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aFaculty of Informatics
Vytautas Magnus University
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Infectious diseases significantly impact global mortality rates, with their complex symptoms complicating the assessment
and determination of infection severity. Various countries grapple with different forms of these diseases. This research
utilizes three AI-based decision-making techniques to refine diagnostic processes through the analysis of medical imagery.
The goal is achieved by developing a mathematical model that identifies potential infectious diseases from medical images,
adopting a multi-criteria decision-making approach. The avant-garde, AI-centric methodologies are introduced, harnessing
an innovative amalgamation of hypersoft sets in a fuzzy context. Decision-making might include recommendations for
isolation, quarantine in domestic or specialized environments, or hospital admission for treatment. Visual representations
are used to enhance comprehension and underscore the importance and efficacy of the proposed method. The foundational
theory and outcomes associated with this innovative approach indicate its potential for broad application in areas like
machine learning, deep learning, and pattern recognition.
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1. Introduction
Infectious diseases pose a serious threat to global health,
causing millions of deaths each year and affecting people
of all ages and geographies. These diseases are caused
by a variety of pathogens, including viruses, bacteria,
fungi and insects (Morse, 1995; Fauci and Morens,
2012). Practices such as sanitation, vaccination and drug
prevention are critical to controlling these diseases, as is
ongoing research to improve these practices. In health
care, decision making is essential for proper diagnosis and
treatment and requires consideration of many complex
factors. The use of technology, especially data analytics
tools, has greatly improved the ability to tailor treatment
to the needs of the individual patient, thus improving
clinical outcomes (Lauraitis et al., 2018; Omoregbe
et al., 2020). To further improve healthcare decision
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making, HSS (hybrid soft set) theory combines aspects
of fuzzy and soft set theories to better handle uncertainty
and imprecise data in healthcare environments. This
paper presents an innovative application of artificial
intelligence-based tools using HSSs in a trivial framework
for medical image analysis. The framework, incorporating
a multi-criteria decision model (MCDM), aims to improve
infectious disease detection by leveraging the power of
machine learning, deep learning and pattern recognition
to optimize decision-making processes in the field life.

1.1. Related works. Artificial intelligence (AI) has
significantly shaped the evolution of healthcare practices
over the years. Initially, AI’s integration focused on
administrative tasks such as tracking medical histories
efficiently, a foundational step that was instrumental for
later advancements in the field. Davenport et al. (2018)
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highlighted this early application of AI in healthcare. By
2020, the scope of AI expanded to include the translation
of clinical information, facilitating better communication
between healthcare providers and patients, a development
emphasized by Lin and Lin (2020).

Following these early implementations, AI began
to play a more significant role in managing healthcare
logistics. Curtis et al. (2018) documented AI’s role
in scheduling and administrative logistics, marking a
shift towards automating routine tasks within healthcare
facilities. By 2023, Vemuri discussed how AI
technologies were being utilized for predictive analytics
and decision support systems to enhance diagnosis
and treatment planning, analyzing both structured and
unstructured data such as electronic medical records and
medical images (Vemuri, 2023; Vemuri et al., 2023b;
2023a).

The capabilities of AI continued to evolve, and
Hasan et al. (2024) and Ray et al. (2024) explored how
AI techniques like machine learning and deep learning
were used to analyze healthcare data to identify trends
that may be overlooked by human analysts, thereby
improving diagnostics and treatment outcomes. This
progression demonstrates AI’s transition from enhancing
administrative efficiency to playing a pivotal role in
clinical decision-making.

However, certain challenges remained, such as
accurately processing medical images under poor lighting
conditions. Traditional techniques like gray-level
modifications were found inadequate (Ramu and
Bansal, 2024). In response, by 2023, new methodologies
employing fuzzy sets and intuitionistic fuzzy sets (IFSs)
were developed to improve uncertainty management
in image processing, which facilitated more precise
disease diagnoses (Zadeh, 1965; Atanassov, 2012).
Technologies like the fuzzy DBNet, integrating
fuzzy techniques with deep learning, achieved high
segmentation accuracy, surpassing previous methods
(Chin et al., 2023; Nagaraja Kumar et al., 2023).

Furthermore, AI application in forecasting and
managing disease outbreaks has been critical. Sundus
et al. (2024) emphasized AI’s utility in analyzing vast
datasets to predict disease outbreaks, which is vital for the
proactive management of health crises. In 2024, a survey
of healthcare executives in the United States reaffirmed
AI’s essential role in promoting health equity, reflecting
its increasing importance in addressing broader healthcare
challenges (Mumuni et al., 2024). These developments
underscore AI’s fundamental role in not only advancing
healthcare operations and patient care but also in tackling
global health issues.

1.2. Motivation/research gap. The primary objective
of this study is to create a model that employs artificial
intelligence techniques, with a special emphasis on

incorporating hypersoft sets (HSSs) within a fuzzy
framework, aimed at improving the analysis of images
for infectious diseases. This model is vital for providing
accurate recommendations for isolation, quarantine, or
hospitalization, thereby facilitating effective treatment.
Existing theories and methods struggle with the precise
identification and application of medical imaging for
diagnostics, a challenge highlighted by Chaira (2011),
Koundal and Sharma (2019), Kaur and Chaira (2021)
or Dey et al. (2018). These traditional approaches are
inadequate for developing comprehensive models capable
of addressing the complexities and dynamic nature of
infectious diseases.

In particular, the methodologies outlined by Kaur
and Chaira (2021) and Dey et al. (2018) are ineffective
for the proposed model for two primary reasons:
they fail to tackle the problems associated with the
presence of non-membership (false) elements in data, and
they are incapable of efficiently processing information
in a sub-parametric form, which is essential for a
thorough understanding and appropriate treatment of
diseases. Meanwhile, the models introduced by Chaira
(2011) and Koundal and Sharma (2019) struggle with
managing data characterized by sub-parametric values.
This research aims to overcome these shortcomings by
suggesting a hybrid model that merges the advantages
of HSSs with the ability to delve into disease analysis
through sub-parametric values. This advanced model is
adept at navigating the complexities of data, including
false elements and the subtle, sub-parametric aspects
of information, which are frequently neglected in
conventional diagnoses. Consequently, it significantly
improves the precision of treatment recommendations,
encompassing decisions regarding isolation, quarantine,
and hospitalization. This study not only narrows the
gap between symptoms and treatments, simplifying the
decision-making process, but also sets a strong foundation
for scientific modeling in the field of medical diagnosis
through AI-enhanced decision-making.

2. Methodologies

Definition 1. (Kamacı, 2021) Let us define the universe
of discourse as

X = {α1, α2, α3, . . . , αn},

where αj for j = 1, 2, . . . , n represents the elements of
the universe. We consider m distinct attributes denoted by

ε1, ε2, ε3, . . . , εm,

where εi for i = 1, 2, . . . ,m and m ≥ 1. The
characteristic values corresponding to these attributes are
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represented by the sets

ð1, ð2, ð3, . . . , ðm.

Introduce a function

H : ð1 × ð2 × ð3 × . . .× ðm → ℘(X).

Let ΓA and ΛB ∈ H be two intuitionistic hypersoft sets
(IHSS). The IHSS approximate functions for these are
given by

γA(εi) = {(α, ωA(α), σA(α)) : α ∈ X},

λB(εi) = {(α, ωB(α), σB(α)) : α ∈ X}.
The distance between ΓA and ΛB for the Hamming
distance (HD)is determined as follows:

dsIHSS(ΓA,ΛB)

=
1

2m

m∑

i=1

n∑

j=1

(|ωA(εi)(αj)− ωB(εi)(αj)|

+|σA(εi)(αj)− σB(εi)(αj)|) . (1)

Definition 2. (Yolcu, 2023) Given the context of
an IHSS defined over a universal set U, let ΥA and
ΨB symbolize two such spaces. A similarity measure
(SM) between these spaces, facilitated by the application
of the Hamming distance (HD), introduces an elegant
formulation. The first is given by

S′
IHSS(ΥA,ΨB) =

1

1 + dsIHSS(ΓA,ΛB)
. (2)

Definition 3. (Hema et al., 2023) The newly introduced
plithogenic distance measures (PDMs) comprise the
following components:

• plithogenic Hamming distance measure (dRH ),

• normalized plithogenic Hamming distance measure
(dRNH),

• plithogenic Euclidean distance measure (dRE ),

• normalized plithogenic Euclidean distance measure
(dRNE).

These measures are utilized for calculating the distance
between two plithogenic hesitant subtractive sets
(PHSSs), denoted as R1 and R2. Below, we provide
the mathematical formulations and discuss specific
components and their roles in the context of these
distance measures.

Plithogenic Hamming distance (PHD) measure has the

form

dRH(R1,R2) =
1

m

m∑

i=1

l∑

j=1

∣∣diR1
(δj)− diR2

(δj)
∣∣

×max
(
ciF (δj , δd)

)
. (3)

Normalized plithogenic Hamming distance (NPHD) mea-
sure uses normalization introducing a factor of 1/mn,
accommodating the overall data scale

dRNH(R1,R2) =
1

mn

m∑

i=1

l∑

j=1

∣∣diR1
(δj)− diR2

(δj)
∣∣

×max
(
ciF (δj .δd)

)
. (4)

Plithogenic Euclidean distance (PED) measure is of the
form

dRE (R1,R2) =

[
1

m

m∑

i=1

l∑

j=1

(
diR1

(δj)− diR2
(δj)

)2

×max
(
ciF (δj , δd)

)
] 1

2

. (5)

Normalized plithogenic Euclidean distance (NPED) mea-
sure uses normalization including a factor of 1/n to
address the dimensionality of the data set.

dRNE(R1,R2) =
1

n

[
1

m

m∑

i=1

l∑

j=1

(
diR1

(δj)− diR2
(δj)

)2

×max
(
ciF (δj , δd)

)
] 1

2

.
(6)

In the above formulas, the term max(ciF (δj , δd))
represents the maximal contradiction degree among
elements of the PHSSs with respect to attributes δj
and δd. This component reflects the highest level
of uncertainty or conflict between the corresponding
attributes in R1 and R2, thus significantly influencing the
computation of distances. The selection of the maximal
contradiction degree emphasizes the most significant
disparities, enhancing the sensitivity of the distance
measure to critical differences between the sets.

Definition 4. (Hema et al., 2023) A newly proposed
concept, termed the Pythagorean similarity measure
(PSM), is aimed at the innovative development of the
Pythagorean distance measure (PDM). This relationship
is mathematically articulated as

MR(R1,R2) =
1

1 + dR(R1,R2)
.
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Algorithm 1.
Step 1. Read the registered input images I.

Step 2. To formalize the concept of an intuitionistic
hypersoft set (IHSS), we delineate its construction
based on the following components:

• Membership degree construction:
The membership degree function for IHSS is

μIHSS
I1 =

Igh1 − Imin

Imax − Imin
, (7)

where Igh1 represents the gray level of a pixel
in the first input image, and Imax and Imin

denote the maximum and minimum gray level
values in that image, respectively.

• Non-membership function construction:
The non-membership function for the IHSS,
is defined to complement the membership
function and calculated as

νIHSS
I1 = 1− μIHSS

I1 . (8)

Step 3. Calculate the distance measure between two sets
using Eqn. (1).

Step 4. Calculate the similarity measure using Eqn. (2).

Step 5. Select the one with the highest similarity measure
as the optimal choice.

In this context, dR(R1,R2) signifies the plithogenic
distance. Notably, this distance is classified into several
types, including: the plithogenic Hamming distance
dRH(R1,R2), the normalized plithogenic Hamming
distance dRNH(R1,R2), the plithogenic Euclidean
distance dRE (R1,R2), or the normalized plithogenic
Euclidean distance dRNE(R1,R2).

2.1. Methodology I.

2.1.1. Application I. In this particular application,
our primary aim is the diagnosis of COVID-19 in
specific patients by determining their infection status.
To accomplish this, we initially acquire chest images
of the patient. We acquire chest X-ray images of
individuals under suspicious and confirm COVID-19 case
from the Kaggle (Prashant, 2020) platform and apply the
methodology detailed in Step 2 to transform these images
into IHSS format. See Algorithm 1 for details.

For references, an IHSS representative of a
confirmed COVID-19 case is pre-stored within the

Fig. 1. Sample image of suspected COVID-19 from Kag-
gle (Prashant, 2020).

system. By employing a similarity assessment technique,
we scrutinize the correlation between the patient’s
IHSS and the COVID-19 reference IHSS archived in
our database. A significant resemblance between the
two IHSS profiles indicates a probable COVID-19
infection, thereby classifying the individual as a potential
COVID-19 case. To facilitate rapid diagnostics and enable
local treatment of patients in a cost-effective manner, we
propose the creation of software designed as an on-line
tool. This tool would cater to a domain of discussion
involving two individuals under suspicion, denoted as
X = {α1, α2}. Here, the set of parameters ð1, ð2, and
ð3 represents certain perceptible symptoms; specifically,
ð1 = {κ1,κ2} (fever, cough), ð2 = {κ3,κ4} (fatigue,
sore throat), and ð3 = {κ5,κ6} (vomiting, headache).
Additionally, we define the Cartesian product of these sets
as G = ð1 × ð2 × ð3, yielding G = {g1, g2, g3, · · · , g8}
where each gi, i ∈ {1, 2, . . . , 8} represents a triple
encapsulating various combinations of symptoms.

Stage 1. Data selection process. Following this, we
construct two IHSS frameworks with the guidance
of healthcare experts, specifically designed for
individuals suspected of having COVID-19, as
described below:

ΓA =
{
(g1, {(α1, 0.7, 0.1), (α2, 0.6, 0.2)}),
(g2, {(α1, 0.2, 0.7), (α2, 0.4, 0.5)}),
(g3, {(α1, 0.2, 0.3), (α2, 0.5, 0.4)}),
(g4, {(α1, 0.1, 0.2), (α2, 0, 1)}),
(g5, {(α1, 0.5, 0.1), (α2, 0.1, 0.5)}),
(g6, {(α1, 0.5, 0.6), (α2, 0.2, 0.3)}),
(g7, {(α1, 0.1, 0.3), (α2, 0.7, 0.1)}),
(g8, {(α1, 0, 1), (α2, 0.7, 0.2)})

}
, (9)
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ΛB =
{
(g1, {(α1, 0.9, 0.1), (α2, 0.1, 0.9)}),
(g2, {(α1, 0, 1), (α2, 0.1, 0.6)}),
(g3, {(α1, 0.1, 0.4), (α2, 0.4, 0.5)}),
(g4, {(α1, 0, 1), (α2, 0.6, 0.5)}),
(g5, {(α1, 0.1, 0.9), (α2, 0.8, 0.2)}),
(g6, {(α1, 0.6, 0.2), (α2, 0.2, 0.6)}),
(g7, {(α1, 1, 0), (α2, 0.4, 0.2)}),
(g8, {(α1, 0.1, 0.5), (α2, 0.1, 0.5)})

}
.

(10)

Stage 2. The system is described as follows, with
another IHSS already included in the system as a
reference point:

ΥC =
{
(g1, {(α1, 0.1, 0.4), (α2, 03, 0.5)}),
(g2, {(α1, 0.2, 0.4), (α2, 0.1, 0.6)}),
(g3, {(α1, 0.8, 0.1), (α2, 0.5, 0.2)}),
(g4, {(α1, 0.2, 0.1), (α2, 0.4, 0.3)}),
(g5, {(α1, 0.1, 0.2), (α2, 0, 1)}),
(g6, {(α1, 0.9, 0.1), (α2, 0.5, 0.1)}),
(g7, {(α1, 0.4, 0.5), (α2, 0.8, 0.1)}),
(g8, {(α1, 0.6, 0.3), (α2, 0.1, 0.7)})

}
.

(11)

Stage 3. The Hamming distances from ΓA to ΥC and
from ΛB to ΥC are approximately 0.55 and 0.57,
respectively.

Stage 4. Results of the analysis.

(i) Computing the similarity measure between ΓA

and ΥC:

S′
IHSS(ΓA,ΥC) =

1

1 + dsIHSS(ΓA,ΥC)

≈ 0.6 >
1

2
.

(ii) Computing the similarity measure between ΛB

and ΥC:

S′
IHSS(ΛB,ΥC) =

1

1 + dsIHSS(ΛB,ΥC)

≈ 0.6 >
1

2
.

Stage 5. Therefore, both sets of symptoms ΓA and ΥC,
as well as ΛB and ΥC, exhibit significant similarity.
Consequently, it is inferred that the individual may
potentially be afflicted with COVID-19.

Fig. 2. Sample image of suspected tuberculosis from Kag-
gle (Rahman, 2020).

2.1.2. Application II. Given the focus of our
investigation, we identify a triple of subjects, denoted
as X = {α1, α2, α3}, each under scrutiny for potential
infection by tuberculosis (TB). We acquire chest X-ray
images of individuals under suspicion and confirm a TB
case from the Kaggle (Rahman, 2020) platform and apply
the methodology detailed in Step 2 to transform these
images into IHSS format.

The cornerstone of our approach is the diagnostic
determination of infection presence among these
individuals, leveraging the creation of patient-specific
IHSS. We propose the development of unique IHSS
models, Iαi , tailored to the distinctive medical profiles
of each subject. These models will undergo comparative
analysis against a predefined optimal TB IHSS model,
Iideal, housed within our database. This benchmark
represents the quintessential immunological signature
symptomatic of a TB infection. To quantitatively assess
the proximity of each subject’s IHSS to Iideal, we
employ a similarity measure. A measure exceeding a
threshold of 0.5 will be indicative of a plausible TB
infection, thus warranting further clinical investigation.
Our analytical framework is further enriched by the
delineation of symptomatic parameters across four
distinct sets: S1,S2,S3, and S4. These sets encapsulate
a range of observable symptoms, with S1 = {s1, s2},
S2 = {s3, s4}, S3 = {s5}, and S4 = {s6, s7, s8}. The
symptoms are respectively identified as follows: s1 for
headache, s2 for nausea and vomiting, s3 for diarrhea,
s4 for abdominal pain, s5 for chills, s6 for cough, s7 for
muscle or joint pain, and s8 for high fever. We define a
relational set η = S1 × S2 × S3 × S4, encompassing
a collection of 4-tuples, η = {η1, η2, . . . , η12}, each
ηi, where i ∈ {1, 2, . . . , 12}, uniquely representing a
combination of symptoms pertinent to our diagnostic
evaluation.

Stage 1. Data selection process. Following this, we
construct three IHSS frameworks with the guidance
of healthcare experts, specifically designed for
individuals with suspected TB.
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ΓA =
{
{(η1, {(α1, 0.3, 0.5), (α2, 0.3, 0.2), (α3, 0.1, 0.5)}), (η2, {(α1, 0.2, 0.4), (α2, 0.1, 0.1), (α3, 0.5, 0.4)}),

(η3, {(α1, 0.1, 0.3), (α2, 0.3, 0.4), (α3, 0.3, 0.2)}), (η4, {(α1, 0.4, 0.2), (α2, 0, 1), (α3, 0.1, 0.5)}),
(η5, {(α1, 0.1, 0.3), (α2, 0.4, 0.5), (α3, 0.1, 0.2)}), (η6, {(α1, 0.1, 0.7), (α2, 0.2, 0.3), (α3, 0.1, 0.6)}),
(η7, {(α1, 0.3, 0.5), (α2, 0.1, 0.2), (α3, 0, 1)}), (η8, {(α1, 0.1, 0.5), (α2, 0.6, 0.5), (α3, 1, 0)}),
(η9, {(α1, 0.3, 0.2), (α2, 0.1, 0.3), (α3, 0.1, 0.7)}), (η10, {(α1, 0.4, 0.2), (α2, 0.2, 0.4), (α3, 0.4, 0.5)}),
(η11, {(α1, 0.2, 0.6), (α2, 0.1, 0.7), (α3, 0.2, 0.1)}), (η12, {(α1, 0.1, 0.1), (α2, 0.4, 0.3), (α3, 0.1, 0.3)})}

}
. (12)

ΛB =
{
{(η1, {(α1, 0.2, 0.8), (α2, 0.1, 0.9), (α3, 0.5, 0.5)}), (η2, {(α1, 0.5, 0.5), (α2, 0.4, 0.6), (α3, 0.1, 0.9)}),

(η3, {(α1, 0.6, 0.4), (α2, 0.3, 0.7), (α3, 0.8, 0.2)}), (η4, {(α1, 0, 1), (α2, 0.5, 0.5), (α3, 1, 0)}),
(η5, {(α1, 0.9, 0.1), (α2, 0.2, 0.8), (α3, 0.6, 0.4)}), (η6, {(α1, 0.6, 0.4), (α2, 0.4, 0.6), (α3, 0.5, 0.5)}),
(η7, {(α1, 0.5, 0.5), (α2, 0.6, 0.4), (α3, 0.9, 0.1)}), (η8, {(α1, 0, 1), (α2, 0.9, 0.1), (α3, 0.1, 0.9)}),
(η9, {(α1, 0.1, 0.9), (α2, 0.9, 0.1), (α3, 0.5, 0.5)}), (η10, {(α1, 0.9, 0.1), (α2, 0.2, 0.8), (α3, 0.8, 0.2)}),
(η11, {(α1, 0.5, 0.5), (α2, 0.3, 0.7), (α3, 0.5, 0.5)}), (η12, {(α1, 0.6, 0.4), (α2, 0.9, 0.1), (α3, 0.1, 0.9)})}

}
. (13)

ΥC =
{
{(η1, {(α1, 0.4, 0.5), (α2, 0.3, 0.4), (α3, 0.1, 0.3)}), (η2, {(α1, 0.2, 0.1), (α2, 0.2, 0.1), (α3, 0.5, 0.1)}),
(η3, {(α1, 0.1, 0.4), (α2, 0.6, 0.3), (α3, 0, 1)}), (η4, {(α1, 1, 0), (α2, 0.5, 0.4), (α3, 1, 0)}),
(η5, {(α1, 0.2, 0.6), (α2, 0.1, 0.3), (α3, 0.2, 0.5)}), (η6, {(α1, 0.1, 0.3), (α2, 0.3, 0.1), (α3, 0, 1)}),
(η7, {(α1, 0, 1), (α2, 0.2, 0.4), (α3, 1, 0)}), (η8, {(α1, 0.6, 0.5), (α2, 0.2, 0.3), (α3, 0.4, 0.5)}),
(η9, {(α1, 0.1, 0.1), (α2, 0.1, 0.7), (α3, 0.1, 0.1)}), (η10, {(α1, 0.3, 0.6), (α2, 0.2, 0.2), (α3, 1, 0)}),
(η11, {(α1, 0.1, 0.5), (α2, 0.1, 0.3), (α3, 0, 1)}), (η12, {(α1, 0.6, 0.2), (α2, 0.1, 0.4), (α3, 1, 0)})}

}
. (14)

Stage 2. The system is described by Eqns. (12)–(15),
with another IHSS already included in the system as
a reference point.

Stage 3. We evaluate the Hamming distances employing
the IHSS metric, denoted by dsIHSS, between specific
pairs of elements. Equation (1) can be used to
calculate the distance between IHSSs, as specified
below:

• Between ΓA and ΨD, the distance is
dsIHSS(ΓA,ΨD) = 0.7.

• Between ΛB and ΨD, the distance is
dsIHSS(ΛB,ΨD) = 1.1.

• Between ΥC and ΨD, the distance is
dsIHSS(ΥC,ΨD) = 0.9.

Stage 4. Results of the analysis. Equation (2) can
be used to calculate the SIM between IHSSs, as
specified below:

• Compute the SIM of ΓA and ΨD:

S′
IHSS(ΓA,ΨD) =

1

1 + dsIHSS(ΓA,ΨD)

∼= 0.58 >
1

2
.

• Compute the SIM of ΛB and ΨD:

S′
IHSS(ΛB,ΨD) =

1

1 + dsIHSS(ΛB,ΨD)

∼= 0.4 <
1

2
.

• Compute the SIM of ΥC and ΨD:

S′
IHSS(ΥC,ΨD) =

1

1 + dsIHSS(ΥC,ΨD)

∼= 0.52 >
1

2
.

Stage 5. From this information, it is likely that the
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ΨD =
{
{(η1, {(α1, 0.1, 0.5), (α2, 0.6, 0.4), (α3, 0.5, 0.5)}), (η2, {(α1, 0.6, 0.1), (α2, 0.8, 0.2), (α3, 0.9, 0.1)}),
(η3, {(α1, 0.2, 0.4), (α2, 0.6, 0.4), (α3, 1, 0)}), (η4, {(α1, 0.5, 0.5), (α2, 0.3, 0.7), (α3, 0.1, 0.9)}),
(η5, {(α1, 0.7, 0.1), (α2, 0.8, 0.2), (α3, 0, 1)}), (η6, {(α1, 0.2, 0.8), (α2, 0.1, 0.9), (α3, 0.5, 0.5)}),
(η7, {(α1, 0.5, 0.5), (α2, 0, 1), (α3, 1, 0)}), (η8, {(α1, 0.3, 0.7), (α2, 0.7, 0.3), (α3, 0.5, 0.5)}),
(η9, {(α1, 0, 1), (α2, 0.6, 0.4), (α3, 0, 1)}), (η10, {(α1, 0.4, 0.6), (α2, 0.8, 0.2), (α3, 0.5, 0.5)}),
(η11, {(α1, 0.9, 0.1), (α2, 0.8, 0.2), (α3, 1, 0)}), (η12, {(α1, 0.1, 0.9), (α2, 0.4, 0.6), (α3, 0.5, 0.5)})}

}
. (15)

individuals α1 and α3 are affected by TB.

Remark 1. Note that on intuitionistic hypersoft
set consists of two elements: membership values and
non-membership values. In a medical context, the
membership value indicates the degree to which a patient
is healthy, expressed as a percentage. Conversely, the
non-membership value represents the extent to which the
patient is unhealthy, also expressed as a percentage. For
instance, a value of (0.5, 0.3) implies that the patient
is 50% healthy and 30% unhealthy. These percentages
are determined through consultation with a medical
professional.

2.2. Methodology II.

2.2.1. Algorithm.

Step 1. Read the registered input images I. To formalize
the concept of an intuitionistic hypersoft set (IHSS),
we delineate its construction based on the following
components:

• Membership degree construction:
The membership degree function for the IHSS
is as follows:

μIHSS
I1 =

Igh1 − Imin

Imax − Imin
, (16)

where Igh1 represents the gray level of a pixel
in the first input image, and Imax and Imin

denote the maximum and minimum gray level
values in that image, respectively.

• Non-membership function construction: The
non-membership function for the IHSS is
defined to complement the membership
function and calculated as

νIHSS
I1 = 1− μIHSS

I1 . (17)

Step 2. Transform the IHSS into a fuzzy hypersoft set by

applying the following formula:

σfuzzy(x) =
1− μIHSS

I1

1 + (μIHSS
I1

+ νIHSS
I1

)
. (18)

Step 3. To create a decision average matrix for each
alternative based on the collective perspective of
professionals in the IHSS, we utilize the standardized
precipitation fuzzy conceptual framework. To apply
the TOPSIS, we need to rank the efficiency of each
option using

rij =
xij√∑m
i=1 x

2
ij

(19)

i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

Step 4. Based on the weighted normalized rating (yij),
the weighted normalized fuzzy control matrix is
computed as follows:

yij = rijwi, (20)

i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

Step 5. To get optimal positive and negative solutions,
we formulate matrices for the positive ideal solution
(PIS) and the negative ideal solution (NIS). The
positive ideal solution matrix is derived through

A+ = (y+1 , y
+
2 , y

+
3 , . . . , y

+
n ), (21)

while the negative ideal solution matrix is computed
using

A− = (y−1 , y
−
2 , y

−
3 , . . . , y

−
n ). (22)

Step 6. Compute the Euclidean distance of each
alternative to the PIS and NIS. The distances are
calculated using the following equations: for the
distance of alternative Ai from the positive ideal
solution

D+
i =

√√√√
n∑

j=1

(y+i − yij)2, (23)
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and for the distance of alternative Ai from the
negative ideal solution

D−
i =

√√√√
n∑

j=1

(y−i − yij)2. (24)

Here, i = 1, 2, . . . ,m, and j are indexes for the
criteria or attributes considered in the analysis. The
symbols y+i and y−i represent the values of the i-th
alternative at the PIS and NIS, respectively, and yij
represents the value of the i-th alternative on the j-th
criterion.

Step 7. Calculate the preference value for each
alternative involves determining the value of
preference, denoted as Vi, for every option:

Vi =
D−

i

D−
i +D+

i

, (25)

where i = 1, 2, . . . , m.

Step 8. Order the options according to their relative
closeness values. The option with the highest relative
closeness value is deemed the most favorable.

2.2.2. Numerical example. The main aim is to
ascertain the most impactful infectious disease in North
America. We define the ensemble X, which is constituted
by the elements {α1, α2, α3, α4}:

• α1 represents the TB disease,

• α2 is indicative of Lyme disease,

• α3 corresponds to ParaLyme disease,

• α4 encapsulates Norovirus.

Each disease αi for i = 1, 2, 3, 4 is associated with
a collection of sub-parametric triplets denoted by Hi,
which represent the symptomatic parameter values for that
disease. Our goal, with the guidance of experts, is to
discern which of these diseases exerts the most significant
influence on the population. The methodology begins by
collecting images from affected individuals.

Stage 1. Data selection process.

1. These images are then converted into IHSS format
using Eqns. (16) and (17). The resulting IHSS data
is presented in Table 1.

2. The step involves processing the IHSS data displayed
in Table 1, converting it to fuzzy hypersoft set
(FHSS) data as evidenced in Table 2, by Eqn. (18).

3. Following this, Table 2 is normalized to produce
Table 3, as described by Eqn. (19).

4. Employing Eqn. (22), a weighted decision matrix is
formulated for the options, as shown in Table 4.

5. The positive ideal solution and the negative ideal
solution are determined by applying Eqns. (21)
and (22), respectively, with the results displayed in
Tables 5 and 6.

6. Calculate the Euclidean distances from each
alternative to the PIS and NIS using Eqns. (23) and
(24). The calculations are detailed in Tables 7 and 8.

7. Derive the preference value for each option using
Eqn. (25), as detailed in Table 9.

8. Organize the options to determine the most
significant one, indicating that TB disease has the
greatest impact in this region, followed by the
subsequent rankings as depicted in Table 10.

2.3. Methodology III.

2.3.1. Proposed algorithm. Consider a group, U ,
representing individuals who could be suspected infected
with TB. Suppose that R = {s1, s2, . . . , sk} ⊂ U
represents a subgroup comprising individuals currently
being scrutinized. Let Q = {β1, β2, . . . , βn}, n ≥ 1,
symbolize a collection of symptoms or attributes, and let
B = {β1, β2, . . . , βm},m ≤ n, where B ⊂ Q, represent
a subset of these symptoms that are currently under
analysis. The Cartesian productC = A1×A2×· · ·×An is
formed, where Ai for i = 1, 2, . . . , n pertains to the set of
possible outcomes for attribute βi. It is crucial that these
sets are exclusive of one another, ensuring Ai ∩ Aj = ∅
for any i, j ∈ {1, 2, . . . , n}.

For every individual s in R, a relationship d(s, δ)
is established, showcasing the degree of connection
of s to each attribute value δ. This relationship is
articulated in terms of fuzzy, intuitionistic fuzzy, or
neutrosophic logic. The aim for medical practitioners
is to leverage this model to gauge the probability of
TB infection among the scrutinized individuals and
ascertain the infection’s intensity, thereby facilitating an
informed decision-making process regarding each case.
The subsequent sections will elaborate on the AI-based
methodology employed in developing this algorithm for
such assessments.

2.4. Implementation of the proposed method.
Consider a defined universe U and within it, a subset
R = {s1, s2, . . . , s5} that includes individuals suspected
of being infected with TB.

Stage 1. Data selection process.
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Table 1. All experts’ opinions collectively (IHSS values).
Types of diseases H1 H2 H3 H4

TB disease (0.4, 0.5) (0.3, 0.1) (0.3, 0.2) (0.4, 0.3)
Lyme disease (0.8, 0.1) (0.7, 0) (0.9, 0) (0.5, 0.3)
ParaLyme disease (0.2, 0.2) (0.5, 0.1) (0.8, 0.1) (0.4, 0.2)
Norovirus (0.1, 0.1) (0.4, 0.3) (0.1, 0.2) (0.6, 0.3)

Table 2. All experts’ opinions collectively (FHS values).
Types of diseases H1 H2 H3 H4

TB disease 0.31 0.5 0.46 0.35
Lyme disease 0.11 0.17 0.05 0.27
ParaLyme disease 0.57 0.31 0.11 0.37
Norovirus 0.75 0.35 0.79 0.21

Step 1. The assessment of these individuals is based
on monitoring various symptoms or attributes, listed as
follows:

β1 = fever,
β2 = dry cough,
β3 = tiredness,
β4 = breathing difficulty or breath shortness,
β5 = chest pain or pressure,
β6 = loss of speech or movement,
β7 = aches and pains,
β8 = throat discomfort,
β9 = diarrhea,
β10 = conjunctivitis,
β11 = headache,
β12 = diminished ability to taste or smell,
β13 = skin rash or changes in the color of

the fingers or toes.

To better gauge the intensity of these symptoms in
the suspects, each symptom, denoted as βi, is classified
into three severity tiers: low (L) for mild symptoms,
medium (M) for moderate symptoms, and high (H) for
severe symptoms. This classification aids in enhancing the
diagnostic process by allocating specific severity levels:

δ(i, 1) = low,

δ(i, 2) = medium,

δ(i, 3) = high,

for 1 ≤ i ≤ 13. The subset of symptoms
that are observed in suspects from a particular area
includes β1, β2, β3, β4, β5, β6, β9, β11. To each suspect,
a hypothetical fuzzy membership degree is assigned for
each chosen symptom, under specific constraints defined
by experts, to validate the approach. For this, see Table 11.

Step 2. For each symptom selected, a predominant
attribute value δd and a fuzzy contradiction degree cF
reflecting the discrepancy between the actual and the
predominant attribute values are identified in Table 12.

A PHSS R1 has been developed and its data are
organized in a table format, incorporating the insights
from a specialist field expert doctor, as depicted in Table
13. The values for the selected symptoms determined by
the experts are also detailed in Table 14.
Step 3. To assess the discrepancy between
specialist-recorded values and established benchmarks,
the study employs plithogenic Hamming and Euclidean
distances as delineated in Eqns. (26) and (27), with
findings presented in Table 15. Following this, the
investigation evaluates plithogenic similarity, leveraging
plithogenic distance, to gauge the extent of infection in
the observed subjects.

Step 4. Now, plithogenic similarity, derived from
plithogenic distance, is assessed to evaluate the degree
of infection in the suspects being observed, as noted in
Table 16. The values for both Hamming and Euclidean
similarity measures are efficiently retrieved from Table 16.

Steps 5 and 6. These values inform the subsequent
decisions made regarding the suspects, which are detailed
in Table 17. Figure 3 provides a graphical depiction of the
suspects.

2.4.1. Limitations. The described approach has
certain limitations, including the following:

(i) Limited data quality and accessibility may hinder
model accuracy.

(ii) AI model biases may impair generalization across
diverse populations.

(iii) The complexity of AI algorithms raises
interpretability and ethical issues.
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Table 3. Normalized matrix.
Types of diseases H1 H2 H3 H4

TB disease 0.31068 0.70888 0.5489 0.57048
Lyme disease 0.11024 0.24102 0.05966 0.44009
ParaLyme disease 0.57126 0.43951 0.13126 0.60308
Norovirus 0.75166 0.49622 0.82336 0.34229

Table 4. Weighted normalized matrix.
Types of diseases H1 H2 H3 H4

TB disease 0.03107 0.28355 0.10978 0.1141
Lyme disease 0.01102 0.09641 0.01193 0.08802
ParaLyme disease 0.05713 0.1758 0.022625 0.12062
Norovirus 0.07517 0.19849 0.16467 0.06846

Table 5. Positive ideal solution.
Types of diseases Ideal positive values

C1 0.01102
C2 0.09641
C3 0.01193
C4 0.06846

Table 6. Negative ideal solution.
Types of diseases Ideal negative values

C1 0.07517
C2 0.28355
C3 0.16467
C4 0.12062

2.4.2. Comparative studies. We investigated the
efficacy and superiority of our suggested similarity
metrics and TOPSIS-driven methodologies, incorporated
within the hybrid framework of hypersoft sets, through
various comparative analyses. These assessments shed
light on both the advantages and limitations of our
approaches when compared with already established
methodologies. The evaluation entailed juxtaposing our
approach with a variety of existing techniques within the
field. One significant drawback of current methodologies
is their inability to effectively handle the division of
attributes into attribute values, especially when dealing
with complex uncertain data. Our methods adeptly
address these crucial challenges, setting themselves
apart from the deficiencies inherent in established
methodologies. For a more comprehensive understanding,
consult Table 18.

3. Conclusion
This study contributes significantly to the field of
medical diagnostics through the development and
application of three advanced AI-based approaches using

Table 7. Euclidean distance from ideal positive.
Types of diseases Separation values
TB disease 0.21698
Lyme disease 0.01956
ParaLyme disease 0.10656
Norovirus 0.19458

Table 8. Euclidean distance from ideal negative.
Types of diseases Separation values
TB disease 0.07071
Lyme disease 0.25205
ParaLyme disease 0.17634
Norovirus 0.09978

image analysis to enhance disease diagnosis accuracy.
These methodologies not only provide a systematic
solution but also represent an innovative integration
of computational techniques with multi-criteria
decision-making frameworks, specifically tailored to
address the challenges in diagnosing diseases like
COVID-19. Firstly, the intuitionistic hypersoft set
(IHSS) approach leverages distance and similarity
measures to effectively transform and analyze medical
images, enhancing diagnostic accuracy by incorporating
uncertainty and imprecision inherent in medical data.
Secondly, the application of the TOPSIS method
demonstrates a robust framework for ranking and
selecting the best diagnostic outcomes based on a set of
predefined criteria, facilitating better clinical decisions.
Lastly, the adoption of plithogenic distance and similarity
measures in plithogenic hypersoft sets offers a novel
perspective in decision-making processes, particularly in
assessing the severity of COVID-19 infections, which is
crucial for timely and appropriate medical interventions.

Despite these advancements, the study does
encounter limitations that could serve as focal points
for future research. For instance, the specific datasets
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Table 9. Preference values.
Types of diseases Values
TB disease 0.24578
Lyme disease 0.92799
ParaLyme disease 0.62333
Norovirus 0.33897

Fig. 3. Similarity among suspects in a plithogenic context.

used, derived from the Kaggle platform, may not
comprehensively represent the global variability in
COVID-19 manifestations. Further investigations could
explore the adaptability of these methodologies to
other datasets or even to other diseases, potentially
broadening the applicability of the findings. Additionally,
the complex mathematical models and computational
intensity of these methods may limit their immediate
application in resource-limited settings, highlighting
the need for more scalable and accessible diagnostic
solutions.

In the future, the study will increasingly concentrate
on refining AI algorithms to boost their precision,
efficiency, and reliability in diagnosing a wider array
of infectious diseases using various imaging techniques.
The integration of these AI solutions with real-time
data analytics and wearable health technologies is
expected to enable early detection and tailored treatment
plans. Moreover, the development of federated learning
models will allow these AI systems to learn from
extensive, decentralized data sets while safeguarding
patient privacy, thus enhancing diagnostic performance
without jeopardizing data security. Collaborations across
disciplines, including machine learning, bioinformatics,
virology, and clinical medicine, are deemed essential for
addressing current challenges and broadening the reach of
these diagnostic tools to under-resourced areas.

Algorithm 2. Diagnostic algorithm.

Step 1. In the PHSS R1, the specialist assigns a fuzzy
membership degree to each suspect in relation to each
symptom.

Step 2. Organize the disease symptoms under
investigation into a set based on their established
values, grouping them according to sub-symptoms and
categorizing each by severity, as denoted by PHSS R2.
Step 3. Utilizing the newly proposed distance measures,
namely the PHD measure and the PED measure, evaluate
the distance between the PHSS R1 and R2, as described
below:

dRH (R1,R2) =
1

m

m∑

i=1

l∑

j=1

∣∣diR1
(δj)− diR2

(δj)
∣∣

×max
(
ciF (δj , δd)

)
,

(26)

dRE (R1,R2) =
[ 1

m

m∑

i=1

l∑

j=1

(
diR1

(δj)− diR2
(δj)

)2

×max
(
ciF (δj , δd)

) ] 1
2

,
(27)

where m denotes the count of selected attributes and l
indicates the number of values for each attribute.
Step 4. Calculate the plithogenic similarity measure
(PSM) by first determining the distance plithogenic
distance measure (PDM) between values assigned by
experts and the corresponding standard values to evaluate
their resemblance

MR = MR (R1,R2) =
1

1 + dR (R1,R2)
. (28)

The PSM determines the similarity between two PHSS,
R1 and R2, to be plithogenically similar if SR ≥
0.5. This threshold value of 0.5 indicates similarity but
may vary for normalized plithogenic distances. Here,
dR (R1,R2) represents any plithogenic distance within
the framework of the proposed PDM.
Step 5. If the suspect is not infected, then it is indicated
by MR being less than 0.5.
Step 6. If the metric MR meets or exceeds the threshold
of 0.5, this serves as an indication that the individual in
question may be infected. Following this assessment,
subsequent actions will be determined by evaluating the
level of infection severity:

• If the suspect’s MR value is between 0.5 and
0.7, they must be isolated and quarantined at home
appropriately.

• If the suspect’s MR value is between 0.7 and 0.9
(inclusive of 0.7 but exclusive of 0.9), they must be
isolated in a designated quarantine facility.

• If the measure MR falls within the range of 0.9 to 1,
it is mandatory to dispatch the suspect to the hospital
for appropriate medical care.
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Table 10. Final ranking matrix.
Types of diseases H1 H2 H3 H4 Rank
TB disease 0.31 0.5 0.46 0.35 1
Lyme disease 0.11 0.17 0.05 0.27 4
ParaLyme disease 0.57 0.31 0.11 0.37 3
Norovirus 0.75 0.35 0.79 0.21 2

Table 11. Degree of belongingness of each option with respect to each attribute value, measured in fuzzy terms.
Symptoms Severity Suspects

s1 s2 s3 s4 s5
Low 0.64 0.43 0.25 0.49 0.19

β1 Medium 0.81 0.54 0.24 0.52 0.36
High 0.97 0.76 0.40 0.67 0.21
Low 0.51 0.52 0.45 0.39 0.23

β2 Medium 0.57 0.64 0.49 0.52 0.34
High 0.74 0.75 0.29 0.67 0.56
Low 0.54 0.61 0.21 0.28 0.43

β3 Medium 0.65 0.31 0.36 0.61 0.56
High 0.81 0.45 0.35 0.65 0.67
Low 0.47 0.41 0.27 0.54 0.23

β4 Medium 0.58 0.42 0.61 0.68 0.31
High 0.59 0.56 0.70 0.63 0.38
Low 0.56 0.41 0.20 0.51 0.56

β5 Medium 0.58 0.42 0.19 0.67 0.58
High 0.81 0.45 0.32 0.76 0.59
Low 0.65 0.45 0.41 0.60 0.23

β6 Medium 0.67 0.49 0.42 0.82 0.34
High 0.78 0.78 0.49 0.73 0.56
Low 0.45 0.13 0.15 0.21 0.23

β7 Medium 0.48 0.23 0.23 0.38 0.27
High 0.49 0.29 0.34 0.39 0.29
Low 0.21 0.29 0.19 0.19 0.22

β8 Medium 0.34 0.29 0.37 0.39 0.31
High 0.29 0.49 0.61 0.29 0.39
Low 0.54 0.67 0.65 0.43 0.46

β9 Medium 0.62 0.65 0.80 0.56 0.51
High 0.61 0.87 0.18 0.51 0.58
Low 0.23 0.24 0.21 0.26 0.26

β10 Medium 0.31 0.21 0.24 0.43 0.34
High 0.45 0.43 0.45 0.45 0.47
Low 0.65 0.65 0.54 0.29 0.25

β11 Medium 0.72 0.67 0.56 0.49 0.36
High 0.76 0.70 0.67 0.59 0.47
Low 0.21 0.23 0.14 0.23 0.13

β12 Medium 0.34 0.45 0.23 0.28 0.24
High 0.43 0.52 0.39 0.21 0.36
Low 0.35 0.32 0.35 0.24 0.25

β13 Medium 0.37 0.45 0.45 0.26 0.29
High 0.45 0.54 0.48 0.27 0.29
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Table 12. Degrees of contradiction correlating with the dominant value.
Symptoms Dominant L M H

β1 High 0.82 0.670 0.00
β2 High 0.99 0.58 0.00
β3 Medium 0.31 0.00 0.58
β4 High 0.98 0.82 0.00
β5 High 0.97 0.81 0.00
β6 Medium 0.46 0.00 0.52
β9 Low 0.00 0.42 0.89
β11 Low 0.00 0.45 0.88

Table 13. Degree of affiliation assigned to the suspects by the specialist using fuzzy logic.
Symptoms Severity Suspects

s1 s2 s3 s4 s5
Low 0.64 0.43 0.25 0.49 0.19

β1 Medium 0.81 0.54 0.24 0.61 0.36
High 0.97 0.76 0.40 0.76 0.19
Low 0.51 0.52 0.45 0.39 0.23

β2 Medium 0.57 0.64 0.49 0.52 0.34
High 0.74 0.75 0.29 0.67 0.56
Low 0.54 0.61 0.21 0.28 0.43

β3 Medium 0.65 0.31 0.36 0.61 0.56
High 0.81 0.45 0.35 0.61 0.67
Low 0.47 0.41 0.31 0.54 0.23

β4 Medium 0.58 0.42 0.61 0.70 0.31
High 0.59 0.56 0.68 0.67 0.38
Low 0.56 0.41 0.21 0.51 0.56

β5 Medium 0.58 0.42 0.19 0.67 0.58
High 0.81 0.45 0.29 0.76 0.59
Low 0.65 0.45 0.41 0.61 0.23

β6 Medium 0.67 0.49 0.42 0.79 0.34
High 0.78 0.78 0.49 0.69 0.56
Low 0.54 0.67 0.65 0.43 0.46

β9 Medium 0.62 0.65 0.80 0.56 0.51
High 0.61 0.87 0.18 0.51 0.58
Low 0.65 0.65 0.54 0.33 0.25

β11 Medium 0.72 0.67 0.56 0.55 0.36
High 0.76 0.70 0.67 0.60 0.47
Low 0.21 0.23 0.14 0.23 0.13

β12 Medium 0.34 0.41 0.23 0.28 0.24
High 0.43 0.52 0.39 0.21 0.36
Low 0.35 0.32 0.35 0.24 0.25

β13 Medium 0.37 0.45 0.45 0.26 0.29
High 0.45 0.54 0.48 0.27 0.29
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