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Autism spectrum disorder (ASD) issues formidable challenges in early diagnosis and intervention, requiring efficient meth-
ods for identification and treatment. By utilizing machine learning, the risk of ASD can be accurately and promptly
evaluated, thereby optimizing the analysis and expediting treatment access. However, accessing high dimensional data
degrades the classifier performance. In this regard, feature selection is considered an important process that enhances the
classifier results. In this paper, a chaotic binary butterfly optimization algorithm based feature selection and data classifica-
tion (CBBOAFS-DC) technique is proposed. It involves, preprocessing and feature selection along with data classification.
Besides, a binary variant of the chaotic BOA (CBOA) is presented to choose an optimal set of a features. In addition, the
CBBOAFS-DC technique employs bacterial colony optimization with a stacked sparse auto-encoder (BCO-SSAE) model
for data classification. This model makes use of the BCO algorithm to optimally adjust the ‘weight’ and ‘bias’ parameters
of the SSAE model to improve classification accuracy. Experiments show that the proposed scheme offers better results

than benchmarked methods.
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1. Introduction

Autism spectrum disorder (ASD) is a complex
neurological disease that involves difficulties in social
communication, repetitive behaviours, and a limited range

*Corresponding author

of interests or activities (Duan et al., 2022). Research
indicates that the origins of this phenomenon include a
complex interaction between genetic predispositions and
environmental effects, such as maternal immunological
stimulation during pregnancy. Although ASD is a
disorder that lasts a lifetime, prompt intervention can
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greatly improve the developmental quotients, cognitive
abilities, and linguistic skills of individuals with ASD
(Hirota and King, 2023; Gaspar et al., 2022). Recent
research has emphasized the crucial need of identifying
and addressing ASD at an early stage. These studies
have shown that younger children with ASD have a
higher potential for brain flexibility and the ability to
adjust their behaviour. The progress in machine learning
(ML) methods has created opportunities for automating
the diagnosis of ASD by extracting behavioral or brain
characteristics using various classifiers and feature
extractors. This methodology not only simplifies the
diagnostic procedure, but also provides more impartial
and precise evaluations, thereby facilitating earlier
detection and intervention for persons with ASD (Li
et al., 2022a).

The prevalence and diverse nature of ASD have
prompted many to favor ML over traditional statistical
methodologies for data analysis. While standardized
diagnostic tools are commonly used by clinicians,
they often require considerable time for evaluation,
presenting a drawback in the diagnostic process. ML
offers an intelligent solution to this issue, with its
primary aim being the reduction of diagnostic time
while maintaining or improving accuracy levels. By
expediting the diagnostic process, ML enables prompt
intervention for individuals with ASD. Additionally, ML
techniques aim to identify key ASD features by reducing
the dimensionality of input datasets, further enhancing
diagnostic efficiency and accuracy (Parlett-Pelleriti et al.,
2023).

Feature selection (FS) plays a vital role in enhancing
the accuracy and interpretability of predictive models
for ASD (Mohammed et al., 2021). Given the
complexity and heterogeneity of ASD, selecting the
most relevant features from high-dimensional datasets is
essential for constructing robust diagnostic or predictive
models. Feature selection methods aim to identify a
subset of features that are informative and discriminatory
for distinguishing between individuals with ASD and
neurotypical individuals. These methods can range from
filter methods, which depend on statistical measures such
as correlation or mutual evidence, to wrapper methods that
utilize the predictive performance of a specific learning
algorithm. By minimizing the data dimensionality while
preserving the discriminatory power, feature selection not
only improves the efficiency of machine learning models,
but also aids in identifying biomarkers and underlying
mechanisms associated with ASD, thus facilitating early
diagnosis and personalized intervention strategies (Raj
and Masood, 2020).

The FS method is generally modeled as an
optimization process (Majidpour et al., 2024), with
certain interest in those named wrapper methods. These
techniques utilize classification efficiency as the fitness

function (FF) and direct the procedure to select the
subset of instances that maximize a few measures that
consider the classification output. In previous years, some
nature inspired meta-heuristic methods were assumed
to tackle individual objective functions (Rahman er al.,
2020). Maintaining a subgroup of related features and
removing unrelated features could be useful in enhancing
computation effectiveness and increasing classification
accuracy (Alhafedh and Qasim, 2019). The wrapper
module could be utilized for distinguishing related
features and deleting unrelated features by accepting
methods that choose many subsets of features and
test them by utilising the recommended FF. With the
improvement of computation intelligence, many attempts
have been made to develop emerging algorithms for FS
like the genetic algorithm (GA), gray wolf optimization
(GWO), grasshopper algorithm, bat algorithm (BA) and
particle swarm optimization (PSO).
The major objectives of this paper are as follows:

* Develop a chaotic binary butterfly optimization
algorithm-based feature selection and data
classification (CBBOAFS-DC) technique.

* Design a binary variant of the chaotic butterfly
optimization algorithm (CBOA) for selecting an
optimal set of features to enhance classification
accuracy while minimising the number of chosen
features.

* Implement the  CBBOAFS-DC  technique,
incorporating the bacterial colony optimization
with a stacked sparse autoencoder (BCO-SSAE)
model for data classification.

* Utilize the BCO-SSAE algorithm to optimally adjust
the ‘weight’ and ‘bias’ parameters of the SSAE
model to enrich classification accuracy.

e Perform a number of simulations on common
ASD datasets to see how well the proposed
CBBOAFS-DC scheme works at classifying data.

The rest of the paper is structured as follows. Section 2
discusses various approaches involved in feature selection
and their challenges. Section 3 outlines the proposed
methodology and various architectures.  Section 4
describes the experimentation and an analysis of the
proposed model compared with other existing models.
Finally, Section 5 concludes the paper with findings and
future improvements.

2. Related work

This section contains a review of the recent standard
methods associated with FS and classification processes.
Omuya et al. (2021) designed a hybrid filter module for
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FS depending on principal component analysis (PCA)
along with information gain. The hybrid module is
later employed for supporting classifiers by utilizing
ML methods like the NB method. Thirumoorthy and
Muneeswaran (2021) presented a new FS technique
depending upon the hybrid binary poor and rich
optimization (HBPRO) method for obtaining a suitable
subset of optimum features. An optimum feature subset
is chosen by NB classification with two standard text
corpus datasets. Jiménez-Cordero et al. (2021) proposed
an embedded FS technique depending on min and
max optimization problems when a trade-off between
the complexity module and the classification accuracy
is required. With the leverage duality concept, they
consistently recreate the min-max problems and resolve
them without further ado by standard software for
nonlinear optimization. Dong et al. (2020) presented
several objective optimization-based multi-label FS
(MMFS) methods. To improve the convergence and
diversity of NSGA 111, they proposed an enhanced NSGA
III technique with two archives.

Qasim et al. (2020) chose a common discriminative
feature using the novel chaotic binary black hole
algorithm (CBBHA) while chaotic mappings include the
motion of stars in BBHA. Research on 3 chemical
datasets displays the presented method, CBBHA, which
has the benefits of conventional BBHA based on
related FS with higher classification efficiency. Li
et al. (2022b) propounded meta-learning based industrial
intelligence of FS architecture for classifying challenges
that are widespread in implementation. The presented
architecture contains three parts: algorithms, datasets, and
classification recommendation modules. Paul e al. (2021)
utilized multi-label learning and online appearance of
features. This technique automatically defines the optimal
subcategory of features that are appropriate for multi-label
classifiers. A three-stage filtering procedure is employed
for selecting suitable features. The initial stage is an
evolution-based PSO method, which is employed for the
set of received features in a multi-objective architecture.
The next stage verifies the redundant FS in the present set
with respect to the previously selected feature, and lastly,
it discovers the features in the previously selected feature
list that are turned into insignificant on choosing recently
attained features and discards them.

Chen et al. (2020) employed three common datasets
with a large number of parameters (Human Activity
Recognition by Smartphones Car Evaluation Database
and Bank Marketing). Moreover, they calculate and
relate the performance and accuracy of the classification
modules, like KNN, LDA, SVM, and RF. Spencer
et al. (2020) investigated the efficiency of the ML
method utilising related features selected via several FS
techniques. Four commonly utilized heart disease datasets
were processed by relief, PCA, chi-squared testing and

symmetric uncertainty for creating separate feature sets.
Therefore, different classification techniques were utilized
for building modules, which are later related to seeking
combinations of optimal features and obtaining precise
predictions of heart condition. Liu et al. (2020) have
proposed an FS technique for classifying text depending
on independent feature space search. Initially, a relative
document term frequency difference (RDTFD) technique
is presented for dividing features in every text document
into 2 independent sets based on feature capability
for discriminating negative and positive instances that
contain 2 significant functions: for improving higher-class
correlation of features, decreasing correlation among
features along with the range of search of feature space,
and preserving suitable redundant features.

Loganathan et al. (2023) proposed chaotic Henry gas
solubility optimization to select the features from an EEG
microstates dataset. Better predictions are also made with
the help of the bidirectional gated recurrent unit (Bi-GRU)
and a weighted average ensemble approach. Uddin et al.
(2023) introduced a machine learning approach to handle
the ASD classification. In addition, the SMOTE method
is used to handle the imbalanced dataset. They compared
the model with numerous deep learning approaches.
However, the results are not satisfactory and fail to
determine the significant features.

3. Proposed model

The working process of the presented CBBOAFS-DC
scheme is shown in Fig. [l The figure portrays that the
input is primarily preprocessed to eradicate the noise that
occurs in it. In the CBBOAFS technique, chaos theory
is incorporated into the BOA, and then a binary variant of
the CBOA is developed for selecting an optimal collection
of features. At last, the BCO algorithm with the SSAE
based data classification model is executed to allocate
class labels to input, where parameter tuning of the SSAE
model is done using the BCO algorithm such that the
classification performance is increased.

3.1. Data preprocessing. Initially, input data undergoe
preprocessing in three different ways involving format
transformation, replacing missing values and class
labeling. Firstly, the original data in .arff format are
transformed to a compatible .csv format. Secondly, the
median technique is applied for the replacement of the
missing values. Thirdly, the class labeling procedure takes
place, which allocates the class labels to the original data
instances.

3.2. Feature selection. Once input is pre-processed,
in the ensuing stage, optimal features are chosen from
preprocessed data using the CBBOAFS technique. Chaos
theory and a binary version for FS are both included
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Table 1. Analysis of various approaches for detecting ASD.

Reference Methodology PP FS PT Classifier
. . IWOA-based feature selection
Umamaheswari and Parthiban (2020) Hybrid of PSO and WOA approach v oV X FC
Nogay and Adeli (2023) GSO for PT v v Vv DCNN
Zhang et al. (2022) Simplified VAE and MLP v v o oox MLP
Sahu and Verma (2022) PSO for FS v oV X MLP
Al-Muhanna et al. (2024) AHHO for FS v v X ARTM
Almars et al. (2023) GTO with TL for FS and PT v v v TL
Owl search algorithm for FS
Mengash et al. (2023) BSAS with ID 3 v v v ID3

PP: preprocessing, FS: feature selection, PT: parameter tuning, ARTM: attention-based residual term memory,
MLP: multi-layer perceptron, DCNN: deep convolution neural network, TL: transfer learning,
ID3: iterative dichotomiser 3, FC: fuzzy classifier.

Dataset 1 (Child)

3 i Dataset 2 (Adolescent) |
(Source: UCT) o !

(Source: UCI)

Dataset 3 (Adult)
(Source: UCI)

Data Preprocessing

!

Feature Selection Process
using Chaotic Binary BOA

l

\ Selected Features

. ——— —— —— — ———

o ——— i —— — ——— —— ——

PR IR,

Parameter Tuning using \
Bacterial Colony Optimization
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Stacked Sparse Autoencoder

[

Performance Evaluation I
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Classification Process ]

-----------------------

Fig. 1. Overall process of the CBBOAFS-DC model.

in the design of the CBBOAFS technique. Stimulated
by speckled woods’ mate finding approach, Qi et al.
(2017) presented a novel metaheuristic technique named
the BOA. Butterfly population is divided into two sets
based on fitness. Butterflies with optimum fitness values
form sunspot butterflies and others are named canopy
butterflies. Besides, a distinct flight approach is employed
for every group. The three-flight mode forms BOA
methods like canopy, free, and sunspot flight modes.
Several guidelines are created for idealizing mate finding
approaches of butterfly in the BOA method, as given
below:

* to raise the probability of facing female butterflies,
every male flies closer to an optimum location called
sunspot,

* to conquer an optimal sunspot, each sunspot butterfly

frequently flies to a nearby sunspot, and

e each canopy butterfly frequently flies to other
sunspot butterflies to contend the sunspot.

Let P = {p1,p2,...,pm} represent the butterfly
population and p; € R™. The next approach is used for
sunspot and canopy flight modes: every butterfly flies
to arbitrarily chosen butterflies in accordance with the

formula

Pt =l + (0 — ph )8 (1)

Here 7 represents the i-th butterfly, j indicates a randomly
chosen dimension from among {1,2,...n}, ¢ indicates
present iteration, [ represents an arbitrarily created
amount from the interval [1, —1] and k denotes a randomly
chosen butterfly (k # ).

Additionally, each butterfly uses the equation below
to fly closer to a randomly chosen sunspot butterfly in the
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sunspot/canopy flight mode,

fr1 ¢ pfw» — P
Pij =DPij + T 1 (U - L)Sﬁ, 2)
L~ Pij

where U and L denote respectively the lower and upper
bounds of the flying range of the i-th butterfly. The
variable s linearly decreases from 1 to s, using

t
=1—(1—-s5¢)= 3
s (1—se) T (3)
where 1" represents the maximum number of iterations.
In the case of the free-flight mode, each butterfly flies to
a randomly novel location for enhancing the exploration
stage in the BOA using

piit =i, +2a8 —aD, “)

where « gets linearly reduced from 2 to 0 in the sequence
of iterations, and

D = |2B(p}..; — i)l ®)

3.2.1. Design of the CBOA. To improve global
optimization capabilities of the classical BOA, the CBOA
is derived by including chaos theory. It is included
in numerous optimization schemes for evading getting
trapped in a local optimum and improving the solution
quality. Every meta-heuristic scheme (including the BOA)
depends on two classes: exploration and exploitation.
During exploitation, the search is performed for obtaining
an optimal solution, when exploration permits an effective
search. Chaos is included in the BOA for striking a
balance amid exploitation as well as exploration, therefore
attaining an optimum solution effectively (Sayed et al.,
2019). In the BOA, variable 6 is assumed as a major
aspect influencing convergence actions. The efficiency
of the BOA is based on its variables, and they noted
that Eqn. (6) offers an essential momentum for stars by
a probable search space and they noted the motion of stars
to an optimum location, implying that the search space
cannot be effectively examined.

Chaos is included for getting improved features
during exploitation and exploration in each search space,
therefore enhancing the efficacy of the optional technique
in finding on optimal universal solution. A chaotic map
(Ciap) s used for finding the position of xf, whereas 6 is
replaced with the attained value, as defined below

o = 2k 4 Cpap x (zpu — 2F),
i=1,2,...,Na, (6)

where z¥ and a:f“ represent the locations of the ¢-th star
in iterations k and k + 1, respectively, gy denotes the
position of BH in space, Cyn,p indicates the chaotic map,

and N, represents the number of stars. Around 10 calls to
C'map are used for manipulating values of random variables
in the BOA, and a primary value for each mapping is fixed
as 0.7.

3.2.2. Binary version of the CBOA. The novel
location of the butterfly produced by the local/global
search would have a continuous solution, which needs
to be converted to an equivalent binary value. This
transformation is executed by employing a squash
of continuous solutions at every dimension utilizing
sigmoidal (S shaped) transfer function (Mirjalili and
Hashim, 2012) that would force a butterfly to move into
a binary search space,

1
S(Ff(t) = 1L P (7

Here FF represents the continuous fragrance value of the
i-th butterfly at k-th dimension in iteration ¢. The output
from this function remains continuous and hence there
must be a threshold for reaching binary values. The S
shape function maps efficiently the infinite input to a finite
output. It is beneficial to mention the likelihood of altering
the values of the location vector in relation to the slope
of the transfer function. A general stochastic threshold is
employed for reaching a binary solution in the case of the
sigmoidal function:

0 if rand < S(FF(t)),

1 if rand > S(EF(t)). ©

wﬂm4»={

3.2.3. Application of the CBBOA to feature selec-
tion. The FS is a binary optimization problem where
the search agent is restricted to binary values of zero
and one. In this study, all solutions are described as
vectors the length of which is based on the number of
attributes or features in the dataset. The vector entries
may have two values, like zero/one, where a value of one
represents the fact that the equivalent attribute or feature
is selected and a value of zero indicates that the attribute
or feature is not chosen. The FS problem is assumed by a
multi-objective optimization problem where two differing
objectives should be determined choosing the least
number of features and highest classification accuracy. To
resolve this problem, two binary optimization methods
are presented (Arora and Anand, 2019). In the FS
problem, the solution is assumed as an optimum that
has fewer features along with maximum classification
accuracy. All solutions are evaluated by the presented
FF that is based on SSAE classification for calculating
classification accuracy and the number of chosen features.
Considering the aim to detect balance between the number
of attributes and classification accuracy, the following

@amcs
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fitness function (FF) is utilized for every optimization
technique to calculate the solution:

1B]
NI
where ~ygr(D) denotes the error rate of SSAE
classification. Additionally, |R| denotes the cardinality
of the selected feature subset and |N| denotes the
complete set of features from the actual dataset, o and
£ indicate two variables equivalent to the significance

of classification quality along with the subset length,
ac0,l]andf=1— .

Fitness = ayr(D) + 8 9

3.3. Data classification. During the data classification
process, the BCO-SSAE model is employed for finding
proper class labels. The SSAE model requires an optimal
tuning of ‘weight’ and ‘bias’ parameters, which can be
optimally accomplished using BCO algorithm.

3.3.1. SSAE architecture. Deep canonical correlation
analyses (DCCA) could extract nonlinear data. But
it neglects the significance of nonlinear dimension
reduction. An autoencoder (AE) is recurrently utilized
for nonlinear dimension reduction, particularly, an AE (Li
et al., 2020) encoding as well as decoding layers that are
feedforward neural networks (FFNNs). Besides, an AE
is mostly utilized for reducing data dimensionality. In
the encoder layer, the AE gets x € RP as input, and
the encoder z in hidden layer i deals with reducing input
dimensions. In the decoder layer a reduced data length is
interpreted as an outcome. The mathematical expression
of the encoded input vector is

h=o(Wz+b), (10)

where o denotes the activation function, e.g., a sigmoid
or a tanh, W € R"*P stands for the weight matrix,
b € R" signifies the bias vector. The hidden expression
is responsible for getting data closer to input x with the
decoding expression

T=o(W'h +V), (11)

where W’ € R(P*™) represents the weight matrix and
b € RP means the bias vector. The difference between
the input and output is called a reconstruction error.
For optimizing the variables W, W', b and ¥, the
reconstruction error is utilized as the cost function. For
an individual training sample, the cost function is

1 .
JAE = 5||;v—:c|\2. (12)

For several training samples (the number of training
samples is V), the complete cost function is

ZW (1)) (13)

JaE =

(1)
X W

Output Layer

Fig. 2. Structure of the SSAE model.

Overfitting is a problem in training the autoencoder
network. Therefore, a weight penalty is employed for the
cost function that can effectively resolve too much overfit
(Czmil et al., 2024). The penalized cost function is

Tae = —% @) - x @)
N2 (14)

gl
+ 5 IV + 11W)1%).

If the input dimension and the number of hidden
units are high, sparsity is enforced on the hidden unit
in the training process for discovering an accurate input
form. A neuron is active when its output value is close
to 1, whereas inactive output is close to 0. The average
activation is

N
~ 1 )
%:N;%“W) (15)

For enforcing sparsity, it is imposed that p; = p,

while p represents a sparsity target (generally a small
positive number is near zero). Therefore, the KL deviation
between [)\j and p is minimized,

S
~ p 1—p
Tk(pllpy) =Y plog = + (1 — p)log = (19
j=1 p] 7/)]

where S denotes the number hidden layer nodes. Thus,
the total cost function of a sparse AE is

N1
Jsae = EE: 5176 = X@)”

'y _
+ 5 (IWIP + 11W11%) + BTk (el 55),

(17)

where [ represents the sparsity penalty. Minimizing the
cost function, we could attain optimum values of variables
W' and bias b'. The AEs are stacked altogether to learn
useful features. The stacked sparse auto encoder (SSAE)
is represented using many AEs. Figure [2] illustrates the
structure of the SSAE model.
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3.3.2. Parameter tuning using the BCO algorithm.
BCO (Wang et al., 2014) is a simple optimization
procedure with several exchange topologies, better
convergence, characterized by design simplicity. The
chemotaxis procedure is a critical optimization phase in
the BCO algorithm. It comprises two major approaches:
tumbling and running strategies. Predominantly, the
goal of running approach is to create a novel location
(0;(T)) with respect to the prior location (8;(T —
1)), a dynamic/random oriented study (Pbest;), and a
group-oriented study (Gbest). To improve convergence
and diversity, the tumbling approach is introduced while
the running approach becomes invalid at a particular level.
During the tumbling procedure, additional arbitrariness
term (tur;) is utilized for seeking an optimal location for
nutrients. The running formula has the form

The tumbling formula is
0;(T)=0,(T — 1)+ R; x (Gbest — 6;(T — 1))
+ (1 — R;) x (Pbest; — 0;(T — 1)) (19)
+ C(i) x tur;.

Here, Gbest and Pbest denote the group oriented and
dynamic oriented studies, respectively, C' represents the
step size of chemotaxis. A random variable tur; =
A(1)/+/(AT(3)A(7)) is used, in which A(7) indicates
the angle representing the direction of the i-th bacterium
lying in [—l, 1]. The variables like R; and Ry represent
two randomly formed constants and their values range
from O to 1. FigureBldisplays the workflow of the BCO
technique.

At the final stage, the parameters involved in the
SSAE model are optimally adjusted using the BCO
algorithm, which enhances the classification performance
to a maximum extent. The weight and bias parameters
of the SSAE model are tuned using the BCO algorithm
(Wang et al., 2019; Helen Josephine et al., 2023).
The 10-fold cross-validation (CV) approach is used
for assessing the FF. The training dataset is randomly
separated as a set of 10 mutually exclusive subsets of
approximately same sizes, where 9 of them are employed
to trained the model and the last subset is employed in
testing. This process iterates 10 times so that every subset
is utilized for the tested model. The FF is 1 — CAvaiidation
of 10-fold CV from trained datasets,

Fitness = 1 — CAvalidaliona (20)
1 10 y
CAqalidation = 1 — E lzzl Yo+ uy x 100, (21)

where y. and y indicate the true and false classification
counts, respectively. A solution with maximal C Ay ,jdation
yields a minimum fitness value.

Table 2. ASD dataset from UCI.

No. | Dataset NoA Nol
1 Children 21 292
2 Adolescent D 21 104
3 Adult 21 704

NoA: number of attributes,
Nol: number of instances.

Table 3. Attributes in the applied dataset.

No. Description
1 Age of patient
2 Sex of patient
3 Society
4 Neonatal jaundice?
5 Does any relative have PDD?
6 Who fulfils the test?
7 Country of residence
8 Already used screening app before or not?
9 Type of screening test
10-19 | Answer 10 gns. based on screening method
20 Screening score
21 Target class [ Yes/No]

4. Experiments and result analysis

4.1. Experimental setup. The CBBOAFS-DC
technique was applied to the ASD dataset to select
significant features and, thereby, to improve the
classification accuracy. A Windows PC equipped with an
AMD Ryzen 7 2700x processor, 16 GB of RAM, a 500
GB SSD, and an NVIDIA GeForce GTX 1050 Ti graphics
card was used for the experimentation. Furthermore, the
Python language was employed for both code execution
and outcome analysis.

4.2. Dataset description. The presented method is
implemented using Python 3.6.5 and the outcomes are
observed for three ASD datasets. The first ASD-Children
dataset includes 292 instances, the ASD-Adolescent
dataset has 104 instances, and the ASD-Adult dataset
comprises 704 instances. The dataset details are given
in Table Besides, attribute details of the datasets are
illustrated in Table[3

4.3. Result analysis. Table d and Fig. ] examine
FS performance of the CBBOAFS-DC model with
other present schemes. From the obtained results,
it is apparent that the PSO-FS (Shami et al., 2023)
and GWO-FS (Banaie-Dezfouli et al., 2023) algorithms
yielded inferior FS performance with the least costs of
0.7891 and 0.6523, respectively. At the same time, the
QODF-FS model (Zhao et al., 2023) slightly improved
the FS results with a moderate better cost of 0.3127.
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Elimination
Condition
Satisfied?

Elimination
Condition

Satisfied?

Elimination
Condition
Satisfied?

Fig. 3. Flowchart of the BCO algorithm.

Table 4. Attributes chosen by the proposed CBBOAFS-DC

Table 5. Result of the proposed CBBOAFS-DC model on ap-

technique. plied datasets.
Methods Best cost  Chosen features Measures | SE (%) SP (%) Acc(%) F (%)
CBBOAFS-DC | 0.2983 1,2,4—-17,10,12,13, 16 ASD-Children dataset
QODF-FS 0.3127 1—-4,7,9—-11,14,15,20 Run 1 98.58 98.68 98.63 98.58
GWO-FS 0.6523 1,4—-9,11-17,19 Run 2 97.16 99.34 98.29 98.21
PSO-FS 0.7891 3 —-8,10—18 Run 3 97.87 98.01 97.95 97.87
Run 4 98.58 99.34 98.97 98.93
. Run 5 97.87 98.68 98.29 98.22
ASD-Adolescent dataset
08 Run 1 100 97.56 99.04 99.21
Run 2 98.41 92.68 96.15 96.88
2 0.6 Run 3 100 95.12 98.08 98.44
3 Run 4 96.83 95.12 96.15 96.83
g 54 Run 5 98.41 97.56 98.08 98.41
ASD-Adult dataset

02 Run 1 97.88 99.03 98.72 97.63
Run 2 97.35 99.22 98.72 97.61
o Run 3 98.94 99.03 99.01 98.16
CBBOAFS-DC  QODF-FS GWO-FS PSO-FS Run 4 99.47 99.61 99.57 99.21
Run 5 97.88 99.81 99.29 98.67

SE: sensitivity, SP: specificity, Acc: accuracy,

F: F-score.

Fig. 4. Best cost investigation of the CBBOAFS-DC method.

However, the presented CBBOAFS-DC technique has
offered an improved outcome with the worst cost of
0.2983. Therefore, the CBBOA technique has appeared as
a better FS technique than other optimization algorithms.

The confusion matrix generated by the presented
technique after distinct five runs for three different ASD
datasets is illustrated in Fig.

Table showcases the classification outcomes
obtained by the CBBOAFS-DC model on the
applied dataset. Classification results of the proposed
CBBOAFS-DC model on the ASD-Children dataset are

demonstrated in Fig. [l It is clear that the CBBOAFS-DC
model produces improved results under distinct runs.
For example, for Run 1, the CBBOAFS-DC model
produces 98.58% sensitivity, 98.68% specificity, 98.63%
accuracy and 98.58% F-score. In addition, for Run 3,
the CBBOAFS-DC approach yields 97.87% sensitivity,
98.01% specificity, 97.95% accuracy and 97.87% F-score.
Also, for Run 5, the CBBOAFS-DC model ends up with
97.87% sensitivity, 98.68% specificity, 98.29% accuracy
and 98.22% F-score.

A classification results analysis of the proposed
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Fig. 5. Confusion matrix of different runs: ASD-Children dataset (Runs 1-5) (a), ASD-Adolescent dataset (Runs 1-5) (b), ASD-Adult

dataset (Runs 1-5) (¢).

CBBOAFS-DC technique on the applied ASD-
Adolescent dataset is demonstrated in Fig. [7} It is obvious
that the CBBOAFS-DC model exhibits improved results
for distinct runs. For Run 1, the CBBOAFS-DC model
yields 100% sensitivity, 97.56% specificity, 99.04%
accuracy and 99.21% F-score. Besides, for Run 3, the
CBBOAFS-DC technique produces 100% sensitivity,
95.12% specificity, 98.08% accuracy and 98.44% F-score.
Additionally, for Run 5, the CBBOAFS-DC approach
produces 98.41% sensitivity, 97.56% specificity, 98.08%
accuracy and 98.41% F-score.

An analysis of the classification results for the
proposed CBBOAFS-DC method on the ASD-Adult
dataset is demonstrated in Fig. I8l It is seen that
the CBBOAFS-DC model exhibits better results for
varying runs. For Run 1, the CBBOAFS-DC model
yields 97.88% sensitivity, 99.03% specificity, 98.72%
accuracy and 97.63% F-score. Moreover, for Run 3,

the CBBOAFS-DC method produces 98.94% sensitivity,
99.03% specificity, 99.01% accuracy and 98.16% F-score.
Furthermore, for Run 5, the CBBOAFS-DC scheme offers
97.88% sensitivity, 99.81% specificity, 99.29% accuracy
and 98.67% F-score.

Table [l and Fig. 0 show the analysis of the
average classification results of the CBBOAFS-DC model
on the applied dataset. The CBBOAFS-DC method
classified the ASD-Children dataset with average 98.01%
sensitivity, 98.81% specificity, 98.43% accuracy and
98.36% F-score. Besides, the CBBOAFS-DC model
classified the ASD-Adolescent dataset with 98.73%
sensitivity, 95.61% of specificity, 97.50% accuracy and
97.95% F-score. At last, the CBBOAFS-DC methodology
classified the ASD-Adult dataset with 98.30% sensitivity,
99.34% specificity, 99.06% accuracy and 98.26% F-score.
The analysis of the ROC curve for different runs on
the ASD-Children dataset, ASD-Adolescent dataset and
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Fig. 6. Result analysis of the CBBOAFS-DC method on the
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Fig. 7. Results for the CBBOAFS-DC method on the ASD-
Adolescent dataset.

Table 6. Average performance of the proposed CBBOAFS-DC
method on the dataset applied.

Measures | SE (%) SP (%) Acc(%) F (%)
ASD-Children dataset
Average 98.01 98.81 98.43 98.36

ASD-Adolescent dataset

Average 98.73 95.61 97.5 97.95

ASD-Adult dataset
99.34 99.06

Average 98.3 98.26

ASD-Adult dataset is presented in Fig.

A detailed comparative study of the classification
results produced by the CBBOAFS-DC model with other
existing techniques is illustrated in Table [7] and Figs. [I1]
and On examining the results with respect to
sensitivity and specificity, the KNN approach yielded
poorest classification outcomes with 46.6% sensitivity and
72.1% specificity. Apart from that, the DT technique
displayed slightly improved results with 53.3% sensitivity
and 54.9% specificity. Then, the NN model put forward
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Fig. 8. Results for the CBBOAFS-DC method on the ASD-
Adult dataset.
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Fig. 9. Average performance of the CBBOAFS-DC model.

slightly increased performance with 53.3% sensitivity
and 71.2% specificity. Besides, the LR model resulted
in a moderate performance with 55% sensitivity and
62.6% specificity. Moreover, the QODF-DSAN model
showcased reasonable results with 95.31% sensitivity
and 98.83% specificity. Furthermore, the SSAE
model generated nearly acceptable outcomes with
96.41% sensitivity and 97.92% specificity. Though the
BCO-SSAE model brought about competitive outcomes
with 97.43% sensitivity and 98.61% specificity, the
presented CBBOAFS-DC technique outperformed the
earlier methods with 98.3% sensitivity and 99.34%
specificity.

Finally, on investigating the results based on
accuracy and F-score, the DT model provided worst
classification outcomes with 54.7% accuracy and 52.81%
F-score. In the meantime, the LR model exhibited
somewhat improved results offering 59.1% accuracy
and 60.82% F-score. At the same time, the KNN
technique lead to an even increased performance offering
61.8% accuracy and 68.7% F-score. The NN model
offers a moderate performance with 62% accuracy and
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Fig. 10. ROC analysis of different runs: ASD-Children dataset (Runs 1-5) (a), ASD-Adolescent dataset (Runs 1-5) (b), ASD-Adult

dataset (Runs 1-5) (c).

Table 7. Comparative analysis of the proposed CBBOAFS-DC
model with existing methods.

Methods SE (%) SP (%) Acc(%) F (%)
CBBOAFS-DC 98.3 99.34 99.06 98.26
BCO-SSAE 97.43 98.61 98.61 97.95
SSAE 96.41 97.92 98.32 96.49
QODF-DSAN 95.31 98.83 97.87 96.06
Decision tree 53.3 54.9 54.7 52.81
LR 55.5 62.6 59.1 60.82
Neural network 53.3 71.2 62 69.88
k-NN 46.6 72.1 61.8 68.7

69.88% F-score. Concurrently, the QODF-DSAN model
showcased somewhat reasonable outcomes with 97.87%
accuracy and 96.06% F-score.

Along with that, the SSAE model resulted in nearly
acceptable results with 98.32% accuracy and 96.49%

F-score. Eventually, the BCO-SSAE model yielded a
competitive outcome with 98.61% accuracy and 97.95%
F-score, and the presented CBBOAFS-DC method beat
up the earlier models with 99.06% accuracy and 98.26%
F-score. After examining the above-mentioned tables
and figures, it is seen that the CBBOAFS-DC method is
considered an effectual data classification tool. Besides, it
is also ensured that the inclusion of the CBBOA based
FS technique helps to considerably boost the overall
classification results.

4.4. Discussion. The CBBOAFS-DC method
demonstrates superior classification performance on
the ASD datasets across various age groups, achieving
remarkable metrics with an average sensitivity, specificity,
accuracy, and F-score of 98.01%, 98.81%, 98.43%, and
98.36%, respectively, for the ASD-Children dataset.
For the ASD-Adolescent dataset, it attained 98.73%
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sensitivity, 95.61% specificity, 97.50% accuracy, and a
97.95% F-score. Furthermore, the method excelled with
the ASD-Adult dataset, achieving 98.30% sensitivity,
99.34% specificity, 99.06% accuracy, and a 98.26%
F-score. These results are comprehensively compared
with existing techniques in Table 6 and Figs. 11 and
12.  Notably, the KNN approach yielded the lowest
classification outcomes, with sensitivity and specificity
of 46.6% and 72.1%, respectively. The DT technique
showed a slight improvement with 53.3% sensitivity
and 54.9% specificity, while the NN model performed
better with 53.3% sensitivity and 71.2% specificity. The
LR model provided moderate results, achieving 55%
sensitivity and 62.6% specificity.

The QODF-DSAN model produced reasonable
results with 95.31% sensitivity and 98.83% specificity,
and the SSAE model displayed nearly acceptable
outcomes with 96.41% sensitivity and 97.92% specificity.
Although the BCO-SSAE model exhibited competitive
outcomes with 97.43% sensitivity and 98.61% specificity,
the CBBOAFS-DC technique surpassed all with 98.3%
sensitivity and 99.34% specificity. Additionally, in terms
of accuracy and F-score, the DT model had the lowest
performance with 54.7% accuracy and a 52.81% F-score.

The LR model improved slightly with 59.1% accuracy
and 60.82% F-score, while the KNN technique further
enhanced performance with 61.8% accuracy and 68.7%
F-score. The NN model provided moderate results with
62% accuracy and 69.88% F-score. The QODF-DSAN
model again showed reasonable outcomes with 97.87%
accuracy and a 96.06% F-score, underscoring the superior
performance of the CBBOAFS-DC method in classifying
ASD datasets.

5. Conclusion

This paper offers a novel CBBOAFS-DC scheme for
an effective data classification process. The presented
CBBOAFS-DC technique involves preprocessing,
CBBOAFS based selection of features, and BCO-SSAE
based data classification. The chaos concept is
incorporated into the classical BOA to enhance global
optimization abilities. Then, a binary variant of the
CBOA technique is used for selecting an optimum subset
of features from the preprocessed data. Next, the SSAE
model is applied to the data classification process where
weight and bias values of the SSAE model are optimally
tuned using the BCO algorithm. The application of the
BCO algorithm assists in enhancing the classification
accuracy of the SSAE model.

For examining the superior data classification
performance of the proposed CBBOAFS-DC technique,
a sequence of simulations was performed on standard
ASD datasets.  The obtained investigational values
show supremacy of the CBBOAFS-DC scheme over
recent standard methods. The CBBOAFS-DC technique
demonstrated superior performance compared with
previous models, with an accuracy of 99.06% and an
F-score of 98.26%.

The CBBOAFS-DC approach is well recognized as
an efficient data categorization tool. Furthermore, the use
of the CBBOA based FS approach significantly enhances
the overall classification outcomes. As a future research
direction, the classification performance can be boosted
using data clustering techniques.
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