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We present a method capable of detecting potentially anomalous cosmic particle tracks acquired with complementary
metal-oxide-semiconductor (CMOS) sensors. We apply a principal components analysis-based feature extraction method
and rough k-means clustering for outlier detection. We evaluated our approach on more than 104 images acquired by the
Cosmic Ray Extremely Distributed Observatory (CREDO). The method presented in this work proved to be an effective
solution. The analysis of the behavior of the rough k-means clustering-based algorithm presented here and the method
of selecting its parameters showed that the algorithm performs as expected and demonstrates efficiency, stability, and
repeatability of results for the test data set. The results included in this work are very relevant to the international CREDO
project and the broader problem of anomaly analysis in image data sets. We plan to deploy the presented methodology in
the image processing pipeline of the large data set we are working on in the CREDO project. The results can be reproduced
using our source code, which is published in an open repository.
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1. Introduction
It has been proven that low-cost commercial metal-oxide
semiconductor (CMOS) sensors can be used to register
various types of radiation successfully, understood here
as detected energy that moves from different sources
(Javan, 2002; Johary et al., 2021). One of the types
of radiation that can be observed with CMOS sensors
is cosmic particles (Whiteson et al., 2016). Particles
of this type are recorded on a small part of the CMOS
matrix in the form of bright flares of various shapes
(different morphology), clearly visible against a nearly
black background.

Thanks to the development of microelectronics and
mobile telecommunications, the possibility of creating
distributed cosmic-ray observatories that use the citizen
science paradigm has emerged in recent years.

Among such projects are the following: the
Distributed Electronic Cosmic-ray Observatory (DECO)
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(Vandenbroucke et al., 2015; 2016), CRAYFIS (Albin
and Whiteson, 2023) and the Cosmic Ray Extremely
Distributed Observatory (CREDO) (Homola et al., 2020;
Karbowiak et al., 2021). The vast amount of data
produced by those observatories, especially by the
CREDO project, which supplies scientific society with
open access to measurement data, requires advanced
algorithms for acquired image analysis. Among the very
interesting problems that emerged in the CREDO data
set is the task of potentially anomalous signal detection.
By anomalous signals, we mean particle tracks left
on CMOS detectors that differ significantly from those
typically observed. Anomalous signals might represent
various physical phenomena (also unknown ones) and are
often explored by various unsupervised-based approaches
(Kuusela et al., 2012; Stein et al., 2020; Crispim Romão
et al., 2021). In such approaches, anomaly detection
problems are usually modeled as outlier detection
machine learning problems.

Nowadays, many computer methods that operate
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on sets are being extended through the use of rough
sets (Pawlak, 1982). Among those algorithms are
unsupervised learning algorithms (Skowron and Dutta,
2018), for example, clustering algorithms (Peters et al.,
2002; Wang and Yao, 2018). Application of rough sets
in unsupervised data set agglomeration can significantly
expand the algorithm’s ability to model relationships
between data (Afridi et al., 2018; Pięta and Szmuc, 2021;
Riza et al., 2014; Skowron and Ślęzak, 2022).

This paper presents a method capable of detecting
potentially anomalous cosmic particle tracks acquired
with CMOS sensors. We apply a principal components
analysis-based features extraction method and rough
k-means clustering for outlier detection. This paper is
an extended version of our previous conference article
(Hachaj et al., 2023). Compared with that paper,
we extended the proposed methodology to include the
ability to estimate the preferred number of clusters and
the thresholding factor for rough k-means clustering.
We also conducted appropriate experiments to validate
the effectiveness of this extension. Thus, in practice,
this work presents a consistent methodology that allows
complete detection of potential anomalies in a data set of
cosmic rays particle tracks acquired with CMOS sensors
and algorithm parameters selection. Only Sections 2.1,
2.2, and 2.3 contain material that has been published
previously, while the rest of this work has been drafted
from scratch. Our results can be reproduced, and the
source codes and data set can be found in an online
repository at https://github.com/browarsoft
ware/rough-k-means-particles (accessed on
10 January 2025). It should be emphasized that the
methodology and results presented in this paper relate to
novel and significant research subjects in particle physics
and astronomy, and we utilize the latest available data set
of this modality.

2. Material and methods
In our earlier work (Hachaj et al., 2023), we showed
that using rough sets in the anomaly detection process
allows for a broader analysis of the data set by modeling
the uncertainty of cluster membership. The evaluation
of the proposed method was done by comparing the
results obtained with the application of the methodology
that uses rough k-means clustering (Lingras and Peters,
2012) and classical k-means clustering. Compared with
the algorithm that used only crisp sets (generated by
k-means clustering), the solution based on rough k-means
clustering allowed better filtering of the resulting objects,
which resulted in not including objects with the most
common morphological characteristics of particle traces
in the result set. In Sections 2.2 and 2.3 we will recall the
most crucial methodology discussed earlier (Hachaj et al.,
2023) and in Section 2.4 we will propose new methods

to evaluate the effectiveness of different configurations of
the anomaly detection algorithm.

2.1. Data set. We used a representative subset of
observations from the CREDO project as the basis for the
experimental verification of the hypotheses considered in
this paper and for presenting the computational results.
The data set we used was selected in such a way as
to reflect the internal diversity of the observed signals.
From the pool of data available for analysis registered
under CREDO infrastructure, containing approximately
107 of events, a set of 104 of samples was randomly
selected. We used only image data and omitted all other
metadata. The obtained data set contains all known types
of observed signals recorded by the CREDO detectors
(Bibrzycki et al., 2020), i.e., dots, tracks, worms, as well
as other atypical observations that meet the criteria for
recognizing them as potential cosmic-ray particle tracks.

The shape morphology of cosmic-ray particle tracks
is a factor that is considered when determining the signal
type. The subset does not contain incorrect signals
resulting from various measurement errors, referred to
in the nomenclature as artifacts (Bibrzycki et al., 2020;
Piekarczyk et al., 2021). Examples of signal types
appearing in the CREDO data set are shown in Fig. 1.
The sample selection procedure was preceded by filtering
out hardware and acquisition artifacts (Bar et al., 2021;
Piekarczyk et al., 2021). Due to the specificity of
recording traces of high-energy cosmic ray particles
(Hachaj and Piekarczyk, 2023), and the limitations of both
automatic and human classification, unusual observations
(anomalies) may occur in basically every class of recorded
signals. In other words, there is no certainty which objects
in a given class may constitute unusual observations
(anomalies) from the point of view of morphological and
physical interpretation (Homola et al., 2020). Therefore,
the problem we are dealing with is a classical analysis
of an unlabelled data set. RGB images represent each
particle observation with a resolution of 60 × 60 pixels.
The subset of the CREDO data set we use in this work
consists of 13804 instances.

2.2. Image processing. In order to effectively compare
image data sets, it is necessary to generate an appropriate
embedding that preserves the interrelationships between
the elements of the data set. In this case, the embedding
should allow us to search for objects that differ in some
way from other typical cosmic-ray particle tracks in
terms of morphology. Knowing this, we should base
embedding on statistical relationships in the data set,
such as the analysis of variance. Effective methods for
generating embedding using the analysis of variance are
algorithms similar to Eigenfaces (Hachaj et al., 2021;
Turk and Pentland, 1991). In this approach, the feature
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Fig. 1. Examples of types of signals in the CREDO observation data set. The illustration shows the basic classes of useful signals
acquired using CMOS sensors. Artifacts resulting from measurement errors and incorrect calibration were omitted as irrelevant
to the research issues of the article. Signal types are described in the first column.

vector of images is generated as a linear combination
of image coordinates after projecting them onto a space,
the coordinate system of which is calculated based on
the variance analysis of the entire data set. The axes
of the new system follow the principal components of
the covariance matrix COV created from the individual
vectors of the original data set.

COV =
1

s
DTD, (1)

where D is a matrix in which columns are created from
flattened images; an averaged image value M calculated
from the entire data set is subtracted from each image.

D = [I1 −M, . . . , Is −M ], (2)

where I1 is the first image from the data set and there are
s images.

The analysis uses the well-known principal
components analysis (PCA) approach. An important
fact is that image analysis based on eigendecomposition
with PCA is very sensitive to even minor variance
distortions, so before applying this approach to an image
data set, it is necessary to normalize the data set (to
perform the so-called image aligning). In the case of our
data set, aligning consisted of translating the center of
mass of the image so that its newly calculated center of
mass is at the center of the image, and rotating the image
so that the axis relative to which the variance of nonzero
pixels has the most significant value becomes the axis
parallel to the horizontal axis. This is also done using
PCA, which is calculated on each image from the data set
separately.

As a result of applying the eigendecomposition of
the COV matrix, we get a new coordinate system in
which our embedding will be expressed. Each of the

axes of this system can be interpreted in a similar way
to the eigenfaces approach. The axes responsible for the
higher variance of the data have the characteristics of
components responsible for the low-frequency deviation
from the average image, and further axes are responsible
for high-frequency deviations. The images in our data
set have a resolution of 60 × 60, so the corresponding
vectors have 3600 elements. After PCA analysis, we
limited the number of dimensions to express 95% of the
variance. In the case of our data set, these were the first 62
dimensions. Thus, in the rest of the paper, we will work
on the 62-dimensional embedding of our image data set.

It is also possible to perform feature extraction and
simultaneously dimensionality reduction using a deep
learning approach using a deep encoder-decoder (E-D)
architecture (Pang et al., 2021; Wei and Mahmood,
2021). To perform this, an E-D network is trained
as an autoencoder. The latent space of such a trained
network is used to generate a low dimensional embedding
similar to the one calculated by PCA. The application
of PCA for feature generation might have advantages
over methods using the E-D. Although PCA is a linear
method (which might be a disadvantage), it enables direct
calculation of the variance explained by the features used
for embedding. Also, it is easy to change the size of
embedding just by omitting certain parts of matrix D
(see Eqn. (2)), without the necessity of retraining the
whole method. Due to this fact, in many cases the
PCA-based approach for dimensionality reduction is more
convenient, and its results are easier to explain, which
is very important, especially while tuning a new data
analysis method. Due to this, we have utilized PCA in
our algorithm.
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Algorithm 1. Algorithm for finding anomalous objects using rough k-means clustering.
Require: X—input data set, k, ε, wupper, wlower—parameters of rough k-means algorithm described in Section 2.3,

p—number of potentially anomalous objects to be returned
{perform rough k-means}

1: C← km(X, k, ε, wupper, wlower) {calculate distances from centroid, assign a pair: element and its distance to centroid
to set P}

2: P ← ∅
3: for xi ∈ X do
4: for cj ∈ C do
5: if xi ∈ Cj then
6: P ← P ∪ {(xi, E(xi, cj)}
7: end if
8: end for
9: end for{sort P by distances in descending order}

10: Psorted ← sort(P ) {get first p unique objects xi from Psorted}
11: R← ∅
12: s← 0
13: while |R| < p do
14: if Psorted[s] /∈ R then
15: R← {Psorted[s]}
16: end if
17: end while
18: return R {set of p potentially anomalous objects}

2.3. Potential anomaly detection. Using the
embedding described in Section 2.1, anomalous images
can be defined as those that are relatively far, given the
Euclidean metric, from the other images. In other words,
we want to find images whose embedding will have the
maximum distance from the other objects in the set. We
know that the image data set contains several classes of
objects, morphologically different from each other (see
Fig. 1). Similar objects will form clusters. An additional
issue that we discussed before in Section 2.1 is that it is
difficult to unambiguously determine precisely where in
space the boundary between objects that belong to the
classes dots, tracks, and worms should be defined and
which objects might be counted as anomalous images.
This has already been pointed out by preparing manual
annotations for the CREDO data set, in which a group of
annotators, through a blind voting process, determined to
which class each object belongs (Piekarczyk et al., 2021).
As a result of this process, the experiment described by
Piekarczyk et al. (2021) eliminated those objects to which
the annotators were uncertain about the class to which
they belonged.

In our case, we do not make such a selection but use
the entire data set. Thus, it is natural that if we want to
perform an unsupervised analysis of data sets containing
sets of objects against which even human annotators
cannot make an unambiguous decision, it is reasonable
to use an approach that allows modeling uncertainty in
the decision-making process. An approach that enables
uncertainty modeling in the clustering process is rough

k-means clustering. The algorithm, described by Lingras
and Peters (2012), adds several improvements to the
classic k-means algorithm introduced by Forgey (1965)
and Lloyd (1982). The object’s cluster membership is
defined using rough set methodology.

Assume that objects are represented by
n-dimensional vectors and are contained in the set
X . In the classical approach, finding the nearest centroid
for an object xj ∈ X is done by optimizing the following
expression:

d(xj)min = min
i∈k

E(xj , ci), (3)

where k is the number of clusters represented by
centroids, ci is the centroid of cluster Ci with index i and
E is the Euclidean metric.

Assume that Ci and Ci are upper and Ci is a lower
approximations of cluster Ci. In rough k-means, the
object belongs not only to the closest cluster in terms of
distance to the centroid, but also to all other clusters to
whose centroids the distance satisfies the condition

d(xj)min

E(xj , cl)
≤ ε, l �= i, (4)

where ε is the threshold of the method and l is the index
of the centroid that does not minimize (3). If ε ≤ 1, then
rough k-means is performed like a classical k-means. If
ε > 1 then

• if (4) is satisfied then xj ∈ Ci, xj ∈ Cl, which means
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that xj belongs to at least two upper approximations
of clusters: (Ci and all Ci that satisfies (4)),

• if (4) is not satisfied then xj ∈ Ci, xj ∈ Ci

In rough k-means, it is also necessary to modify the
centroid updating algorithm, which takes the form of a
weighted sum:

cm = wupper

∑
v ∈ Cm∣
∣Cm

∣
∣

+ wlower

∑
v ∈ Cm∣
∣Cm

∣
∣ , (5)

where
∣
∣Cm

∣
∣ is cardinal number of set Cm and wupper +

wlower = 1. If
∣
∣Cm

∣
∣ = 0 or

∣
∣Cm

∣
∣ = 0 then only the

component in which the denominator is nonzero is taken
into the sum.

To use rough k-means to find anomalies, we need
to calculate the distances of each element in the set to
the centroid of the cluster to which this element has been
assigned. Since we want to consider the assignment
uncertainty to a cluster, we use the upper approxima-
tion of each cluster. For this reason, each object can be
assigned to more than one cluster. Suppose we want to
identify p anomalous elements in our data set. To do this,
we order the objects belonging to the upper approximation
of each cluster by their distance from the centroid of
the cluster they belong to and take p unique outermost
elements.

There are three operations in the proposed solution
that have significant computational complexity. In
particular, these are calculating the covariance matrix,
PCA solving with singular value decomposition (SVD),
and rough k-means. These algorithms are performed
sequentially one by one. Assuming no parallel
computation, the computational complexity is O(n3)
where n is proportional to the number of elements in the
data set and the resolution of the images.

The main goal of our research was to solve the
task of detecting potential anomalous particle tracks in
large data sets. Our previous study (Hachaj et al.,
2023) showed that we can benefit by applying a soft
clustering approach, namely rough k-means, by getting
more reliable results than hard clustering. Besides the
rough k-means approach, there are many other methods
with which one can obtain soft clusters; among them is
three-way clustering (Yao, 2010; Wang et al., 2024; Yu,
2017; 2018). In three-way clustering, each cluster is
represented by three regions: objects in the core region
belong to the cluster definitely, objects in the trivial region
do not belong to the cluster definitely, and objects in the
fringe region are the boundary elements of the cluster. The
clustering process is governed by at least two parameters
(besides the number of clusters k), which are thresholds
for assigning objects to one of those three regions. We
decided to apply rough k-means over other approaches
because it is easier to tune and evaluate (it has only one

threshold parameter besides the number of clusters k) and,
as it has been shown, is sufficient for our needs.

2.4. Evaluation of results and optimizing param-
eters of the algorithm. Our proposed algorithm for
detecting asymmetries works on unlabeled data sets. We
neither have labels describing the shapes (morphology) of
the particle traces, nor a numerical measure describing
the degree of anomalous shapes. Thus, the only way
to evaluate the algorithm’s effectiveness is based on
the statistical properties of the results obtained, and the
potential anomalies found cannot be typical shapes such
as dots, tracks, or worms (of which there are most in the
data set). This is further complicated by the fact that
there is no gold standard for describing the morphology
of these shapes, for example, the diameter of a dot, the
length, and linearity of a track, or the degree of curvature
of a worm. For example, a sufficiently heavily curved
track can be considered a worm. For this reason, anomaly
detection using only the shape of a particle trace has a
threshold character, in which the method user decides
when he or she is still dealing with an anomalous signal
and when he or she is already dealing with a typical
signal. Accordingly, the performance of the algorithm
for anomaly detection can be evaluated by the following
features:

1. The ability of an algorithm to produce an embedding
in which atypical elements are at a relatively large
distance from typical elements and morphologically
similar elements are close together. This assumption
is realized by PCA-based embedding, which
generates an orthogonal coordinate system that
optimally describes variance in a single data set. Due
to this fact, the quality of the embedding will not be
taken into account in algorithm evaluation. However,
we must remember that PCA is a linear transform
(see the discussion in Section 2.2).

2. Stability of the algorithm understood as the
repeatability of the results if the input data set
to be analyzed differs slightly from each other.
This means that in a data set that contains a
certain number of common elements and a certain
number of different elements, the algorithm should
be able to search for anomalies that will be found
in both sets, especially those anomalies that are
a common part of both sets of objects. This
means that among the available configurations of the
algorithm for detecting potential anomalies, differing
in parameters such as k and ε, one will be chosen
that maximizes the measure of similarity of the
algorithm’s results obtained for different subsets of
the test set.

3. The degree of similarity of the results obtained



12 T. Hachaj et al.

Table 1. Values of IOUscore (10) calculated on the data set presented in Section 2.1. We set the number of subsets in (7) to s = 10.
k \ε 1.05 1.25 1.45 1.65 1.85 2.05 2.25 2.45 2.65 2.85
2 0.74 0.76 0.76 0.76 0.76 0.75 0.72 0.72 0.72 0.72
4 0.72 0.73 0.69 0.71 0.71 0.70 0.71 0.71 0.71 0.71
6 0.65 0.68 0.68 0.69 0.69 0.70 0.70 0.70 0.70 0.70
8 0.72 0.64 0.68 0.68 0.69 0.70 0.70 0.70 0.70 0.70

10 0.69 0.61 0.69 0.69 0.69 0.70 0.70 0.70 0.70 0.70

Table 2. Values of IOU2score (11) calculated on the data set presented in Section 2.1. We set the number of subsets in (7) to s = 10.
k \ε 1.05 1.25 1.45 1.65 1.85 2.05 2.25 2.45 2.65 2.85
2 0.92 0.94 0.94 0.95 0.94 0.94 0.89 0.89 0.9 0.9
4 0.89 0.91 0.86 0.88 0.88 0.87 0.89 0.89 0.89 0.89
6 0.80 0.84 0.85 0.86 0.86 0.87 0.87 0.87 0.87 0.86
8 0.89 0.78 0.85 0.85 0.86 0.87 0.87 0.86 0.86 0.86

10 0.85 0.74 0.85 0.85 0.86 0.87 0.87 0.87 0.87 0.86

Table 3. Values of IOUcomp (12) calculated on the data set presented in Section 2.1. We set the number of subsets in (7) to s = 10.
k \ε 1.05 1.25 1.45 1.65 1.85 2.05 2.25 2.45 2.65 2.85
2 0.71 0.97 0.99 1.0 0.99 0.94 0.92 0.91 0.91 0.91
4 0.75 0.97 0.94 0.95 0.95 0.94 0.95 0.94 0.95 0.95
6 0.69 0.89 0.91 0.91 0.91 0.92 0.92 0.92 0.92 0.92
8 0.60 0.76 0.91 0.90 0.90 0.93 0.93 0.92 0.92 0.92

10 0.59 0.73 0.9 0.91 0.91 0.93 0.93 0.93 0.93 0.92

Fig. 2. Example clustering results for Algorithm 1 with k = 2 and ε = 1.05. Objects assigned to the cluster are indicated by a marker
(‘+’ or ‘×’) and a certain shade of gray. Detected potential anomalies are marked as black stars. We plot upper approximations
of clusters, so one object may be assigned to one or two clusters.

(set of anomalies) between the configuration of the
algorithm for which the highest result was obtained
and other configurations of the algorithm. If different
configurations of the algorithm, differing in the
values of k and ε, give entirely different results, that

is, the measure of similarity between the results is
relatively low, this means that the algorithm works
in a chaotic and unstable way and is probably not
suitable for solving the problem of anomaly analysis,
because it is too sensitive to the choice of parameters.
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Fig. 3. Example clustering results for Algorithm 1 with k = 3 and ε = 1.25. Objects assigned to the cluster are indicated by a
marker (‘+,’ ‘×’ or circle) and a certain shade of gray. Detected potential anomalies are marked as black stars. We plot upper
approximations of clusters, so one object may be assigned to one, two, or three clusters.

Fig. 4. Example clustering results for Algorithm 1 with k = 3 and ε = 1.65. Objects assigned to the cluster are indicated by a
marker (‘+,’ ‘×’ or circle) and a certain shade of gray. Potential detected anomalies are marked as black stars. We plot upper
approximations of clusters, so one object may be assigned to one, two, or three clusters.

In practice, to measure the stability of the algorithm
understood according to the second point above, we can
apply a leave-one-out cross-validation test. The training
data set should be divided into s equal parts, that is, the
sets Xi should have similar counts,

X =

s⋃

i=1

Xi. (6)

Then we from s subsets of the set X defined as follows:

X̂i = X \Xi, i ∈ [1, s] (7)

and execute Algorithm 1 on each X̂i from (7).
Suppose that for sets A and B, the anomalies

detected by Algorithm 1 are in sets R(A) and R(B).
The following two metrics can determine the similarity
between the sets R(A) and R(B). The first one is the
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Fig. 5. Set of first 64 potential anomalies returned by Algo-
rithm 1 when k = 2 and ε = 1.65.

intersection over union (IOU):

IOU(R(A), R(B)) =
R(A) ∩R(B)

R(A) ∪R(B)
. (8)

The second is the modified intersection over union
(IOU2):

IOU2(R(A), R(B))

=
(R(A) ∩B) ∩ (R(B) ∩ A)

(R(A) ∩B) ∪ (R(B) ∩ A)
. (9)

In the case of Eqn. (9), we take into account only
those potential anomalies that are present both in A and
B sets. The value returned by (9) is not less than the
value returned by (8). Here (9) measures the similarity
between potential anomalies, taking into account only
objects that are present in both input object sets for
Algorithm 1. For this reason, the values returned by (9)
will more meaningfully count the similarity between the
results obtained by the algorithm for different X̂i. To
estimate the configuration of the algorithm that works
most stably, a minimum should be found:

IOUscore(k, ε)

= avg(IOU(R(k,ε)(X̂i), R(k,ε)(X̂j))),

i < j, i, j ∈ [1, s], (10)

and/or

IOU2score(k, ε)

= avg(IOU2(R(k,ε)(X̂i), R(k,ε)(X̂j))),

i < j, i, j ∈ [1, s], (11)

where avg is the averaging function, R(k,ε)(X̂i) is
potential anomaly dateset returned by Algorithm 1 with
certain values of k and ε. As can be seen, we calculate
the average values of IOU and IOU2 between all possible
pairs of subsets defined by (7).

In estimating the degree of similarity of the
obtained results (that is, sets of anomalies) between the
different algorithm configurations and the best performing
algorithm due to (10), we can use the following estimate:

IOUcomp(R(k1,ε1), R(k2,ε2))

= avg(IOU(R(k1,ε1)(X̂i), R(k2,ε2)(X̂i))),

i ∈ [1, s], (12)

where (k1, ε1) are parameters of the first algorithm and
(k2, ε2) are parameters of the second algorithm.

Soft clustering resulting from rough k-means,
depending on its parameter ε at a fixed k, can generate
different assignments of objects to clusters. In such cases,
a single object can be assigned to a different number of
clusters. Intuitively, the wider the clusters’ border regions,
the more clusters the object will be assigned. In such
a case, using intuitive and popular similarity measures
between two clusterings, considering all pairs of samples,
like the Rand Index, cannot be applied. In addition,
our interest is to see how different configurations of the
proposed algorithm affect the detection of outliers. The
problem of detecting outliers differs from the problem
of clustering the set because small fluctuations at the
border regions of the clusters, practically not measurable
when considering all the objects in the large data set, can
cause significant differences in detecting outliers. For this
reason, we used the methods described by Eqns. (10)–(12)
to evaluate our solution.

3. Results
We implemented the methodology presented in Section
2 in the Python the programming language. We
utilized packages NumPy 1.22, OpenCV-Python 4.5,
and the modified package https://github.com
/geofizx/rough-clustering (accessed on 10
January 2025) so that it can work with Python 3.X.
For evaluation purposes, we have used the data set
described in Section 2.1. Results can be reproduced
using source code published in an open repository
at https://github.com/browarsoftware/ro
ugh-k-means-particles (accessed on 10 January
2025). We evaluated the results and optimization
of parameters of Algorithm 1 using the methodology
described in Section 2.4. We have set the number of
subsets of (7) to s = 10. In Table 1 we present the
values of IOUscore in Table 2 values of IOU2score and in
Table 3 the values of IOUcomp. The parameters wupper and
wlower in (5) were set to 0.9 and 0.1, respectively. The

https://github.com/geofizx/rough-clustering
https://github.com/geofizx/rough-clustering
https://github.com/browarsoftware/rough-k-means-particles
https://github.com/browarsoftware/rough-k-means-particles
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range of parameters was chosen experimentally so that the
method would achieve convergence at 10−4. The potential
anomalies set size returned by Algorithm 1 was set to
0.5% of the input data set X̂i.

In Figures 2–4 we present example clustering results
for various configuration of Algorithm 1. Objects
assigned to the cluster are indicated by a marker (‘+,’
‘×’ or circle) and a shade of gray. Detected potential
anomalies are marked as black stars. We plot upper
approximations of clusters so that one object may be
assigned to one, two, or three clusters. In Fig. 5 we
present the set of the first 64 anomalies returned by
Algorithm 1 (k = 2, ε = 1.65). Results in Figs. 2–5
are obtained for various subsets of X ; however, as will
be discussed in Section 4, the selection of subset (7) for
certain configurations of Algorithm 1 does not change the
result much.

4. Discussion
The results presented in Section 3 confirm the
effectiveness of the proposed approach. The clustering
method behaves as expected. An increase in ε in (4)
increases the size of upper approximations of clusters.
As seen in Figs. 2–4, the higher ε, the more objects
are assigned to more than one cluster. Consequently,
higher values of ε increase the search space of potential
anomalies according to Algorithm 1 because there are
more objects that belong to an upper approximation of
each cluster.

Rough k-means clustering enhances the search space
of potential anomalies (outliers). When we use standard
k-means clustering, list P in Algorithm 1 contains only
pairs of elements and their distance to the nearest centroid.
After applying rough k-means, list P also includes pairs
of elements and their distance to all centroids that satisfy
(4). Due to this fact, a single object xi can be present
several times in P , with possible various distances from
centroids of clusters to which the upper approximation
belongs. Parameter ε of rough k-means enables enhancing
the algorithm’s search space by widening cluster border
regions. As shown by Hachaj et al. (2023), widening
the search space allowed better filtering of the resulting
objects, which resulted in not including objects with the
most common morphological characteristics of particle
traces in the result set. In the problem of analyzing
cosmic particle tracks, the fact that it belongs to one or
many upper approximations of clusters does not directly
indicate whether the object should be treated as an
anomaly. Certainly, objects that are relatively far from
other objects are statistically different from them. This is
a consequence of the PCA-based embedding. Belonging
to the upper approximation, or a border region in general,
means that the object contains features that may be typical
of several shape topologies that have been assigned to

different clusters. Anomalies can also be located in areas
far from the cluster’s center but not in the border area
and, thus, according to (4), will be included in the lower
approximation of the cluster.

As can be seen in Fig. 2, when ε is relatively low,
most of the objects are in the lower approximation of each
cluster, and there is some fraction of objects that belong
to the upper approximation of clusters. The higher the ε
becomes, the more objects that are farther from the cluster
center are attached to the upper approximation. This
situation can be observed as the increase in the fraction of
objects that belong to more than one upper approximation
of clusters. As shown in Fig. 3 in our case, when ε = 1.25
and k = 3, we can observe a group of objects assigned
to one, two, or three clusters. In Fig. 3, which presents a
situation when ε = 1.65 and k = 3, most objects belong
to an upper approximation of each cluster. Equation
(4), which governs the size of the diagonal of the upper
approximation of the cluster, is a distance-based approach
and creates hyper-spherical clusters.

The appropriate value of ε and k for finding potential
anomalies in the data set depends on the distribution of
objects in the space. Our approach for determining those
two parameters described in Section 2.4 seems reasonable.
As can be seen in Tables 1 and 2, both scoring methods
indicate that very similar of configurations Algorithm
1 have the highest values. In the case of IOUscore

highest averaged IOU was obtained for k = 2 and ε =
1.45, 1.65, 185 and equals 0.76. In the case of IOUscore
the highest value was obtained for (k = 2, ε = 1.65) and
equals 0.95. This means that nearly all potential anomaly
data sets except for about 5% of data are common between
various subsets (7). As seen in both the tables for all
tested configurations, the proposed approach has very nice
stability. In the case of IOUscore its value does not drop
below 0.61 and in the case of IOU2score below 0.74.

Thus, our method gives a stable solution, where
potentially anomalous signals are usually returned among
those in the set R (see Algorithm 1). In our case, with
a leave-one-out test for (7) s = 10 (10 subsets) where
IOU(X̂i, X̂j) = 0.8 these are very satisfactory results.

We can conclude that the sets of potential anomalies
were almost identical, and detecting anomalies is not
susceptible to fluctuations within the analyzed data sets.
The situation is also similar when comparing the set of
potential anomalies obtained with Algorithm 1 with (k =
2, ε = 1.65) with other configurations of the algorithm
in Table 3. A high value of IOUcomp that does not fall
below 0.6 indicates that the algorithm does not operate
chaotically, and a relatively continuous relationship exists
between the resulting set of anomalies and the algorithm
parameters.

Example results of potential anomalous trajectories
presented in Fig. 5 also indicate that the proposed
approach works as expected. As images are ordered



16 T. Hachaj et al.

row-by-row by decreasing the distance from the nearest
cluster center, the top-left image is the most anomalous in
the data set, the second in the top row is the second most
anomalous, etc. The shapes of detected trajectories agree
with our expectations of what type of trajectories we more
or less expected. The farthest from cluster centers (most
anomalous) are often multipart traces, longer than typical
track and worm signals, or consisting of more than one
“typical" trajectory, like, for example, the top-left, which
is a combination of a very long worm-like shape and the
dot. The closer we get to the centers of clusters, the more
typical the signals become; for example, in the fourth line
and sixth column, there is a track-shaped signal followed
by a worm. The last row of Fig. 5 contains, in fact, only
typical signal traces.

5. Conclusion
In summary, the method presented in this work proved to
be an effective algorithm for the detection of potentially
anomalous cosmic particle tracks acquired with CMOS
sensors. The analysis of the behavior of the rough
k-means clustering-based algorithm presented in this
work and the method of selecting its parameters showed
that the algorithm performs as expected and demonstrates
efficiency, stability and repeatability of results for test data
set. The results presented in this work are very relevant
to the CREDO project as well as to the wider problem
of anomaly analysis in the image data set. We plan to
deploy the methodology presented in this work in the
image processing pipeline of the large data set we are
working on in the CREDO project.

With the method proposed in this work, we find
potential anomalies only based on the analysis of the
particle tracks recorded on the CMOS array. We do not
have direct measurements of the energy values of the
particles and we do not use additional metadata that are
collected during the detection of an event such as time,
the geographical position of the sensor or the orientation
of the sensor in space. For this reason, the method
proposed in this work can serve as a kind of trigger
indicating that certain images, which are in a large image
repository, are worth further analysis based on other
physical measurements.

A topic worth further investigation is the application
of the method proposed in our work to anomaly detection
in image collections of other modalities. This will
probably require the use of other embedding methods, for
example deep encoder-decoder-based approaches (Jewell
et al., 2022; Fan et al., 2020).
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Niedźwiecki, M., Rzecki, K., Stuglik, S., Tursunov, A.,
Hnatyk, B., Castillo, D.E.A., Smelcerz, K., Stasielak, J.,
Duffy, A. R., Chevalier, L., Ali, E., Lakerink, L., Poole,
G. B., Wibig, T. and Zamora-Saa, J. (2020). Towards a
global cosmic ray sensor network: Credo detector as the
first open-source mobile application enabling detection of
penetrating radiation, Symmetry 12(11): 1802.

Crispim Romão, M., Castro, N.F. and Pedro, R. (2021). Finding
new physics without learning about it: Anomaly detection
as a tool for searches at colliders, European Physical Jour-
nal C 81(1): 27.

Fan, Z., Li, C., Chen, Y., Wei, J., Loprencipe, G., Chen, X. and
Di Mascio, P. (2020). Automatic crack detection on road
pavements using encoder-decoder architecture, Materials
13(13): 2960.

Forgey, E. (1965). Cluster analysis of multivariate data:
Efficiency vs. interpretability of classification, Biometrics
21(3): 768–769.

Hachaj, T., Koptyra, K. and Ogiela, M.R. (2021).
Eigenfaces-based steganography, Entropy 23(3): 273.

Hachaj, T. and Piekarczyk, M. (2023). The practice of detecting
potential cosmic rays using CMOS cameras: Hardware and
algorithms, Sensors 23(10): 4858.

Hachaj, T., Piekarczyk, M. and Wąs, J. (2023). Searching of
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Jarosław Wąs received his PhD and DSc degrees
in computer science in 2007 and 2015, respec-
tively. In 2024 he was granted the professorial
title by the President of Poland. He is the author
and a co-author of more than 100 publications.
In 2023, he was re-elected to the Computer Sci-
ence Committee of the Polish Academy of Sci-
ences. He is interested in the topics of modeling
and simulation of complex systems, in particular,
data-driven modeling and agent-based modeling.

He also focuses on applications of advanced algorithms and artificial
intelligence in engineering, including the IoT as well as ambient and
computational intelligence.

Received: 9 March 2024
Revised: 28 June 2024
Accepted: 9 January 2025


	Introduction
	Material and methods
	Data set
	Image processing
	Potential anomaly detection
	Evaluation of results and optimizing parameters of the algorithm

	Results
	Discussion
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice


