1, 4, 13.87, 40, 73.75, 98.2}
in km. In addition, seven different percentages
vrdgp

∈ {0, 0.01, 0.05, 0.1, 0.5, 1, 5} [%] of noise
introduced into the pressure readings (but only) were
included for the leak events qL = 4 kg

s and zL = 40 km.
All the above-mentioned experiments were used to

evaluate the analyzed diagnostic estimators for their bias
and standard deviation. It is certainly difficult to clearly
identify the best pair (model, estimator), because its
diagnostic quality consists of many factors. Therefore,
the problem of choosing the appropriate comparative
criterion arises. One of the most common and elegant
approaches to multi-criteria problems is optimization in
the sense of Pareto, which introduces a practical ranking
of solutions (Kowalczuk et al., 1999; Deb et al., 2003;
Deb and Gupta, 2005).

The computational complexity of the analyzed
instrumental models of flow processes may be related to
both the computational time (ti) necessary for a single
iteration and the steady-state settling time (ts).

The performance measures obtained in this part of
the study are collected in Table 5, taking into account
the parameters of the computational system and the
experimental setup from Tables 2 and 3, respectively, and
taking into account the isolation and identification tasks.

In order for the above measures to be comparable,
they should be normalized with respect to their individual
value ranges. As can be seen in Table 5, systematic errors
in leak size and location can be both positive and negative,
so they only need to be converted to positive (profit)
or negative (loss) values before further processing and
final use in the appropriate maximization or minimization
task. This can be done by appropriately (as minimally
as possible) shifting all measure values up or down (and
applying negation if necessary).

Therefore, in our analysis, in the first step we
normalize the obtained values to ensure that they are
strictly positive or zero. This typical normalization
procedure involves subtracting the minimum value within
the criterion and dividing it by the range of the maximum

and minimum values. As a result, all values for a given
criterion will then fall within the specified range [0, 1].

Assuming that the maximum value of the criterion
is K and the minimum value is M , the conversion of the
original value vm (the criterion value for the instrumental
model) to its normalized value vn is expressed as follows:

vn =
vm −M

K −M
. (39)

Consequently, this establishes a standardized
minimization problem. To transform it into a convenient
maximization scheme, each resulting value is subtracted
from 1, keeping the range within [0, 1]. As a result of this
maximization-adjusted data transformation, we obtain
normalized performance metrics for all instrumental
models presented in Table 6.

The sound speed considered, as indicated in Table 2,
is specific to gases. To ensure the generalizability of the
results to liquids, additional experiments were performed.
These included scenarios with I: the speed of sound
(450 m

s ), being the reference experiment, II: a higher
speed of sound (1482 m

s ), III: this increased speed of
sound combined with a higher coefficient of friction
(0.06), and IV: this increased speed of sound at a leakage
level of 10% of the flow rate. Each of experiments II–IV
was compared with a gas-specific scenario I.

In all experiments except IV, a simulated leakage
rate of 4 kg

s was maintained at a distance of 40 km. In
experiment IV, the leakage rate was set at 1 kg

s .
The time indicators in all experiments presented

similar values and were therefore excluded from
further analysis. Furthermore, as shown in Appendix
(Section A.1) with Table A1, in view of the data from
experiments II–IV, the standard deviations and systematic
errors (bias) in the leak size estimator were at least three
times smaller than the errors observed in the reference
experiment I. However, the bias in estimating the leak
location is larger in the case of liquid (II–IV) than of gas
(I). In all cases, the relative dependencies between the
indicators assigned to individual models were maintained.
Generally speaking, the gas scenario is more demanding
for a leak detection system. Therefore, in the remainder
of the article we will focus on experiments with a
lower sound speed of 450 m

s , corresponding to the gas
transport process. It is also worth paying attention to
experiment III (with an increased friction factor), which
shows optimality due to the errors in estimating the
leakage size (lowest LSE bias and STD). Basically, we
observe here the impact of reducing these estimation
errors as a result of increasing the speed of sound or the
coefficient of friction. This means that the increase in
factors responsible for slowing down the flow rate (31)
also contributes to the increase in precision and accuracy
of estimating the leak size.
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Table 5. Averaged quality measures of the estimators of z̄L (isolation) and q̄L (identification) and the computation times ti and ts used
to compare the discussed models for a minimization task.
Performance indicator ATM AMDA AMSS Base model
Bias of leak size estimator ˆ̄wq −2.65 · 10−1 −1.45 · 10−1 −2.66 · 10−1 −2.65 · 10−1

STD of leak size estimator σ̂q 9.75 · 10−3 3.37 · 10−1 8.78 · 10−3 9.75 · 10−3

Bias of leak location estimator ˆ̄wz −1.21 · 104 −1.85 · 104 −2.65 · 104 −8.21 · 103
STD of leak location estimator σ̂z 6.70 · 105 2.18 · 105 1.33 · 105 3.14 · 105
Single iteration computation time ti [s] 3.53 · 10−5 2.05 · 10−4 2.73 · 10−5 7.18 · 10−4

Steady state computation time ts [s] 1.45 · 10−2 3.53 · 100 2.73 · 10−5 2.24 · 10−1

Table 6. Normalized local optimality levels for different performance indicators in a maximization task (*) used for further comparison
of the models.

Performance indicator ATM AMDA AMSS Base model
* Bias of leak size estimator ˆ̄wq 0.008 1 0 0.008
* STD of leak size estimator σ̂q 0.997 0 1 0.997
* Bias of leak location estimator ˆ̄wz 0.787 0.437 0 1
* STD of leak location estimator σ̂z 0 0.842 1 0.663
* Single iteration computation time ti 0.988 0.743 1 0
* Steady state computation time ts 0.996 0 1 0.936

Fig. 4. Normalized local optimality level indicators for the analyzed models in the maximization task (*).

The analysis of the results collected in Table 6
leads to the conclusion that, in the Pareto sense, the
three models (basic, AMDA and AMSS) are equivalent,
because each of them is the best in at least one criterion
(the ATM not much, but different from all). Thus, it
is possible to indicate the optimal diagnostic estimator
for the selected quality measure of the estimation of the
leakage size, leak location or processing time.

However, in a practical case, all these aspects may be
relevant. Then we can use a measure called the global
optimality level (GOL) (Kowalczuk and Białaszewski,
2017). This criterion is usually able to accurately pinpoint
the estimator that is best in terms of the worst case. In
other words (in the maximization task), the GOL aims to
maximize the lowest quality index for each case under
consideration (here: the diagnostic estimator). This is

equivalent to first (i) finding the lowest value for each
column in Table 6, and then (ii) selecting the estimator
by maximum among the rows assessed in this raw way.

However, in the given diagnostic case with
normalized objectives, the GOL is equal to 0 for each
of the instrumental models. This simply means that each
model is worst in at least one criterion, and from the GOL
point of view, the instrumental models analyzed cannot
be distinguished. Therefore, another measure of global
optimality should be used here.

In the simplest approach, you can calculate the
average optimality index (AOI) for each diagnostic system
by calculating the mean value for each column (describing
the instrumental model and the estimator). The resulting
AOIs are shown in Table 7, where you can see that the
AMSS turns out to be the best (because its AOI is the
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Table 7. Averaged optimality index for the diagnostic systems
analyzed for global maximization (*).

ATM AMDA AMSS Base model
AOI 0.630 0.504 0.667 0.601

Table 8. Assessment of the diagnostic estimators, using the dis-
tance or demand-reference approach (DRA).

ATM AMDA AMSS Base model
DRA 1.425 1.552 1.414 1.450

Table 9. General assessment of instrumental models and appro-
priate diagnostic estimators, characterized only by the
criteria of precision (without time), using various scalar
measures (GOL, AOI, DRA).

ATM AMDA AMSS Base model
GOL 0 0 0 0.008
AOI 0.448 0.570 0.500 0.667
DRA 1.425 1.158 1.414 1.048

highest). As could be predicted according to Table 6,
the ATM can be considered suboptimal (with the second
highest score), and the baseline model has the third level
of effectiveness. In this way, a ranking of models is
obtained, measured by their average performance, taking
into account the six criteria considered.

One of the popular approaches used in
multi-objective optimization is the distance measure
(e.g., Osyczka and Kundu, 1996). In particular, we
can compare our diagnostic estimators using the
demand-reference approach (DRA), which measures the
Euclidean distance of the characteristics of the analyzed
estimator from the reference point that models the ideal
estimator (point [1, 1, 1, 1, 1, 1]T in this case).

In this approach, the optimization problem naturally
converts from expressive maximization to natural
minimization of the distance from the ideal (reference)
point. The values collected in Table 6 are first subtracted
from 1 and then the second norm is calculated, resulting
in a DRA measure that represents the distance from the
ideal. The results are shown in Table 8.

Let us emphasize that the most effective estimator
is AMSS, followed by the ATM and thirdly by the base
model. In terms of the AOI and DRA, both estimators
maintain the same ranking position.

It is worth noting that the ATM model does not
achieve an optimal performance in any of the six criteria,
although in most cases it is close to the best performance
(Table 6). Nevertheless, both in terms of the (maximized)
average estimate (AOI) and the (minimized) distance to
demand (DRA), it clearly remains second in place.

Unlike other instrumental models, the best one, the
AMSS, is particularly suitable for calculations in a steady
state (its strength is the time of calculation). That is why
it is worth conducting a similar analysis (in the context
of the GOL, AOI and DRA), ignoring the time criteria
(shown in the last two lines of Table 6). The results
obtained are presented in Table 9.

Interestingly, from the point of view of only the set of
analyzed global precision criteria (GOL, AOI and DRA),
the base model seems the best. It is also not the worst
estimator in terms of any of these criteria (there is no
zero in Table 5). In the sense of the subglobal criterion
GOL, the other estimators are equivalent. The AOI puts
the AMDA model in second place, while the DRA favors
the AMSS description here. The ATM algorithm is the
worst in all indicators, which means that in the full ranking
(more “global") time criteria significantly improve the
assessment of this model.

The employed accuracy and precision criteria,
systematic error and standard deviation were statistically
estimated on the basis of 200 observations in each
experiment. However, considering the entirety of the
experiments conducted, with a total number of over
10,000 observations, the aggregate results given can be
considered credible.

It is worth emphasizing that in the adopted working
conditions and testing in the computational framework for
LDI, new models are better than the popular base model
mainly in terms of the computational complexity.

The presented environment for analyzing models
in LDI tasks was used as a computational framework
to compare the selected four models. It can also be
applied to test other models and quantitatively assess their
performance quality using the developed optimization
indicators and criteria. While the synthesized flow models
can be highly diverse and use different input variables
and parameters, or even black box models, the end result
can always be quantified using the proposed universal
performance metrics (indicators).

5. Summary
The article presented the results of research on
various instrumental models in terms of their diagnostic
effectiveness. First, the computing framework for the
LDI problem was presented and described in detail.
Each block of the LDI framework was described using
appropriate mathematical formulas. Then the analyzed
models were briefly presented along with the basic
principles of their synthesis.

We emphasize the importance of the simulation
methodology and system complexity associated with the
data acquisition process and its diversity. An example
of such functionality is the ability to explore wide
ranges of modeling parameters and implement complex
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fluid flow process scenarios and diagnostic algorithms.
Simulation also provides flexibility in the selection of
some technological parameters, which is often impractical
or even impossible in real installations.

In this work, we proposed a baseline assessment of
diagnostic estimators in terms of the bias and the standard
deviation of basic diagnostic estimates (leak location and
size and time indicators). Various diagnostic situations
(leakage and transport parameters) and measurement
noise levels were taken into account. The proposed
methodology can serve as a basis for comparing different
flow models and diagnostic observers in terms of their
diagnostic performance and computational efficiency.

Multivariable estimators resulting from the employed
instrumental models of fluid transport processes were
compared in terms of their global optimality level
(GOL) and averaged optimality index (AOI) and
demand-reference approach (DRA).

The analytical model of the steady state (AMSS)
was the best in most cases in terms of the standard
deviation, bias and computation time. The estimator
based on the analytical model of diagonal approximation
(AMDA) seems to be suitable only for leak locations. The
analytical Thomas model (ATM) estimator is comparable
to the base model in most cases, while having lower
computational complexity than the AMDA and the base
model. Considering only the global precision criteria
(in the AOI and DRA versions), the basic model is the
best, while the AMDA or AMSS are in the second place
depending on the choice of the type of the joint/global
measure (AOI or DRA).

The analysis performed excluding time criteria
demonstrated the qualitative power of the base model in
diagnostic use. However, it is important to remember that
there is rarely a case where computational complexity is
not important. Therefore, the proposed new models are
a proven and effective alternative to the well-known base
model because, with comparable results and operational
efficiency, they offer lower computational complexity,
which is particularly important in the context of online
diagnostic applications.
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Technology and a chief scientific officer at DAC.digital.

Zdzisław Kowalczuk, Prof., DSc, PhD, MScEE
(2003, 1993, 1986, 1978). Since 1978 he has
been with the Faculty of Electronics, Telecom-
munications and Informatics at the Gdańsk Uni-
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Appendix

A1. Complementary, liquid experiments
One of the important systemic problems is the comparison
of methodologies (in terms of errors in estimating the
size and location of the leak) for various fluids, gases or
liquids, which in the presented models are characterized
by a specific speed of sound and a friction coefficient.
Therefore, to illustrate and document this point, a
set of additional four comprehensive experiments were
performed, described as follows:

I. Leak size qL = 4, leak location zL = 40, friction
factor λ = 0.02, speed of sound ν = 450 m

s .

II. Leak size qL = 4, leak location zL = 40, friction
factor λ = 0.02, speed of sound ν = 1482 m

s .

III. Leak size qL = 4, leak location zL = 40, friction
factor λ = 0.06, speed of sound ν = 1482 m

s .

IV. Leak size qL = 1, leak location zL = 40, friction
factor λ = 0.02, speed of sound ν = 1482 m

s .

Experiment I concerns the comparative case of gas,
which is the main subject of this work. Experiments II–IV
are intended to collect data on liquid flows in various
technological conditions (while maintaining possibly the
same parameters as in the case of gas). In particular, in
experiment II we have the higher speed of sound (1482
m/s), in experiment III this higher speed of sound and
higher friction value (0.06), and in experiment IV this
higher speed of sound and a leakage of 10% of the current
mass flow. The results obtained are collected in Table A1.

The table shows that the standard deviations (STD)
of both target estimators (LSE for size and LLE for
location) are smaller for experiments II–IV compared
with experiment I, while in experiment IV the standard
deviation of leak location is comparable to experiment I.
The biases of the LSE estimator in experiments II–IV
are also usually smaller than in experiment I, with
the exception of the AMDA model, especially in
experiment IV (which may be due to the relatively small
leakage). The leak location bias in experiments II–IV is
larger than in experiment I (i.e., the increased sound speed
leads to an increase in the location error).

A2. Additional analysis without the AMSS

As an extension of the presented study or an in-depth
comparative analysis of models, the AMSS can be
excluded (as the most optimal in the global/aggregate
sense) and only the remaining instrumental models of flow
processes (incorporated into the appropriate estimator)
should be taken into account. In this situation, new,
normalized quality indicators are obtained, which are
presented in Table A2 and Fig. A1.

The GOL measure for these models remains the same
(zero), and the calculated scalar global indices AOI and
DRA for the discussed models in this case are given in
Table A3. This time the base model is the best, followed
by the ATM second in place and the AMDA third in place.
It should be noted here that the score for the ATM is close
to the result of the base model for both the criteria (they
are therefore equivalent in practice, after excluding the
AMSS).

https://www.vega.com/en-us/products/product-catalog/pressure/hydrostatic/vegabar-82
https://www.vega.com/en-us/products/product-catalog/pressure/hydrostatic/vegabar-82
https://www.vega.com/en-us/products/product-catalog/pressure/hydrostatic/vegabar-82
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Fig. A1. Normalized local optimality levels for the inferior models in the maximization task (*).

Table A1. Data collected for additional experiments comparing the effects of lower (ν1 = 450 m
s

) and greater (ν2 = 1482 m
s

) speed of
sound under different conditions. The parameters of the four experiments are as follows: (I) leak size qL = 4, leak location
zL = 40, friction factor λ = 0.02 and speed of sound ν1; (II) qL = 4, zL = 40, λ = 0.02 and ν2; (III) qL = 4, zL = 40,
λ = 0.06 and ν2; and (IV) qL = 1 (10% flow), zL = 40, λ = 0.02 and ν2. Leak size (LSE) biases and standard deviations
(STD) are given in kg

s
, while leak location (LLE) biases and standard deviations are given in km.

Experiment I Experiment II
ATM AMDA AMSS BM ATM AMDA AMSS BM

LSE bias (×10−3) 0.12 128 0.28 0.12 0.04 129 0.05 0.04
LSE STD (×10−3) 13.0 289 11.3 13.0 3.04 69.0 2.63 3.04
LLE bias 0.28 0.46 -0.07 0.19 0.93 1.66 1.01 0.93
LLE STD 3.75 2.95 0.93 3.76 0.49 0.85 0.21 0.52

Experiment III Experiment IV
ATM AMDA AMSS BM ATM AMDA AMSS BM

LSE bias (×10−3) 0.02 131 -0.01 0.02 0.04 312 0.05 0.04
LSE STD (×10−3) 2.00 39.4 1.51 2.00 3.04 69.0 2.63 3.04
LLE bias 0.98 1.62 0.99 0.98 0.92 1.69 0.88 0.92
LLE STD 0.24 0.46 0.12 0.26 1.79 3.24 0.83 1.78

Table A2. Local optimality of diagnostic estimators (with
exclusion of the AMSS) in terms of normalized
indicators in the maximization task (*).

Performance index ATM AMDA Base
* Bias of leak
size estimator ˆ̄wq

0 1 0

* STD of leak
size estimator σ̂q

1 0 1

* Bias of leak
location estimator ˆ̄wz

0.622 0 1

* STD of leak
location estimator σ̂z

0 1 0.788

* Single iteration
computation time ti [s] 1 0.751 0

* Steady state
computation time ts [s] 1 0 0.940

Table A3. AOI and DRA scores for a limited set of diagnostic
estimators (excluding the optimal model, the AMSS).

ATM AMDA Base model
AOI 0.640 0.508 0.656
DRA 1.464 1.750 1.431
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