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A DATABASE FOR DISTRIBUTED
MANUFACTURING CONTROL

ALAN SKINNER, DAVID HUTCHISON AND BRUCE ARMITAGE*

This paper describes a database used for the control of a small manu-
facturing cell. The data used to control the manufacturing operation
is distributed around the cell. Control is achieved by producing a piece
of data (eg, the detection of a workpiece) at one node and duplicating
that data on a second node. Access to the data is made via a Local
Area Network (LAN). The user interface to the database allows the
cell components, data variables, and the data flow to be defined. Once
the cell has been defined any software required by remote nodes can
be downloaded and the system set in operation. The work described
in this paper adds an easy to use interface to a proprietary commu-
nications network. This greatly reduces the level of understanding of
the communications protocol required to set up a working system and
also simplifies the programming of network nodes.

1. Introduction

The use of Local Area Networks in manufacturing allows control functions
to be distributed across an application. Fieldbus networks (Wood, 1986;
Armitage et al., 1988; Morris, 1990) in particular are being developed for
low level communications in a manufacturing control environment. The
distribution of functions means that a method must be found to manage the
data requirements of the functions. One method of doing this is the use of a
real time distributed database. A proposed Fieldbus network is (FIP, 1988),
which is a development by a group consisting mostly of French companies.
As well as providing the communications between the distributed functions,
FIP provides a management system for distributed database.

As part of a project at Lancaster university to study the performance
of Fieldbus networks (Armitage et al., 1990) a small work cell has been set
up. The cell functions are distributed across a number of network nodes.
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The nodes each consist of a microcontroller to control local functions plus
a communications interface to access other nodes. The local area network
used, Intel’s BITBUS (Intel, 1986), provides a microcontroller with a built
in SDLC-based (IBM, 1984) serial communications controller.

The workcell had been converted from traditional star—wired control to
network control (Skinner and Armitage, 1989) in order to utilise the flexibi-
lity of distributed control. It was also thought desirable to build a Fieldbus
type application layer above the network. It was decided to follow the FIP
practice of viewing the system as a distributed database, and to this end a
database system has been developed. This database contains data relating
to network nodes and the communications required to control the manufac-
turing application. Although this description of the networked application
is held on a central computer, the data required by the applications control
functions is distributed throughout the network nodes. The user defines ne-
twork and its traffic in terms of logical names for devices and variables, and
specifies the frequency at which transactions involving the functional data
should occur.

2. Database Requirements

The database must allow the user to enter, review, and edit data relating to
the network nodes and the cell components connected to these nodes. This
data should consist of a means to identify easily components and functions.
To allow for flexibility some nodes may be capable of supporting different
functions. Various functions can be supported by downloading software
to the node. Therefore the software running on a node for a particular
application should be specified in the database. The control functions are
distributed across the network. Some node functions may stand alone and
require no interaction with other nodes. However in some cases a function
may be distributed across more than one node, therefore a variable generated
at one node (e.g. liquid level in tank) may need to be made available at a
second remote node (e.g. pump drive motor). Control of the cell is then
achieved by moving variables from one node to another via a communications
medium, as illustrated in Figure 1.

The distribution of control functions means that a method of defining
the movement of control variables over the network must be provided. This
is achieved by a database record listing data transactions that make up the
network traffic for an application. The data to control the cell is stored in
two record sets, namely the Node Records and Message Records.
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Fig. 1. Duplication of database variables

2.1. Node Records

The Node Record, as shown by the example in Figure 2, is split into two
sections. One section holds data relating to the node and its associated
software, the other is for information about the node variables.

The Node Information section lists a logical name for each node related to a
physical network address. A brief description of the cell component function
is included as is a filename for the software running on the node. The
- Initial Task Descriptor (ITD) is a requirement of the LAN Communications
executive.

In the Variable Information section all variables accessed by the node are
listed. Variables generated by the node and duplicates of remote variables
required by the node are listed. This list relates logical variable names to
physical addresses in the node Random Access Memory and the size in bytes
of the variable.

| LOGICAL NAME WS2

ADDRESS (hex) 20

FUNDATION work station 2 controller
DOWNLOAD FILE | \alan\rig\rac\s\ws2 \ws2.hex
FIRST ITD (hex) 10

VARIABLE | ADDRESS | LENGTH
start 300 1
buff 301 1
p-set 302 1
c_adrs i 303 1

Fig. 2. Node Record Example
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2.2, Message Records

The Message Records, (see the example in Figure 3), contain a series of data
transactions that must be undertaken to control the cell. These are stored
in terms of the logical names for nodes and variables. They list the source
location of the data and destination location of the duplicate data. The
period in ms between successive executions of the data transfer is given for
each transaction.

No. | SOURCE SINK PERIOD (ms)
1 WS2.buff | WS1.c2buf 200
2 WS2.pset | ADR.c2pset 200
3 ADR.adrs | WS2.c.adrs 500

Fig. 3. Message Record example

3. Use of the Database
3.1. User Interface

Two versions of the database software exist. Both run on IBM PC’s but
one uses the interface functions of Microsoft Windows. The MS-Windows
version is described here. A typical screen display is shown in Figure 4. The
display shows the nodes as icons and the data transfers between nodes as
lines. Nodes and Variables are identified by logical names. A node can be
selected and expanded to show either the Node Information or the Variable
Information section. The system is menu driven and the main functions are
described below.

e The File option allows network applications to be loaded from or stored
on disk and new applications to be designed.

o The Edit option allows the user to add a node to or delete a node from
the network or to amend the Node and Variable Information fields.

e The Messages command is used to display the current Message Record
list. Individual messages may be added or deleted, or the entire list
cleared. The database display indicates messages in the list by a line
between two variables. Messages may be entered into the list either
from the keyboard or directly onto the screen by using a mouse. To
enter a message directly the cursor is positioned over the source va-
riable and the mouse button pressed, the cursor is then repositioned
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over the duplicate variable and the mouse button released. The user is
then asked for the period between successive transfers for this variable.
This data is then automatically added to the message list.

Fig. 4. A typical screen display of the database

3.2. Network Interface

The complete database control package consists of five programs, four of
which run on the host PC. The database editor is described above, the
other programs use data entered via the editor to control the workcell.

The Kill routine is used to halt an application running on the network; it
uses the database to find the physical addresses of all nodes connected to
the network and resets them.

The Download routines also access the network nodes. This routine uses
the Node Record Download File field to locate the software needed at a node
for an application to run. The software is downloaded over the LAN to the
node located at the address stored in the Physical Address field.

The final PC based program is the Run routine. This uses both the
Node Record and Message Records to produce a network traffic list. This
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is a list of messages coded in a form that the Intel BITBUS LAN commu-
nications software can understand. A description of BITBUS follows to aid
understanding of the Run routine.

3.3. BITBUS Local Area Network

The core component of a BITBUS network is Intel’s 8044 BITBUS Enhanced
Microcontroller (8044 BEM) (Intel, 1986) which provides a microcontroller
with built in communications executive. BITBUS is a single-master multi—
slave network and is configured in a bus topology, as shown in Figure 5.

local I/O local /O robot
digital analogue PLC controller
L1 ] 1 I
slave slave slave slave
node
node node node

Fig. 5. BITBUS Local Area Network

The bus master which controls all access to the network typically resides in
an IBM PC, the host PC being known as a BITBUS extension. Slaves may
be connected to any application from simple on/off transducers to further
extensions.

BITBUS uses a three layer architecture, corresponding to the physical,
data link and application layers of the ISO Open Systems Interconnection
(OSI) Reference Model.

'The BITBUS network can be physically connected in a variety of ways
giving different numbers of nodes and lengths of network. These are sum-
marised in Table 1.

Mode Repeaters | Nodes | Length Speed Wires
synchronous no 28 30m 0.5 — 2.4Mbs 4
self_clocked no 28 300m 375Kbs 2
self_clocked no 28 1200m 62.5Kbs 2
self_clocked yes 250 | >1000m | 62.5/375Kbs 4

Table 1. BITBUS physical layer options
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Signals are carried over a differential pair conforming to the RS485 elec-
trical standard. In synchronous mode two differential pairs are required,
one for data and one for the clock, the logical state of the data signal being
obtained at the rising edge of the clock signal. In selfclocked mode with no
repeaters only a single pair of wires is required, and data is transmitted using
Non Return to Zero Inverted encoding to allow clock timing to be extracted
from the bit serial data stream. The network can accommodate up to 250
nodes by using repeaters although this requires an additional signal pair to
control the direction of data flow.

The BITBUS link layer uses a subset of the IBM Synchronous Data Link
Control (SDLC) protocol, SDLC being a subset of the ISO HDLC protocol
(ISO, 1984). The BITBUS messages are placed in the information field of
an SDLC frame. All normal transactions commence with an information
frame from the master to a slave node; if no information frame is available
at the slave it is repeatedly polled by the master until one is returned, and
the transaction is completed by an acknowledgement from the master to the
slave. BITBUS message transactions are transparent to the user.

The BITBUS application layer provides the user with a multitasking

environment. Information is exchanged between tasks by the use of BITBUS
messages, using the message format shown in Figure 6.

LINK
LINK BITBUS
LENGTH
MESSAGE
FLAGS HEADER
DESTINATION NODE
TASKS
COMMAND/RESPONSE
DATA O
DA’I;A 1 BITBUS
' DATA
:
(]

v

Fig. 6. BITBUS message format

Communicating tasks may be on the same node or on remote nodes. At this
level BITBUS data transactions consist of an Order message followed by a
Reply message. Order messages to tasks on remote nodes may only be sent
by the network master node.
Wyisza Szkola Iniynierska
Instyiut Fobolyki
i Inignierii Gprogr.mowania

ul. Podgorna 50
65-246 Zielona Géra
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The BITBUS message is split into header and data sections. The hea-
der consists of six fields. The Link field contains 2 bytes of data used by
the BITBUS executive and is not accessed by the user. The Length field
contains the total length (header plus data) of the message. The current
‘maximum message length is 20 bytes, the 7 byte header and up to 13 data
bytes. The Flags field indicates Order or Reply messages, and whether the
communicating tasks are on a node or a node extension. The Destination
Node fields holds the physical address of the node receiving the Order mes-
sage. The Tasks field holds identifiers for the communicating tasks. The
Command/Response field is used in an Order message to indicate a parti-
cular message type, eg Read Memory; in a Reply message this field may be
used to indicate an Order message request was successfully carried out.

The BITBUS based boards used in this application run a preconfigu-
red version of Intel’s Distributed Control Executive iDCX51 (Intel, 1986;
iDCX, 1986), together with the BITBUS firmware iDCM44 (iDCX, 1986).
The iDCX51 executive provides the multitasking environment whilst the
iDCM44 firmware controls communications over the serial BITBUS link and
over a paralle] interface to an extension computer such as an IBM PC. The
iDCM44 also provides Remote Access and Control (RAC) functions which
provides a high level interface to the various read/write commands at a re-
mote slave node. It is these read/write memory commands that are used by
the database when constructing the network traffic list.

3.4. Database Operation

The communications, protocol used is a single-master multi-slave type.
Therefore each data transaction involves accessing the network four times.
First the network master sends a read data request to the source node, and
the node replies with the data. The master then sends a write data message
containing the data to the destination node, which returns an acknowledging
message back to the master, as illustrated in Figure 7.

Communications are controlled by a Master program running on a BITBUS
board located in the database PC. The database Run routine produces BIT-
BUS headers for a read data and a write data message for each transaction
in the Message Record and stores them in the network traffic list. This net-
work traffic list is loaded into the Random Access Memory of the network
master node. The following paragraphs describe how a network traffic list
entry is produced for one transaction.
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The logical Name field of the Node Records are searched for a name
corresponding to the source node name in the Message Record. Once the
Logical Name is found the data in the Physical Address field of the Node
Record is entered into the Destination Address byte of the read data message
‘header. The Flags field is then filled, and both the source and destination
tasks run on BITBUS nodes. The source task of the message is the Master
communications program, the destination task is the BITBUS RAC task;
this information is used to fill the Tasks field of the message header. The read
data message of the transaction is a RAC Read External Memory message;
the Command/Response code for this type of message is entered into the
appropriate field.

® Read Data Request

© Reply with Data

omm "
@ Write Data Request ~

@ Acknowledge

Fig. 7. Messages involved in a data transaction

The first two data bytes of the message contain the address of the memory
location to be read. To fill these bytes the Variable Information section of
the Node Record is scanned for a Variable Name corresponding to the Source
Variable Name in the Message Record. Once a match is found the variable
address can be entered into the message. The entry in the Variable Length
field is used to calculate the length of the BITBUS message a.nd this is
entered into the Length field of the message header.

This process is repeated for the destination node and variable in the
Message Record. The Period entry of the Message Record is used i set a
time flag indicating when the transaction should take place.
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Once the conversion of all messages in the Message Record list has been
carried out the network traffic list is loaded into the master node. The
system is now ready to operate. The run routine resets each node on the
network and then uses the First ITD field of the Node Records to determine
whether software loaded to the nodes starts on reset. If any software does
not start on reset a message is sent to the node to begin its task.

The Run routine then interacts with the Master routine either to display
measurements of the system performance or to stop the network operation.
The Master routine scans the time flag of each entry in the network traffic
list. If the transaction should take place the read data message is loaded
into a transmit buffer. The message is transmitted and the master then
waits for a reply. The variable data from the reply is loaded to a buffer
that contains the header and first two data bytes (variable address) of the
write data message. This message is send to the destination node in the
Message Record. When the reply to this is received the time flag of the
network traffic list is incremented by the message period and the Master
routine moves on to the next entry in its list.

4. Application

The application used to demonstrate the database is a small manufacturing
work cell. The cell consists of a conveyor and two in-line work stations
(Tizzard and Cripps, 1986). The first work station is used for a manual
operation. At the second work station a robot performs a simple profile
following task.

4.1. Network Hardware

To control the cell using BITBUS one master node and three slave nodes
are used. The master node is an iPCX344A BITBUS IBM PC Interface
Board (Intel, 1986). The slave nodes consist of an iRCB 44/10A BITBUS
Digital I/O Remote Controller Board (Intel, 1986), a power supply, and an
“optically isolated interface to the station transducers. Each work station
slave is responsible for controlling the pallets within the work station. The
third slave node is used to interface with an ADEPT One robot controller.

4.2, Software

The Kill, Download, and Run routines are written in Microsoft C 5.1, and
interact with BITBUS through Intel’s Universal BITBUS Interface (UBI).
The Edit routine is written using Microsoft C 5.1 and the Microsoft Windows
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Software Development Kit. The software for the master and slave node is
written in PL/M51. The robot profile tracing software is written in VAL IL

4.3. Operation

Each work station consists of two areas, a buffer store and a work area.
The workpieces are carried along the conveyor on pallets and are stored
in the buffer area until the work area is empty. The first pallet to reach
the buffer store is held there by a raised pneumatic stop. A microswitch
detects the presence of a pallet at the buffer store. Movement of a pallet
from the buffer to the work area is effected by the slave node briefly lowering
the stop and allowing the pallet to proceed along the conveyor. Once the
pallet reaches the work area it is raised above the conveyor and locked into
position by pneumatic actuators. The required task can now be carried out
on the workpiece. Once the task is completed the pallet is returned to the
COnveyor.

Figure 4 shows the nodes, control variables, and transactions used in this

application-the three transactions shown in Figure 4 are carried out by the
Master routine to control the manufacturing operation. »
The first workstation slave (WS1) node carries out its task on the pallet and
then monitors the c_2buf variable in its memory. This variable is a duplicate
of the second workstation (WS2) variable buff. This variable indicates the
status of WS2’s buffer store. When c_2bufindicates that the buffer is empty
WS1 releases the pallet and monitors to its own buffer for the next one.

WS2’s variables p_set and c_adrs and the variables c2pset and adrs in the
robot interface slave (ADR) are used to control the operation of the robot.
At WS2 the variable p_set is set when a pallet is locked into position ready
for the robot to work on it.

The robot slave monitors the duplicate variable c2pset, and when this is
set the robot is signalled to start its task and adrs is set. Once the robot
task is complete adrs is reset. The robot interface again monitors c2pset,
until it is reset. This indicates that the pallet has been released and the
robot slave can begin monitoring c2pset for the next pallet.

After setting p2set WS2 monitors the variable c_adrs. This is a duplicate
of the ADR adrs variable. Once this variable has been set and reset the
pallet can be released and p-set reset. WS2 monitors its buffer for the next
pallet.
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5. Results

Two sets of results were obtained. For the first set the Master routine
scanned through the network traffic list every 50 ms and carried out data
transfers when necessary. For the second set of results the time fields in the
network traffic list were ignored and the Master repeatedly scanned the list
carrying out each data transfer at every scan.

5.1. 50 ms Scan

The master node waits for an interrupt signal which occurs every 50 ms.
Upon the interrupt it scans sequentially through the message table. If the
current time corresponds to the time for a transaction to occur the data is
read from its source and written to its destination, and the time field for
a completed transaction is updated by the transaction period. A timer is
started by the master when a transaction to be performed is encountered.
This is used to measure the time taken to process the transaction. It also
measures the time from the send message request by the master to receipt
of a reply from the slave. Both measurements are cumulative for one 50 ms
window, ie. for two transactions the total time to process two transactions
and transmit and receive replies to two message is measured.

After all the entries in the message table have been tested a message is sent to
the PC. This message contains the number of transactions performed in the
window, the time spent processing the transaction data and the time taken
to transmit messages and receive replies. This data is shown in Table 2.

MSG/WINDOW | FREQ AVERAGE AVERAGE
ACTIVE TIME | COMMS TIME

(ms) (ms)
0 1113 0.39 0.00
1 725 5.66 0.28
2 97 10.94 0.55
3 0 0.00 0.00
4 0 0.00 0.00
5 0 0.00 0.00
>5 0 0.00 0.00

Table 2. Message timings for a 50 ms scan window

The table shows the number of data transactions in each 50 ms Window; the
frequency with which that number of messages occurred in each window; the
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average times for processing and actioning the transactions (Active Time)
and for transmitting and receiving messages (Comms Time).

5.2. Continuous Scan

The rig timing results shown below were obtained without using an interrupt
to start the scan of the transaction table. All transactions in the table were
carried out during each scan (ie the time field was ignored). At the end of
each scan the timing data was sent to the PC and the next cycle begun. This
was done using the three transactions required to control the application and
also with added dummy transaction to increase the network traffic. Table
3 shows the Active and Comms time as defined above for 3, 10, and 15
transactions.

Times (ms)

Transactions | active | comms
3 15.72 0.83
10 53.06 2.77
15 79.98 3.90

Table 3. Transaction timings for 3, 10 and 15 transactions

6. Conclusion

The work cell is run by a distributed control network with the operation
coordinated by moving variables from one node to another over the network.
The benefits of distributed control include reduced wiring costs, simpler
software, and ease of expanding a system.

The addition of a database to control the application improves the flexi-
bility of the system as new nodes can be added to the network and simply
programmed into the database. Also different versions of software can be
run on any slave node by changing a database entry.

Tables 2 and 3 show that the time taken to process a single transaction
is approximately 5 ms. This suggests that for a control loop to function
acceptably on the network it must not require updating at a rate greater
than every 5 ms. Also, the greater the number of transactions required to
control the application, the lower the frequency with which variables can be
updated.

If ten transactions are required then it takes 53 ms to update all variables
in the list; this means no variable can be updated more than eighteen times
per second. This may be qualified by the fact that not all variables will
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be updated at each scan through the network traffic list (see the Frequency
column in Table 2). In general, though, the greater the number of nodes on
a network and the greater the number of transactions the slower the control
loops on the network will be.

It should also be noted from Tables 2 and 3 that for this implementation
the communications time is approximately 5 % of the active time. The
communications time includes both the time the messages are on the network
and the time for slave nodes to process messages. This suggests that the
network speed, and to some extent the communications protocol used, are
irrelevant to the overall performance of the application.
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