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EXISTENCE OF SOLUTIONS OF BOUNDARY
VALUE PROBLEMS OF DIFFERENTIAL
INCLUSIONS

Micual KISIELEWICZ,* JERZY MoTYL**

We are interested in the necessary and sufficient conditions for the
existence of solutions of differential inclusions z(t) € F(t, z(t)) for a.e.
t € [0, T satisfying boundary conditions z(0) = ¢ and z(T') = z;.

1. Introduction

The existence of solutions of initial-value problems of differential inclusions
can be obtained by means of properties of sets of all integrable selectors of
their right—hand sides. In recent years the study of these sets has been done
by many authors, e.g. (Bridgland, 1970; Castaing, 1967; Hiai and Umegaki,
1977; Kisielewicz, 1989 and Papageorgiou, 1985 and 1987). Some applica-
tions to the theory of neutral-functional differential and stochastic integral
inclusions can be found in (Kisielewicz, 1989 and 1992), where these sets
are called subtrajectory integrals of set~valued functions. In this paper the

properties of subtrajectoi‘y integrals of set-valued functions are applied to

obtain the existence of solutions of boundary—value problems to differential
inclusions of the form z(t) € F(t,z(t)).

We shall deal here with set—valued functions taking their values in the
space Comp (IR™) of all nonempty compact subsets of the n-dimensional
Euclidean space IR™. This space is considered as a metric space with the
Hausdorff metric h defined in the usual way by the Hausdorff subdistance h.
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2. Subtrajectory Integrals of Set—Valued Functions

Given o-finite measure space (X,.A,0) a set-valued function R : X —
Comp (IR™) is said to be A-measurable if R™(C) := {z € X : R(z)NC #
@} € A for every closed set € C IR™. Among others it is equivalent to the
existence of a sequence (f,) of A - measurable functions f, : X — IR" such
that R(z) = cl{fa(z) : » > 1} for all z € X. Denote by M(X,IR™) the
family of all A - measurable set-valued functions R : X — Comp (IR™).
For R € M(X,IR™) the subtrajectory integrals F(R) is defined by F(R) =
{f € L(X,R™) : f(z) € R(z) a.e.}. Here and later L(X,IR") denotes
the Banach space L(X,.A,0,IR™) of (equivalent classes of) A - measura-
ble functions f : X — IR™ such that the norm |f| = [, |f(z)|dp is fi-
nite. We call R € M(X,IR"™) integrable bounded if a real - valued function
X 35 z — ||R(z)|| with ||R(z)]| := sup{|r| : 7 € R(z)} belongs to L(X,IR™).
It follows immediately by the Kuratowski and Ryll-Nardzewski (1965) me-
asurable selection theorem that F(R) # @ for every integrable bounded
R e M(X,R"™). -

The following results given by Hiai and Umegaki (1977) will be used in
the sequel.

Proposition 1. Let R € M(X,IR"). If F(R) is nonempty, then there exists
a sequence {fn} contained in F(R) such that R(z) = cl{fn(z):n > 1} for
alze X. m

Proposition 2. Let R € M(X,IR") be integrable bounded. Then
(i) F(R) is a nonempty closed subset of L(X,IR™),

(i1) F(coR) is convex and weakly compact in L(X,IR™), where ¢oR is defined
by (coR) :=coR(z) forzc e X. =

Let Z be a locally convex Hausdorff vector space, D its nonempty sub-
set and [ a compact interval of the real line. A set- -valued function
R :1IxD — Comp (R") will be called measurable with respect to its
first variable if R(-,z) is measurable for each fixed z € D. It is said to
be uniformly integrable bounded if there is a function mgr € L(I,IR') such
that ||R(t,2)|| < mg(t) a.e. t € I. We call R upper [weakly - weakly se-
quentially upper] semicontinuous (u.s.c.) [(w-w.s.u.s.c.)] with respect to
its last variable if for every zg € D and every sequence (z,) of D conver-
ging [weakly converging] to zy one has lim, .o h(R(t, 2zn), R(t,20)) = 0 for
ae. t € I [limpooo ([ R(t,20)dt, [g R(t,z)dt) = 0 for every Lebesgue
measurable set £ C I].
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In what follows by F(R)(z) we shall denote a subtrajectory integrals of .
R(:,z) for fixed z € D whereas F(R) will denote a set-valued mapping
D3 z— F(R)(z) C L(I,R"). We call F(R) weakly - weakly [sequentially]
upper semicontinuous (w-w.u.s.c) [(w-w.s.u.s.c.)] on D if for every weakly
closed set € C L(I,IR"), a set F(R)"(€) := {z € D : F(R)(z) nC # 0}
is weakly [sequentially weakly] closed in Z. If D is weakly compact then
immediately from Smulian’s theorem it follows that F(R) is w.—w.u.s.c on
D if and ‘only if it is w.—w.s.u.s.c there.

3. The Ky Fan Fixed Point Theorem

Let Z be a locally convex Hausdorff vector space and let Z* be its dual.
Denote by < z,p > a duality pairing on Z* X Z defined in the usual way by
setting < z,p >:=p(z) for all p € Z* and 2 € Z.

In this section, we supply Z with the weak topology o(Z,2*). Let K C Z
be a nonempty set. By s(K,:) : Z* — (—o0,00] we denote the support
function of K, i.e., s(K,p) := sup,ex < z,p >. It is well know that for
a nonempty closed convex set K C Z one has K = {z € Z :< z,p ><
s(K,p) for every p € Z*}.

Assume K C Z and F is a set-valued map from K to Z. For every
p € Z* we can consider the function with values in (—o00,00] given by K 3
z — s(F(z),p) € (00, 00].

We say that F' is upper hemicontinuous (u.h.c) at z9 € K if for every
p € Z*, the function z — sF(z),p) is u.s.c at zo. F is called upper hemi-
continuous if it 1s u.h.c. at each 2z € K.

We have the following known result (see Aubin and Cellina, 1984, p. 80).

Proposition 3. Any upper semicontinuous map from K to Z supplied with
the weak topology is upper hemicontinuous. ®

Corollary 1. Let R : I x A — Comp (IR™) have convez values, be uniformly
integrable bounded, measurable with respect to its first variable and w. -
w.s.u.s.c with respect to the second one. If A is a weakly compact subset of
L(I,IR™) then F(R) is upper hemicontinuous on A.

Indeed, similarly as in (Kisielewicz, 1989, Lemma 3.5) it can be seen
that F(R) is w.—w.s.u.s.c on A which by the weak compactness of A implies
that F(R) is w.—w.u.s.c. Now our result follows immediately from Proposi-
tion 3. ™ ,

For a given nonempty closed and convex set X C Z by IN;(z) and T;(2)
we denote respectively "normal” and "tangent” cones to X at z € Z. Tley
are defined by



120 M. Kisielewicz and J. Motyl

Nx(z):={p€Z":<zp>=max <y,p>} (1)
y
and
. Tx(z):={z € Z:<z,p><0foreachp € Nx(z)} (2)

The following fixed point theorem will be useful in this paper (see Aubin,
1979, p. 531).

Theorem (Ky - Fan). Let X be a nonempty convex weakly compact sub-
set of Z and suppose S is an upper hemicontinuous map from X into the
space Convy(Z) of all nonempty conver weakly compact subsets of Z. If
furthermore S(2) N[z + Tx(2)] # 0 for every z € X then S has in X a fized
point. B

Finally, we quote the following result (see Aubin and Ekeland, 1984, p.174).
Proposition 4. Let A be a linear mapping from L(I,IR™) into R™ and
assume K and M are nonempty closed and convez subsets of L(I,R™) and

IR™, respectively. If K and M are such that 0 € Int(A(K) — M) then
Trns-1(m)(2) = Tr(z) N A7 (Trp(Az)) for everyz € KNATY(M). =

4. Existence of Solutions of Boundary Value Problems

We shall deal here with the boundary value problem

z(t) € F(t,z(t)) forae. tel:=][0,T] 3
z(0) = zo, z(T) € B, )

where F': I x R™ — Comp (R"), zo € R"™ and B C IR" are given.
Assume that F satisfies the following conditions (H):

(i) Fis L1 ® B(R™) — measurable where £ and B(IR™) denote Lebesgue
and Borel o - algebra of I and IR™, respectively,

(ii) F is uniformly integrable bounded.

Let us define linear mappings 77 : L(I,IR") — R" and 7 : L(I,IR") —
C({,IR*) by taking Tru = f(;‘r w(t)dt and T(u)(t) = [fyu(r)dr for u €
L(I,R™) and t € I, respectively. It is clear that for every nonempty co-
nvex and weakly compact set X C L(I,IR") its image 77K is a nonempty
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compact and convex subset of IR™. It is also clear that 77 maps L(I,IR™)
onto IR™.

Let F' be such as above and satisfies conditions (H). By F(FOT)(u)
we shall denote subtrajectory integrals of a set—valued function I 35 t —
F(t,z0+ (Tu)(t)) € Comp (IR™) defined for each fixed u € L(I,IR™). Imme-
diately by the Kuratowski—-Ryll-Nardzewski measurable selection theorem
it follows that F(FOT)(u) # 0 for fixed v € L(I,IR™). It is also a closed
subset of L(I,IR™). If moreover F(t,z) is convex for (¢,z) € I x IR™ then
F(FOT)(u) is also convex. By (ii) of Proposition 2 it follows that in the
last case F(FOT)(u) is also weakly compact.

Given a nonempty convex and weakly compact set A C L(I,IR™) and
u € A by Z(A,u) we denote the set nPENTTA(TT‘U-){z € R" :< z,p ><
s(TTA,p)} where < -,- > is an inner product of R™ and s(77A,-) denotes
the support function of 77A. Finally, N7 (774) denotes as usual a normal
cone to 77A at Tru € IrA. Now we define a set C(A,u) C L(I,IR™) by
taking C(A,u) := {v € L(I,R") : Trv € Z(A,u)}.

Lemma 3. Let A be a nonempty convex weakly compact subset of L(I,IR™)
and let F' : I x R® — Comp (IR™) satisfy conditions (H). Then for every
u € A the following conditions are equivalent:

(1) [u+ Ta(w)) N F(FOT)(u) # 0
(ii) C(A,u)NF(FOT)(u) # 0.

Proof. Let us observe first that for X = L(I,IR"), M = TrA and A = Tr

the assumptions of Proposition 4 are satisfied. Then for every u € A one
has

Ta(8) = Tzt oy (®) = T (0) 1 T (Tar(Trw)) = T (T ().
Therefore . A
[v+ Ta(w)] N F(FOT)(x) = [u+ Tp(Tam(Trw))] N F(FOT)(u).

Now, for every fixed u € A we have [u + Ty (u)] N F(FOT)(u) # @ if and
only if there exists v € F(FOT)(u) such that v — u € 777} (Tpr(7u)) which
is equivalent to 77(v — u) € Tp(u). By the definition of Tps(7u) it follows
that 77(v — u) € Tar(7u) if and only if for every p € INps(7u) one has
< Tr(v = u),p >< 0. But < Tp(v — u),p >=< Tgv,p > — < Trit,p > and
< Tru,p >= s(M,p) for every p € INpr(Tu). Therefore Tr(v — u) € Tas(u)
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if and only if < T7v,p >< 8(M, p) for every p € INps(7T7u) that is equivalent
to Trv € Z(A,u) or to v € T (Z(A,u)) = C(A,u). =

Now, we can prove the following existence theorem.

Theorem 4. Suppose F : I x R™ — Comp(IR™) satisfies conditions (H), .
has convez values and is such that F(t,-) is u.s.c. for fired t € I. Then for

every 7o € IR™ and a nonempty set B C R™ a boundary value problem (3)

has at least one solution if and only if there exists a nonempty convexr and

weakly compact set A C T7 (B — o) such that C(A,u) N F(FOT)(u) # 0

for every u € A.

Proof. Suppose 7€ AC(I,IR™) is a solution of (3) and put u = z. We have
u € F(FOT)(u) and u € 77 (B — z¢). Taking A = {u} we obtain Tj(u) =
{0}. Then u+ Ta(u) = {u} and therefore [u + Tx(u)]N F(FOT)(u) # 0.
By this and Lemma 3 it follows C(A,u) N F(FOT)(u) # 0.

Suppose there is a nonempty convex weakly compact set A C T YB -
zg) such that C(A,u) N F(FOT)(u) # 0 for every u € A. Put S(u) :=
F(FOT)(u) for v € A. By (ii) of Proposition 2, S has nonempty convex and
weakly compact values. Moreover by Ceorollary 1, S is upper hemicontinuous
on A and using Lemma 3 we deduce that S satisfies the assumptions of Ky
Fan fixed point theorem. Therefore there is in A a fixed point for S. Let
u € A be such fixed point. It is easy to see that 2 = z¢g + Tu is a solution
of the boundary value problem (3). =

Corollary 2. Suppose F : [ xIR™ — Comp(IR") satisfies the assumptions of
Theorem 4 and let z, € IR™ be given. The boundary value problem (3) with
B = {z1} has at least one solution if and only if there ezists a nonempty
convez weakly compact set A C T3 (z1—z¢) such that z;—z¢ € fOT F(t,z0+
(Tu)(t))dt for every u € A.

Indeed, for every nonempty set A C TT"l(a:l — zg) we have IN7.(Tu) :=
{p € R" :< Tru,p >=< 1 — 2¢,p >} = R™ for every u € A because s(z; —
To,p) =< z1 — Zo,p > and T7u = 71 — zo. Therefore, Z(A,u) = (21 — o) -
and C(A,u) = T7 (1 — o) for every nonempty set A C 77 (21 — 20) and
u € A.

Now suppose there exists a nonempty convex weakly compact set A C
T7 (21 — 7o) such that z; — 29 € fOT F(t,zo + (Tu)(t))dt for every u € A.
Then, for every u € A there exists v € F(FOT)(u) such that fOT v(t)dt =
z1 — Zo, i.e. v € T H(z1 ~ z0) = C(A,u). Thus C(A,u) N F(FOT)(u) # 0
for every u € A and the existence of solutions of (3) follows immediately
from Theorem 4. If (3) has at least one solution z then taking A = {¢} we
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have & € F(FOT)(z) and [ #(t)dt = ;1 — zo. Thus for u € A one has
21 — 20 € JT F(t,z0+ (Tw)(t))dt. ®

Corollary 3. Let U be a nonempty subset of R™ and suppose f : I X
R™ x U — IR™ satisfies the Carathéodory conditions and let z(-,zo,u) be a
solution of an initial value problem

{ z(t) = f(t,z(t),u(t)) for ae. te€[0,T]
| z(0) = zo

for fized measurable function u : I — U. Then for every measurable function
w: I — U such that f(;‘r f(t,z(t,zo, %), U(t))dt = z1 — zo the boundary value
" problem

{ i(t) = f(t,z(t),a(t)) for ae. tel0,T]
:E(O) = Zo, :L‘(T) =T

has at least one solution z(-,zo,%). W

Example 1. Given real constant matrices A and B of dimensions nXn and
n X m, respectively and zqg,z; € R™ find a control function u € L([0,T],IR™)
to a boundary value problem ‘

z(t) = Az(t) + Bu(t), for a.e. t€[0,7]

z(0) = zg, z(T) = z3.

According to Corollary 3 a desired control function u € L([0,7]), R™)
must satisfy an integral equation

T t
/ [Ae~ Atz + Ae At / e~4* Bu(s)ds + Bu(t)]dt = =1 — o
0 0

which is equivalent to fOT e‘AtBu(t)dt = e ATz, —z. Thus a desired control
function u € L([0,T],IR™) must be such that &(-)Bu(-) € 77 (e~ 4Tz; —z,),
where @ is & fundamental matrix of £ = Az. In this particular case we can
take u = 38 Cix; with€; € R™; ¢ = 1,2,...,k satisfying 35, A;BC; =
zo — e ATz, where x; denotes the characteristic function of I; = [tic1,ti]
with 0 = g < ¢ < ... < tyoy < tx = T and A; = O(t;) — ®(ti—y1) for
1=1,2,.., k. =

Now, immediately from Theorem 4 the following existence theorem is
obtained.
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Theorem 5. Let 29 € IR™ and a nonempty subset B of R™ be given.

- Assume F satisfies conditions (H), has convex values and is such that F(t,-)
is u.s.c. for fizedt € I. The boundary value problem (3) has at least
one solution if and only if there are a nonempty convexr weakly compact set
AC TT_I(B —zg) and a family {K,}yea of measurable set-valued functions
K, :[0,T] — CI(IR™) such that

(i) JT Ku(t)dt C Z(A,u) forue A
(i) F(t,zo+ (Tu)(t)) N Ku(t) # 0

for each fixed v € A anc a.e. t € [0,T).

Proof. Let ®,(t) := F(t,z0 + Tu)(t)) N K,(t) for fixed v € A and a.e.
t € [0,T]. It is clear that for every fixed u € A, ®,, has an integrable selector.
Suppose w € L([0,T],IR") is such that wgt) € ®,(t) for a.e. t € [0,T] and
fixed u € A. Then w € F(FOT )(u) and [, wdt € Z(A,u) for fixed u € A or
equivalently F(FOT)(u)NC(A,u) # 0 for each fixed u € A. Now our result
follows immediately from Theorem 4. =

Corollary 4. Let zo € R™ and a nonempty subset B of R™ be given and
suppose F' satisfies conditions (H), has convez values and is such that F(t,-)
is w.s.c. for fizedt € I. The boundary value problem (3) has at least one
solution if and only if there ea:zsts a nonempty conver weakly compact set
A C T7Y(B — z0) such that ¢ "'1 F(t,zo+ (Tu)(t)NZ(A,u) #0 forue A
and a.e. t € [0,T].

The result follows immediately from Theorem 5 with K,(2) := f‘_—lz
(A,u)fort € [0,7]) and fixed u e A. =

Example 2. Given real numbers zo and zy find a control function v €
L([0,T],IR™) to a boundary value problem

g=z4 v for ae. t€0,T)
{ 2(0) = 2o, 2(T) =z, (4)

According to Corollary 4 a control function v € L([0,7],IR") is such that
a function u, := £, with z,(¢) = ei(zo + f(fe_fu(‘r)'dt) satisfies conditions:
fg u, (t)dt = 21—z and zo+ J§ w,(T)dt+v(t) = e;ix xo) for t € [0,T].
In such case the assumptions of Corollary 4 will be satisfied with A = {u,}.
‘Denoting w(t) = f§ _TV(T)dT we can define a desired control function v by
the formula v(t) = e'(t) for a.e. t € [0,T] where w is a solution to the
initial value problem:
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W+ w = P
w(0) = 0.

It is easy to see that w(t) = ";’,’1 (%Ff”il - :z:o) and then v(t) = S — zo.
Finally, we can easily check that a function z(t) = zo + (¢! — 1)Z% is a

solution of a boundary value problem (4) with v = ZF=% —zo. ®

Example 3. Given real numbers o and z1 find a control function v €
L([0,T],IR™) to a boundary value problem

z =zv for a.e. te€[0,T] (5)

z(0) = z9, z(T) =121
Similarly as above, we can take A = {u,} with u, = &, where z,(t) =
Toexp fg vdr and v € L([0,T],IR!) is such that fOT u,dT = 1 — 20 and (zo+
Jeu,dr)v(t) = eTet_l(zl — zg) for t € [0,T]. Hence it follows that the above

function v satisfies a functional equation d/dt (a:o exp fg ydr) = jt_—l(ml -

zg) which can be written in the form zgexp fg vdr — xg = :;__11 (z1 — o).

By such control function v the solution of a boundary value problem (5) is
defined by z(t) = :7‘;_1;(3:1 — 2g) + Zo. Indeed, we have

t
. e
m(t):éT—l

(z1 — zo) and z(t)v(t) =

et~ 1 (¢" = 1oy (a1 — 20)
= (z1— 20) + o (e~ L= =
el —1 (et — 1)(z1 — zo) + zo(el — 1)

_ (et = 1)(z1 — z0) + zo(el = 1) _ e'(z1 — z0) B
ET -1 (et — 1)(z1 — z0) + zo(el — 1)

et

= eT _ 1(231 - (L‘o).

Then #(t) — z(t)v(t) for a.e. t € [0,T]. It is also easily seen that z(0) = z¢
and z(T) = z;.
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