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Path planning is one of the most important problems in mobile robotics. Particularly challenging in selecting an appropriate
path planning method is the choice of a method for complex obstacle configurations. The problems of path planning, among
many other methods, come into play with approaches based on the application of potential fields methodology based on
physical anomalies with gravitational or electromagnetic fields. This idea makes it possible to navigate in complex maps.
The idea of applying these fields in terms of rough mereology was developed by Polkowski and Ośmialowski (2008),
who introduced the method of the mereological potential field in the framework of mereological spatial reasoning. This
particular work is one of a series of extensions of this method where our final goal is to apply the idea of path planning in
a 3D environment. To this end, we are preparing and testing our own library for controlling mobile robots, improving the
real-time path planning capability and implementing a set of algorithms for practical testing.
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1. Introduction
The history of path planning techniques for mobile robots
goes back deep into the past, but has developed rapidly
with advances in technology (Brooks, 1986; Latombe,
1991; Hwang and Ahuja, 1992; Kavraki et al., 1996;
Arkin, 1998; Choset et al., 2005; LaValle, 2006; Sun
and Liu, 2021; Raj and Kos, 2022). Initially, the
simplest path planning methods were based on simple
heuristic algorithms that selected the shortest path from
point A to point B, avoiding obstacles. Over time,
with the development of computer science and artificial
intelligence, more advanced techniques have emerged.
One of the most popular is the A* algorithm (and
its dynamic versions), which allows finding an optimal
path in complex environments full of obstacles. This
algorithm uses a combination of heuristics and a search
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algorithm to find the best path. The next step in the
development of path planning techniques was the use
of SLAM (simultaneous localization and mapping) and
machine learning techniques. With these, mobile robots
can effectively plan paths in real time, taking into account
changing environmental conditions. Today, the latest
path planning methods for mobile robots use advanced
technologies such as artificial intelligence, deep learning
or evolutionary algorithms. Thanks to these, robots can
move efficiently even in highly complex and dynamic
environments.

In our work, we develop the idea of path planning
for mobile robots using a mereological potential field
(Ośmiałowski, 2011). It is a technique used in robotics
and automation to precisely guide robots or mobile
devices through complex environments. It is based
on mereology, or the theory of parts and wholes and
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their relationship to each other, and the concept of
a potential field, which models the space around the
robot as a continuum of different potential values that
guide the device from a starting point to a destination
(Polkowski and Ośmiałowski, 2008; Ośmiałowski, 2011).
The foundational principles of rough mereology, which
form the basis for the development of this family of
techniques, were introduced by Polkowski and Skowron
(1996). In this work, we extend the conference
publication (Szpakowska et al., 2023) with new maps and
map filtering improvements and discuss the difficulties
encountered during our work. The basic concepts that
allow us to define the environment for designing our
method are as follows:

1.1. Integrating rough mereology in the control en-
vironment of intelligent agents. This section explores
the application of rough mereology for generating
potential fields (Polkowski and Ośmiałowski, 2008;
Ośmiałowski, 2011). The introduction of rough inclusion,
denoted by μ(x, y, r), asserts that x is part of y to a degree
of at least r ∈ [0, 1] (Polkowski and Ośmiałowski, 2008;
Ośmiałowski, 2011). Specifically focusing on spatial
objects, rough inclusion is expressed as μ(X,Y, r) if and
only if

|X ∩ Y |
|X | ≥ r,

where X and Y represent n-dimensional solids, and |X |
signifies the n-volume of X .

The predicate μ captures basic intuitions about
nature contained to a significant degree (Polkowski and
Ośmiałowski, 2008; Ośmiałowski, 2011). In the specific
context of this research, we consider a planar scenario
involving an autonomous mobile robot navigating within
a 2-dimensional space. Consequently, our spatial
objects X and Y are conceptualized as regions, with
|X | representing the area of X . The role of rough
inclusion μ(X,Y, r) is crucial in shaping the rough
mereological potential field (Polkowski and Ośmiałowski,
2008; Ośmiałowski, 2011). The components of this field
take on a square shape, and their relative distance is
defined as:

K(X,Y ) = min{max(r|μ(X,Y, r),

max(s|μ(Y,X, s)}.

Let us explain the idea of what the transition is from
the defined distance K(X,Y ) to its application in the
square fill algorithm.

In the context of quadratic fields of different sizes in
the plane, K(X,Y ), can be interpreted as a measure that
determines the minimum degree of inclusion of two fields
relative to each other in the space defined by the tolerance
radii r and s. (X,Y, r) determines the degree of inclusion

of a set X into a set Y , given a neighborhood of radius r.
In the context of quadratic fields, r can be interpreted as
a margin or tolerance in space that allows the boundaries
of the square Y to be extended to be more inclusive of X .
The maxr(X,Y, r) is the search for the maximum degree
of inclusion of X in Y , given an optimal radius r.

Intuitively, this means how much we can extend the
boundaries of Y to maximally include X . The measure
K(X,Y ) considers both the inclusion of X in Y and
the inclusion of Y in X , choosing the smallest of the
maxima. This is a conservative similarity assessment and
it considers two fields to be close if, even under the most
favourable conditions (with tolerance r, s), their mutual
inclusion does not fall below a certain level. The distance
K(X,Y ) for Y representing an obstacle can be used to
define a repulsive or attractive force.

If we assume that the fields X and Y are identical
squares or circles (as in our implementations), the distance
K(X,Y ) can be reduced to using the distance between the
centres of these squares (the usual Euclidean distance).
When the squares have different sizes, shapes and
orientations, the rule that reduces the distance K(X,Y ) to
the distance between the centers of these squares no longer
works, because K(X,Y ) varies between both ways. The
defined distance is universal; we use a simplified version
of it in the current calculations.

A comprehensive explanation of the field’s
construction is detailed in Section 2. The robot’s
trajectory within the field towards its destination is
determined by waypoints. These waypoints are identified
inductively, with the subsequent waypoint recognized as
the centroid of the combination of field squares close to
the square encompassing the current waypoint, taking
into account the distance K(X,Y ).

The upcoming sections of the paper cover the
following content. Section 2 introduces the methodology
employed for path planning, clarifying the use of the
rough mereological potential field. Section 4 provides a
detailed description of the experimental setup. Finally,
Section 5 presents a concise summary of our publication.

2. Methodology
This section will thoroughly examine various methods
employed in developing a robot navigation system aimed
at navigating through rough mereological potential fields.

2.1. Square fill algorithm. In this chapter, we will
present our interpretation of the square fill algorithm
introduced by Ośmiałowski (2011). This algorithmic
method has undergone modifications, as discussed by
Polkowski et al. (2018), Zmudzinski and Artiemjew
(2017) or Gnyś (2017). First of all, we assume that the
shape of the field is a square whose size depends on the
size of the robot, and we have a set of obstacles O where
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each obstacle is a square of a given size. The fundamental
steps to initialize the algorithm and the obtained results
are outlined below:

1. Initiate the values:

• Set the current distance to the goal, d = 0.
The distance value initialized as 0 defines
the distance from which we start generating
potential fields. The initial value allows us
to show that the potential fields start forming
exactly from the point where the target is.
With each subsequent iteration of the loop,
the distance value will increase accordingly,
allowing the fields to be dispersed across the
map, moving proportionally away from the
target.

• Set the algorithm direction to clockwise.
The definition of the direction in which we
create potential fields is crucial. By declaring
logical variables clockwise/anticlokwise it is
possible to avoid the problem of potential fields
dispersing only in a specific configuration.

2. Define an empty list F that will contain a set of
potential fields meeting the conditions described in
Step 4 of the algorithm.

3. Define an empty queue Q = ∅. The list Q was
created to store information about potential fields.

4. Insert the first potential field, expressed as p(x, y, d),
into the generated queue Q. In the first iteration,
the goal coordinates are assumed as the initialization
point of the algorithm. In subsequent loop iterations,
the point that next appears on the Q list will be
taken into account. Here, x and y represent the
location coordinates of the already created field, and
d signifies the current distance to the goal,

Q = Q ∪ {p(x, y, d)}.
5. Iterate over the elements in Q:

(a) In the second iteration change the distance to
d = 5.

(b) Identify neighbors influenced by the current
direction:
If clockwise is true then

N =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p0 = p(x− d, y, d),
p1 = p(x− d, y + d, d),
p2 = p(x, y + d, d),
p3 = p(x+ d, y + d, d),
p4 = p(x+ d, y, d),
p5 = p(x+ d, y − d, d),
p6 = p(x, y − d, d),
p8 = p(x− d, y − d, d).

If anticlockwise is true then

N ′ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p0 = p(x− d, y − d, d),
p1 = p(x, y − d, d),
p2 = p(x+ d, y − d, d),
p3 = p(x+ d, y, d),
p4 = p(x+ d, y + d, d),
p5 = p(x, y + d, d),
p6 = p(x− d, y + d, d),
p8 = p(x− d, y, d),

where x and y represent the current first
element of Q.

(c) During the formation of potential fields, it is
possible to create several identically located
potential fields. Compute the Euclidean
distance from the previous and existing
potential field neighbors in the Q list to
eliminate redundancy.

• If the Euclidean distance of the current
potential field pk(x, y, d) is less than 15
and pk(x, y, d) ∈ F , or pk(x, y, d) ∈ O,
where O is the set of obstacle coordinates,
or pk(x, y, d) ∈ Q, then reject the current
field and return to Step 5(b).

(d) Insert the potential field neighbours of
pk(x, y, d) at the end of list Q,

(e) Increase the distance to the goal,

d = d(pk) + 0.1.

(f) Invert the direction (clockwise to anticlockwise,
anticlockwise to clockwise)

(g) Remove the current element pk(x, y, d) from
the queueQ and append it to the list of potential
fields, F .
* After each iteration go back to Step 5(b).
The algorithm terminates when the queue Q is
empty.

According to the outlined approach, the distance is
initialized as 0. This value will increment in subsequent
iterations, as our algorithm generates potential fields from
the goal towards the starting point. The only exception
is the first iteration of the algorithm, where the distance
changes from 0 to 5. Applying this operation will force the
algorithm to create all possible neighbors that are closest
to the target point and are necessary to start exploring
the map (distance = 0). By significantly changing
the distance in the second iteration of the algorithm,
we will avoid excessive crowding on the map around
the target, without disturbing the algorithm (distance
= 5). In the next iterations, the distance value starts
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Fig. 1. Rough mereological potential field is generated using the
square fill algorithm. The edge AR markers outline the
map borders, while the central markers signify obstacles.
The marker beneath the drawn squares designates the
goal. The one-color painted square indicates the robot’s
initial position.

to increase proportionally in Step 5(e). The generated
potential fields are denoted as p(x, y, d), where x and
y represent the coordinates, and d signifies the distance
value. This distance value plays a crucial role in creating
new neighbors during the operation.

When considering the Euclidean distance conditions
(Step 5(c) of the algorithm), the number 15 is used, which
avoids excessive accumulation of potential fields around
the target. The value 15 is the minimum value that
does not break the continuity of the algorithm. A larger
distance indicates that the potential field is generated
farther from the goal. The values 15 and 0.1 used to
increase the distance correspond to maps obtained from
a camera with a frame rate of 30 fps, with a resolution of
640×480. The size of the map we work on is not constant.
It all depends on the position of the markers defining
the map boundaries. By placing AR markers on our
workspace in the lab, the size of the map for experiments
was in the range of 450 × 500. Furthermore, in each
iteration, the direction of generating neighbors must be
altered to avoid stagnation and ensure the exploration of
the entire map. Figures 1–3 show how a mereological
potential field is generated using the square fill algorithm
for different obstacle and target alignments.

2.2. Circle fill algorithm. Instead of using squares
in our algorithm, we investigate the option to generate a
force field using circles (Ośmiałowski, 2011). Following
the generation and testing of several map combinations,
clear differences were not evident. In the upcoming
section concerning path generation, we will investigate
whether there are any distinctions between the resulting

Fig. 2. Square fill algorithm used to generate a rough mereolog-
ical potential field. The AR markers along the edges de-
fine the map boundaries, while the central markers repre-
sent obstacles. The marker beneath the drawn squares in
the top-left corner indicates the goal. The solid-colored
square marks the robot’s starting position.

tracks. Figures 3–8 show how a mereological potential
field is generated using the circle fill algorithm for
different obstacle and target alignments. After analyzing
the performance of the circle fill algorithm, no significant
differences were found when comparing it with the
method using square field shapes.

3. Obtaining a path using potential fields
The potential fields obtained during the compilation of
the square circle fill algorithm are used to find a path for
the mobile robot. The generated mereological potential
fields explored the map, avoiding defined obstacles and
respecting the board boundary. In this section, we will
discuss the individual steps of obtaining the path. First,
we will apply filters to select potential fields, then we will
smooth the generated path.

3.1. Path finding. To determine our path, we initially
use a variation of the algorithm proposed by Ośmiałowski
(2011), known as the path search algorithm. The
algorithm operates within the provided potential field and
is outlined as follows:

IF
robot location is equal or very
close to goal position:
END
APPEND the current field to the closest
points robot list
WHILE target is not found:
IF
distance between the current point
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Fig. 3. Rough mereological potential field is generated by the
square fill algorithm but with circles instead of squares.
As in Section 2.1, the edge AR markers represent the
borders of the map, and the central markers represent
obstacles. The marker situated in the most occupied area
on the map designates the goal. If attention is directed
to a color-painted square, it indicates the robot’s initial
position.

and the next potential field is smaller
than the currently smallest value
THEN
APPEND the current field into
closest points robot list
ELSE
DROP this field and go to the next
potential field
END

The path finding algorithm uses a list of potential
fields and the calculated Euclidean distance as a selection
criterion. The function starts by checking if the currently
considered point is close enough to the target – if so, it
terminates. Otherwise, in each iteration it calculates the
distances between the current point and all available fields
from the considered list, moreover taking into account
the goal point. The field with the minimum distance had
been chosen as the next point in the path. The selected
field is added to the path and then removed from the list
of potential fields so that the algorithm can continue the
process in subsequent iterations until the target is reached
or the number of iterations is exhausted. In practice,
we proceed from the starting point one by one, always
choosing the closest potential field, approaching the target
in small steps by using the weighted Euclidean distance.

The generated path for both map filling algorithms
(square and circle fill algorithms) are in Figs. 5–8.

Fig. 4. Different map with generated potential, circle shape
fields.

3.1.1. Variation in the Euclidean distance: The
weighted Euclidean distance. To measure the distance
between the current point and potential fields, we
employed the Euclidean distance

d(p, q) =

√
√
√
√

n∑

i=1

(pi − qi)2,

in the two-dimensional plane where p represents the
point with potential field coordinates and q describes the
point with goal coordinates. To enhance the accuracy of
pathfinding, we employ two Euclidean distances. One
is focused on the distance between the current potential
fields, referred to as the classical Euclidean distance.
The second, used for generating the first path, is named
the weighted Euclidean distance. The weighted distance
takes into account the distance between the goal and
the current point. Based on this result, we apply a
weight (by multiplying it by the appropriate floating-point
number, which is defined as 0.4) between two potential
fields. The mentioned weight is a numerical factor that
is attached to all observations appearing in a function
describing a specific potential field to indicate varying
degrees of importance. We use the weighted distance
to avoid selecting a suboptimal path, preventing a direct
jump to the target without avoiding obstacles.

3.2. Operation of field filtering: Optimization. The
path obtained from the path search algorithm is not as
optimal and clear as expected. To reduce noise in the
path, we applied a filter for path optimization. This filter
focuses on the Euclidean distances between points on the
generated path and the goal. The main condition is as
follows: Starting from the first element of the path, we
calculate the Euclidean distance between the currently
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Fig. 5. Generated path using the path search algorithm from
start point (one-color painted square) to the goal (marker
located under the biggest amount of drawn squares),
concerning the fields in a square shape.

Fig. 6. Path, generated using a path search algorithm, extends
from the starting point (solid-colored square) to the goal
(marker positioned beneath the largest cluster of drawn
squares), while considering square-shaped fields.

considered point of the path and the target. If we have the
same or greater distances from the current points to the
target, we skip those points. If we have multiple points
with the same distance, we need to calculate the distances
from the points of the next neighbors to the target and
compare them. The points with the smallest distance
values will be kept. Finally, we get a sorted and reduced
list of points, with the help of which we will get a clear
path from the starting point to the target.

That optimization process significantly refines the
path, ensuring a clearer and more efficient trajectory for
the robot. By filtering out points that do not contribute
to a more direct path to the goal, we enhance the overall
path quality. This step is crucial for improving the robot’s

Fig. 7. Path, computed using a path search algorithm, starting
from the initial position (solid-colored square) to the
goal (marker located beneath the highest-density clus-
ter of drawn circles), considering circular-shaped fields.

Fig. 8. Path, generated by a path search algorithm, stretches
from the initial position (solid-colored square) to the
goal (marker situated beneath the densest grouping of
drawn circles), taking circular-shaped fields into ac-
count.

navigation and ensuring it follows an optimal trajectory
through the environment. Below we show the most
important conditions in the function responsible for path
filtering.

for i in range(len(path)):
euclid_dist = d_eucl
(path[i][0], path[i][1],
goal_coord[0][0], goal_coord[0][1])

.

.
if euclid_dist < path_distances[-1]:
optimal_path.append(path[i])
path_distances.append((euclid_dist))
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Fig. 9. Paths improved through optimization filtering with re-
spect to square-shaped fields.

Fig. 10. Path after applying optimizing filtering based on square
shape fields.

if euclid_dist == path_distances[-1] and
i+ 1 < len(path)-2:

euclid_superset = d_eucl(path[i+1][0],
path[i+1][1], goal_coord[0][0],
goal_coord[0][1])
if euclid_superset < euclid_dist:
optimal_path.pop(-1)
optimal_path.append(path[i])
path_distances.append
(euclid_superset)

if euclid_superset == euclid_dist and
i + 2 < len(path)-2:

.

.
return(optimal_path)

We can see the effect of the filtering in images in
Figs. 9–12.

Fig. 11. Paths improved through optimization filtering using
circle-shaped areas.

Fig. 12. Paths enhanced by applying optimization filtering tai-
lored to circular-shape fields

3.3. Path smoothing. After visualizing the optimal
path from the robot’s starting location to the target, we
initiated the path smoothing algorithm (Zmudzinski and
Artiemjew, 2017) to further optimize our path. We
iteratively apply the algorithm n times until the result and
path shape are satisfactory:

1. We minimize the distance between points by
employing the variable α, which determines how
quickly we move away from the original position
xk, considering the preceding point xk−1 and the
subsequent point xk+1,

xk = xk + α(xk − 1 + xk + 1− 2xk).

2. Next, we balance the point xk by applying the
variable β and calculating yk, representing the new
position of the point. This operation helps us avoid
straight lines in the path,
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yk = yk + β(xk − yk).

The discussed method of path modification leads
to the creation of a piecewise linear function, the
construction of which consists in iteratively transforming
the points xk by taking into account the neighboring
points xk − 1 and xk + 1. Each point on the path
is adjusted to minimize the distance between successive
points, which creates a series of rectilinear segments
between points. As a result, each segment connecting
successive points can be described as a straight segment,
which results in a path structure composed of linear
segments. Using an additional smoothing operation using
the parameter β introduces point balancing, minimizing
the sharpness of the angles between neighboring segments
and giving the path a smoother character. Reducing
sharp breaks makes the path resemble a continuous line,
eliminating sudden changes in direction.

The effect of smoothing the path can be seen in
Figs. 13–16.

4. Experimental results
In this section, we will discuss the technical side of our
experiments finalizing it by sharing a demonstration of our
project in a real environment. Also, we will show difficult
cases, according to the results given by the path search
algorithm.

4.1. Difficulties in the path search algorithm.
While testing different types and setups of the map, we
encountered a critical case, cf. Figs. 17 and 18. It turns out
that there is a combination of map borders and obstacle
locations when our algorithm could not find the path. We
are speculating that the phenomenon appears when there
are no more attractive potential fields taking into account
the weighted and normal Euclidean distances. This means
the rest of the possible potential fields have a bigger
distance to the goal than the current, cf. Section 3.1.1.
Another disadvantage is that the algorithm works on the
elimination principle. This means that once a potential
field is selected for generating a path, it is removed from
the list of possible potential fields. It has been observed
that the algorithm does not cope when the map resembles
a maze. Despite the correct generation of potential fields,
the selection of fields used in the path finding algorithm
does not take into account the backward action.

4.2. Technical aspects of the experiments. We
conducted real-world testing in an intelligent robotics
laboratory using key devices, including a top camera
for capturing point coordinates and a Smart Element
Hub cube from the Lego Robot Inventor kit. For
semi-autonomous control, where the computer serves as
the computing unit, we used our custom Python library,

Fig. 13. Our previous filtered path based on square shape
potential fields after using path smoothing algorithm .

Fig. 14. Path, previously filtered using squared potential fields,
improved through the path smoothing algorithm.

accessible through the work of Cybowski (2025). The
validation code is available on GitHub (Szpakowska,
2025a).

4.3. Map generation using augmented reality mark-
ers.. To assess the described algorithms, we needed to
create a customized environment for our mobile robot.
To implement our concept of the robot’s world map, we
employed AR markers to establish map boundaries, define
obstacles, and designate the goal point. Additionally, the
robot’s location was represented by a one-color square
applied on top of the machine. Specific elements on the
map were configured to facilitate the testing process:

• Boundaries (4 markers),

• Obstacles (2 markers),

• Designed goal (1 marker),
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Fig. 15. Previously filtered path, derived from circular potential
fields, after applying the path smoothing algorithm.

Fig. 16. Filtering path has undergone smoothing with the path
smoothing algorithm.

• Robot position (one color square).

To identify the listed elements and enable the
definition of each position on the virtual map, we used
OpenCV (2025) and Python AR markers (Brauer and
Rouneau, 2025).

After obtaining the camera view, we had to
customize our window. The coordinates of all points were
now determined by the pixels captured by the camera,
shifting the map for the robot agent to start from (40, 46)
instead of the origin (0, 0). To adjust the top-left border
point, we implemented the following mapping:

for i in range(len(x1)):
a = x1[i] - x_min
x_borders.append(a)

for i in range(len(y1)):
a = y1[i] - y_min

Fig. 17. Critical case visualize using square shape potential
fields.

Fig. 18. Critical case representation utilizing a circular potential
field.

y_borders.append(a)

where xmin determines the minimum of X values,
ymin is the minimum y value in border points (x, y).

4.4. Connection to the robot and basic features. For
our test, we assembled a robot using a Smart Element Hub
cube with an LED screen from the Lego Robot Inventor
kit and servomotors, using the Python language. The
crucial step to commence working with this robot was
the implementation of a library containing the necessary
functions (Cybowski, 2025).

The main features of the robot are the following:

• the current position (obtained from the camera),

• the design goal (a sequence of points on the path to
the target),
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• compass sensor access (built in the hub),

• current direction access (read from the hub),

• motor access (Ports A and B).

The initial step involves establishing a Bluetooth
connection between the robot and our device. To achieve
this, we needed to select the appropriate ports, either
COM3 or COM4, depending on the port assigned to our
robot. Then, we had to map the robot’s position point
from the camera to the defined map, normalizing it as
the center of the one-color painted square located on
top of the machine, as well as all the boundaries and
obstacles outlined in the upper part. We achieved this by
establishing a new point (0, 0) defined by reading from
the camera the coordinate of the map boundary having the
smallest values of the x and y coordinates. This action was
necessary for the correct functioning of the P-controller.

4.5. Lego library. In this section, we will focus on
the invented library, responsible for communication with
the Lego robot, which was used in experiments. The
library, named le mind controller and available at the
following address as open source software (Cybowski,
2025) enables communication and control of the hub,
a key component of the Lego Mindstorms set number
51515.

In addition, it should also work with the hub from the
Lego Spike Prime set numbered 45678, because the hubs
in the two sets differ only in external appearance, but tests
have not been conducted on the hub from the 45678 set.
Connection to the hub can be made via a USB cable as
well as via Bluetooth. The type of connection does not
affect the operation and use of the library.

The library is divided into four modules:

1. Helpers.py, which contains helper functions,
responsible for listing the serial ports available
on the system and for establishing a connection
through the selected port. The open-source
pySerial library, available at the following
address: github.com/pyserial/pyserial,
is responsible for the technical, operating
system-dependent aspects of handling serial
ports.

2. MindComm.py, which is responsible for formatting
and sending control commands to the hub. It also
receives responses and data sent by the hub and
then directs them to a parsing function in another
module. When sending commands, it is important
to remember that each must contain an individual
identifier. It is randomly generated, has a length
of four characters, and consists of uppercase and
lowercase letters, numbers, dashes or underscores.
When the hub executes a command, it sends back

Fig. 19. AR recognition. The one color-painted point on a
capture describes the start point—the robot’s actual
position.

Fig. 20. Results of map generating including the start point as a
one-color square.

Fig. 21. Robot used in the experimental part, based on a Smart
Element Hub cube with an LED screen of the Lego
Robot Inventor kit.
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a message with the same identifier as the command
sent. This makes it easy to control the status of
command execution.

3. MindData.py, which processes the data received
from the hub, as well as contains the definition of
constant values used by the modules connected to
the hub and the hub itself, such as the color seen
by the sensor or the type of module connected. The
functions contained in this module allow us to easily
obtain the information of interest from the hub itself
as well as the modules connected to it.

4. SerComm.py, which is used to handle events
related to the connection with the hub. Here one can
find, among others, functions called in the case of
connection loss or receiving a new line of data from
the hub.

4.6. Controlling the driving part of the robot. The
robot that we used to conduct the experiments is equipped
with a compass sensor, which allows us to capture and
fix the current robot’s direction. Taking into account
that our path is created and smoothed including obstacle
avoidance, we get the set of coordinates that single
variables represent the individual points of the optimized
path. Using this set we can reach a goal. This experiment
was working in real-time and our machine was localized
by the top camera using a one-color recognition.

The main purpose of designing a P-controller for
our robot is to make it move independently, taking into
account the generated path. Below we focused on the
main steps needed for our steering.

4.6.1. Conversion of the compass reading values.
The proposed conversion is based on the current rotational
direction of the robot concerning the built-in compass
sensor value. The calculation spectrum covered angles
from 0 to 359, degrees. This methodology segregated
a given set, of angles into two subsets. Following the
conversion, the range of values was adjusted to a spectrum
from −180 to 180. The split was implemented as follows:

def convert(k,x):
x = x - k
if (x > 180):

x = x - 360
if ( x < -180):

x = 360 + x

Suppose k represents the actual direction that needs
adjustment relative to the robot’s current position obtained
from the camera, and x denotes the robot’s current
direction.

Following the conversion, angles ranging from
0 to 180 degrees exhibit positive values consistently,

whereas values from 181 to 359 span from −179 to −1,
respectively. These numerical representations correspond
to the global directions:

• 0◦ North,

• 90◦ East,

• 180◦ South,

• −90◦ West.

The function convert returns the converted angle,
taking into account both angles: the actual robot’s
direction (read from the hub) and the goal direction
(elements in the path). Obtaining directions is described
below.

4.6.2. Calculation of the actual rotation. In the
conversion, we use the actual direction concerning the
robot’s current position. To compute this value, we
employed the following property:

direction = Atan2(x− y′, y − x′)× 180

π

Here, (x, y) is the current path element and the (x′, y′) is
the actual robot position on map then.

act_dir = math.atan2(path_points_x[i] -
- actual_y, path_points_y[i] -
- actual_x) * 180 / 3.14

4.6.3. Control system. The control function employs a
conversion function for angles and wheel speeds, treating
them separately. The algorithm modifies the speed
initially assigned to one of the wheels to initiate the
rotation of the robot. The fundamental concept behind
the applied algorithm is to minimize the speed of the
selected wheel, determined by calculating the robot’s
new direction (Åström and Hägglund, 1995). When the
velocity value on the right wheel is lower than the velocity
value on the left wheel, the device turns to the right side.
The same procedure is followed when turning to the left
side.

cte = convert(actual_direction,
current_direction)
if cte <= 0:

if abs(cte) > precision:
wheel2 = (wheel1 * (-1))

else:
wheel2 = (wheel1 * (-1)) -
(ksi * cte)

if cte > 0:
if cte > precision:

wheel1 = (wheel2 * (-1))
else:

wheel1 = (Wheel2 * (-1)) -
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(ksi * cte)

mc.motor_double_turn_on_deg
(HubPortName.A, HubPortName.B,
wheel1, wheel2,
degrees=actual_direction)

Here, wheel1 and wheel2 indicate the speed of
each robot motor. The parameter ksi specifies the
corresponding reduction in wheel speed, taking a value
within the range of 0.1 to 0.5.

4.7. Project access to codes and demonstration video.
The action of our project in practice can be seen in the
work of Szpakowska (2025b), in which we show the steps
of our research and visualization of the results. The code
of our library responsible for steering the robot is available
in the work of Cybowski (2025). The rest of our codes and
additional map configurations along with a demonstration
of the algorithm operation are available in the work of
Szpakowska (2025a). The AR tags we employed are
available at through Brauer and Rouneau (2025).

5. Conclusions

In this research paper, we have successfully implemented
path planning using the rough mereological potential
field, coupled with a weighted Euclidean distance to
the target. We developed and implemented a dedicated
library designed for a specific mobile robot. Virtual
reality markers were instrumental components used for
mapping purposes. The control mechanism employed
a P-controller. Through experimentation, we identified
a critical case for our algorithm, highlighting areas for
improvement in the current version of the path search
algorithm. Our future plans involve addressing and
resolving this critical case. Nevertheless, the primary
objective of the work has been accomplished, as we
have adapted the new library and hardware to enable
optimal real-time navigation of the mobile robot across
a map with obstacles. This study marks an initial step
towards applying the rough mereological potential field
for three-dimensional path planning.
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Ośmiałowski, P. (2011). Planning and Navigation for Mobile
Autonomous Robots: Spatial Reasoning in Player/Stage
System, Polish-Japanase Academy of Information
Technology, Warsaw.
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