EXISTENCE OF SOLUTIONS OF BOUNDARY VALUE PROBLEMS OF DIFFERENTIAL INCLUSIONS

MICHAŁ KISIELEWICZ,* JERZY MOTYL**

We are interested in the necessary and sufficient conditions for the existence of solutions of differential inclusions $\dot{x}(t) \in F(t, x(t))$ for a.e. $t \in [0, T]$ satisfying boundary conditions $x(0) = x_0$ and $x(T) = x_1$.

1. Introduction

The existence of solutions of initial-value problems of differential inclusions can be obtained by means of properties of sets of all integrable selectors of their right-hand sides. In recent years the study of these sets has been done by many authors, e.g. (Bridgland, 1970; Castaing, 1967; Hiai and Umegaki, 1977; Kisielewicz, 1989 and Papageorgiou, 1985 and 1987). Some applications to the theory of neutral-functional differential and stochastic integral inclusions can be found in (hisielewicz, 1989 and 1992), where these sets are called subtrajectory integrals of set-valued functions. In this paper the properties of subtrajectory integrals of set-valued functions are applied to obtain the existence of solutions of boundary-value problems to differential inclusions of the form $\dot{x}(t) \in F(t, x(t))$.

We shall deal here with set-valued functions taking their values in the space Comp (\mathbb{R}^n) of all nonempty compact subsets of the n-dimensional Euclidean space \mathbb{R}^n . This space is considered as a metric space with the Hausdorff metric h defined in the usual way by the Hausdorff subdistance \overline{h} .

^{*}Department of Applied Mathematics and Computer Sciences, Higher College of Engineering, Podgórna 50, 65-246 Zielona Góra, Poland

^{**}Department of Mathematics, Higher College of Engineering, Podgórna 50, 65–246 Zielona Góra, Poland

2. Subtrajectory Integrals of Set-Valued Functions

Given σ -finite measure space (X, \mathcal{A}, σ) a set-valued function $R : X \to \operatorname{Comp}(\mathbb{R}^n)$ is said to be \mathcal{A} -measurable if $R^-(\mathbb{C}) := \{x \in X : R(x) \cap \mathbb{C} \neq \emptyset\} \in \mathcal{A}$ for every closed set $\mathbb{C} \subset \mathbb{R}^n$. Among others it is equivalent to the existence of a sequence (f_n) of \mathcal{A} - measurable functions $f_n : X \to \mathbb{R}^n$ such that $R(x) = \operatorname{cl}\{f_n(x) : n \geq 1\}$ for all $x \in X$. Denote by $\mathcal{M}(X, \mathbb{R}^n)$ the family of all \mathcal{A} - measurable set-valued functions $R : X \to \operatorname{Comp}(\mathbb{R}^n)$. For $R \in \mathcal{M}(X, \mathbb{R}^n)$ the subtrajectory integrals $\mathcal{F}(R)$ is defined by $\mathcal{F}(R) = \{f \in L(X, \mathbb{R}^n) : f(x) \in R(x) \text{ a.e.}\}$. Here and later $L(X, \mathbb{R}^n)$ denotes the Banach space $L(X, \mathcal{A}, \sigma, \mathbb{R}^n)$ of (equivalent classes of) \mathcal{A} - measurable functions $f : X \to \mathbb{R}^n$ such that the norm $|f| = \int_x |f(x)| d\mu$ is finite. We call $R \in \mathcal{M}(X, \mathbb{R}^n)$ integrable bounded if a real - valued function $X \ni x \to ||R(x)||$ with $||R(x)|| := \sup\{|r| : r \in R(x)\}$ belongs to $L(X, \mathbb{R}^n)$. It follows immediately by the Kuratowski and Ryll-Nardzewski (1965) measurable selection theorem that $\mathcal{F}(R) \neq \emptyset$ for every integrable bounded $R \in \mathcal{M}(X, \mathbb{R}^n)$.

The following results given by Hiai and Umegaki (1977) will be used in the sequel.

Proposition 1. Let $R \in \mathcal{M}(X, \mathbb{R}^n)$. If $\mathcal{F}(R)$ is nonempty, then there exists a sequence $\{f_n\}$ contained in $\mathcal{F}(R)$ such that $R(x) = cl\{f_n(x) : n \ge 1\}$ for all $x \in X$.

Proposition 2. Let $R \in \mathcal{M}(X, \mathbb{R}^n)$ be integrable bounded. Then

- (i) $\mathcal{F}(R)$ is a nonempty closed subset of $L(X, \mathbb{R}^n)$,
- (ii) $\mathcal{F}(\overline{co}R)$ is convex and weakly compact in $L(X, \mathbb{R}^n)$, where $\overline{co}R$ is defined by $(\overline{co}R) := \overline{co}R(x)$ for $x \in X$.

Let Z be a locally convex Hausdorff vector space, \mathcal{D} its nonempty subset and I a compact interval of the real line. A set--valued function $R: I \times \mathcal{D} \to \text{Comp}(\mathbb{R}^n)$ will be called measurable with respect to its first variable if $R(\cdot, z)$ is measurable for each fixed $z \in \mathcal{D}$. It is said to be uniformly integrable bounded if there is a function $m_R \in L(I, \mathbb{R}^1)$ such that $||R(t,z)|| \leq m_R(t)$ a.e. $t \in I$. We call R upper [weakly - weakly sequentially upper] semicontinuous (u.s.c.) [(w-w.s.u.s.c.)] with respect to its last variable if for every $z_0 \in \mathcal{D}$ and every sequence (z_n) of \mathcal{D} converging [weakly converging] to z_0 one has $\lim_{n\to 0} \overline{h}(R(t, z_n), R(t, z_0)) = 0$ for a.e. $t \in I$ [$\lim_{n\to\infty} \overline{h}(\int_E R(t, z_n) dt, \int_E R(t, z) dt$) = 0 for every Lebesgue measurable set $E \subset I$]. In what follows by $\mathcal{F}(R)(z)$ we shall denote a subtrajectory integrals of $R(\cdot, z)$ for fixed $z \in \mathcal{D}$ whereas $\mathcal{F}(R)$ will denote a set-valued mapping $\mathcal{D} \ni z \to \mathcal{F}(R)(z) \subset L(I, \mathbb{R}^n)$. We call $\mathcal{F}(R)$ weakly - weakly [sequentially] upper semicontinuous (w-w.u.s.c) [(w-w.s.u.s.c.)] on \mathcal{D} if for every weakly closed set $\mathbb{C} \subset L(I, \mathbb{R}^n)$, a set $\mathcal{F}(R)^-(\mathbb{C}) := \{z \in \mathcal{D} : \mathcal{F}(R)(z) \cap \mathbb{C} \neq \emptyset\}$ is weakly [sequentially weakly] closed in Z. If \mathcal{D} is weakly compact then immediately from Šmulian's theorem it follows that $\mathcal{F}(R)$ is w.-w.u.s.c on \mathcal{D} if and only if it is w.-w.s.u.s.c there.

3. The Ky Fan Fixed Point Theorem

Let Z be a locally convex Hausdorff vector space and let Z^* be its dual. Denote by $\langle z, p \rangle$ a duality pairing on $Z^* \times Z$ defined in the usual way by setting $\langle z, p \rangle := p(z)$ for all $p \in Z^*$ and $z \in Z$.

In this section, we supply Z with the weak topology $\sigma(Z, Z^*)$. Let $K \subset Z$ be a nonempty set. By $s(K, \cdot) : Z^* \to (-\infty, \infty]$ we denote the support function of K, i.e., $s(K, p) := \sup_{z \in K} \langle z, p \rangle$. It is well know that for a nonempty closed convex set $K \subset Z$ one has $K = \{z \in Z : \langle z, p \rangle \leq s(K, p) \text{ for every } p \in Z^*\}$.

Assume $K \subset Z$ and F is a set-valued map from K to Z. For every $p \in Z^*$ we can consider the function with values in $(-\infty, \infty]$ given by $K \ni z \to s(F(z), p) \in (-\infty, \infty]$.

We say that F is upper hemicontinuous (u.h.c) at $z_0 \in K$ if for every $p \in Z^*$, the function $z \to sF(z), p$ is u.s.c at z_0 . F is called upper hemicontinuous if it is u.h.c. at each $z_0 \in K$.

We have the following known result (see Aubin and Cellina, 1984, p. 80).

Proposition 3. Any upper semicontinuous map from K to Z supplied with the weak topology is upper hemicontinuous. \blacksquare

Corollary 1. Let $R: I \times \Lambda \to \text{Comp}(\mathbb{R}^n)$ have convex values, be uniformly integrable bounded, measurable with respect to its first variable and w. w.s.u.s.c with respect to the second one. If Λ is a weakly compact subset of $L(I, \mathbb{R}^n)$ then $\mathcal{F}(R)$ is upper hemicontinuous on Λ .

Indeed, similarly as in (Kisielewicz, 1989, Lemma 3.5) it can be seen that $\mathcal{F}(R)$ is w.-w.s.u.s.c on Λ which by the weak compactness of Λ implies that $\mathcal{F}(R)$ is w.-w.u.s.c. Now our result follows immediately from Proposition 3.

For a given nonempty closed and convex set $X \subset Z$ by $\mathbb{N}_x(z)$ and $\mathbb{T}_x(z)$ we denote respectively "normal" and "tangent" cones to X at $z \in Z$. They are defined by

$$\mathbb{N}_X(z) := \{ p \in Z^* : \langle z, p \rangle = \max_{y \in X} \langle y, p \rangle \}$$
(1)

and

$$\mathbf{T}_X(z) := \{ x \in Z : \langle x, p \rangle \le 0 \text{ for each } p \in \mathbb{N}_X(z) \}$$
(2)

The following fixed point theorem will be useful in this paper (see Aubin, 1979, p. 531).

Theorem (Ky - Fan). Let X be a nonempty convex weakly compact subset of Z and suppose S is an upper hemicontinuous map from X into the space $\operatorname{Conv}_{\mathbf{w}}(Z)$ of all nonempty convex weakly compact subsets of Z. If furthermore $\mathbf{S}(z) \cap [z + \mathbf{T}_X(z)] \neq \emptyset$ for every $z \in X$ then S has in X a fixed point.

Finally, we quote the following result (see Aubin and Ekeland, 1984, p.174).

Proposition 4. Let A be a linear mapping from $L(I, \mathbb{R}^n)$ into \mathbb{R}^n and assume K and M are nonempty closed and convex subsets of $L(I, \mathbb{R}^n)$ and \mathbb{R}^n , respectively. If K and M are such that $0 \in \text{Int}(A(K) - M)$ then $\mathbf{T}_{K \cap A^{-1}(M)}(x) = \mathbf{T}_K(x) \cap A^{-1}(\mathbf{T}_M(Ax))$ for every $x \in K \cap A^{-1}(M)$.

4. Existence of Solutions of Boundary Value Problems

We shall deal here with the boundary value problem

$$\begin{cases} \dot{x}(t) \in F(t, x(t)) & \text{for a.e.} \quad t \in I := [0, T] \\ x(0) = x_0, \quad x(T) \in B, \end{cases}$$
(3)

where $F: I \times \mathbb{R}^n \to \text{Comp}(\mathbb{R}^n)$, $x_0 \in \mathbb{R}^n$ and $B \subset \mathbb{R}^n$ are given. Assume that F satisfies the following conditions (H):

- (i) F is $\mathcal{L}_I \otimes B(\mathbb{R}^n)$ measurable where \mathcal{L}_I and $B(\mathbb{R}^n)$ denote Lebesgue and Borel σ - algebra of I and \mathbb{R}^n , respectively,
- (ii) F is uniformly integrable bounded.

Let us define linear mappings $\mathcal{T}_T : L(I, \mathbb{R}^n) \to \mathbb{R}^n$ and $\mathcal{T} : L(I, \mathbb{R}^n) \to \mathbb{C}(I, \mathbb{R}^n)$ by taking $\mathcal{T}_T u = \int_0^T u(t) dt$ and $\mathcal{T}(u)(t) = \int_0^t u(\tau) d\tau$ for $u \in L(I, \mathbb{R}^n)$ and $t \in I$, respectively. It is clear that for every nonempty convex and weakly compact set $K \subset L(I, \mathbb{R}^n)$ its image $\mathcal{T}_T K$ is a nonempty

compact and convex subset of \mathbb{R}^n . It is also clear that \mathcal{T}_T maps $L(I,\mathbb{R}^n)$ onto \mathbb{R}^n .

Let F be such as above and satisfies conditions (H). By $\mathcal{F}(F\Box \mathcal{T})(u)$ we shall denote subtrajectory integrals of a set-valued function $I \ni t \to F(t, x_0 + (\mathcal{T}u)(t)) \in \text{Comp}(\mathbb{R}^n)$ defined for each fixed $u \in L(I, \mathbb{R}^n)$. Immediately by the Kuratowski-Ryll-Nardzewski measurable selection theorem it follows that $\mathcal{F}(F\Box \mathcal{T})(u) \neq \emptyset$ for fixed $u \in L(I, \mathbb{R}^n)$. It is also a closed subset of $L(I, \mathbb{R}^n)$. If moreover F(t, x) is convex for $(t, x) \in I \times \mathbb{R}^n$ then $\mathcal{F}(F\Box \mathcal{T})(u)$ is also convex. By (ii) of Proposition 2 it follows that in the last case $\mathcal{F}(F\Box \mathcal{T})(u)$ is also weakly compact.

Given a nonempty convex and weakly compact set $\Lambda \subset L(I, \mathbb{R}^n)$ and $u \in \Lambda$ by $\mathcal{Z}(\Lambda, u)$ we denote the set $\bigcap_{p \in \mathbb{N}_{T_T\Lambda}(\mathcal{T}_T u)} \{x \in \mathbb{R}^n : \langle x, p \rangle \leq s(\mathcal{T}_T\Lambda, p)\}$ where $\langle \cdot, \cdot \rangle$ is an inner product of \mathbb{R}^n and $s(\mathcal{T}_T\Lambda, \cdot)$ denotes the support function of $\mathcal{T}_T\Lambda$. Finally, $\mathbb{N}_{\mathcal{T}_T\Lambda}(\mathcal{T}_T u)$ denotes as usual a normal cone to $\mathcal{T}_T\Lambda$ at $\mathcal{T}_T u \in \mathcal{T}_T\Lambda$. Now we define a set $\mathcal{C}(\Lambda, u) \subset L(I, \mathbb{R}^n)$ by taking $\mathcal{C}(\Lambda, u) := \{\nu \in L(I, \mathbb{R}^n) : \mathcal{T}_T \nu \in \mathcal{Z}(\Lambda, u)\}.$

Lemma 3. Let Λ be a nonempty convex weakly compact subset of $L(I, \mathbb{R}^n)$ and let $F : I \times \mathbb{R}^n \to \text{Comp}(\mathbb{R}^n)$ satisfy conditions (H). Then for every $u \in \Lambda$ the following conditions are equivalent:

(i) $[u + \mathbf{T}_{\Lambda}(u)] \cap \mathcal{F}(F \Box \mathcal{T})(u) \neq \emptyset$

(ii) $\mathcal{C}(\Lambda, u) \cap \mathcal{F}(F \Box T)(u) \neq \emptyset$.

Proof. Let us observe first that for $K = L(I, \mathbb{R}^n)$, $M = \mathcal{T}_T \Lambda$ and $A = \mathcal{T}_T$ the assumptions of Proposition 4 are satisfied. Then for every $u \in \Lambda$ one has

$$\mathbf{T}_{\Lambda}(u) = \mathbf{T}_{K \cap \mathcal{T}_{T}^{-1}(M)}(u) = \mathbf{T}_{K}(u) \cap \mathcal{T}_{T}^{-1}(\mathbf{T}_{M}(\mathcal{T}_{T}u)) = \mathcal{T}_{T}^{-1}(\mathbf{T}_{M}(\mathcal{T}_{T}u)).$$

Therefore

$$[u + \mathbf{T}_{\Lambda}(u)] \cap \mathcal{F}(F \Box \mathcal{T})(u) = [u + \mathcal{T}_{T}^{-1}(\mathbf{T}_{M}(\mathcal{T}_{T}u))] \cap \mathcal{F}(F \Box \mathcal{T})(u).$$

Now, for every fixed $u \in \Lambda$ we have $[u + \mathbf{T}_{\Lambda}(u)] \cap \mathcal{F}(F \Box \mathcal{T})(u) \neq \emptyset$ if and only if there exists $\nu \in \mathcal{F}(F \Box \mathcal{T})(u)$ such that $\nu - u \in \mathcal{T}_T^{-1}(\mathbf{T}_M(\mathcal{T}u))$ which is equivalent to $\mathcal{T}_T(\nu - u) \in \mathbf{T}_M(u)$. By the definition of $\mathbf{T}_M(\mathcal{T}u)$ it follows that $\mathcal{T}_T(\nu - u) \in \mathbf{T}_M(\mathcal{T}u)$ if and only if for every $p \in \mathbb{N}_M(\mathcal{T}u)$ one has $< \mathcal{T}_T(\nu - u), p > \leq 0$. But $< \mathcal{T}_T(\nu - u), p > = < \mathcal{T}_T\nu, p > - < \mathcal{T}_Tu, p >$ and $< \mathcal{T}_Tu, p > = s(M, p)$ for every $p \in \mathbb{N}_M(\mathcal{T}u)$. Therefore $\mathcal{T}_T(\nu - u) \in \mathbf{T}_M(u)$ if and only if $\langle \mathcal{T}_T \nu, p \rangle \leq s(M, p)$ for every $p \in \mathbb{N}_M(\mathcal{T}_T u)$ that is equivalent to $\mathcal{T}_T \nu \in \mathcal{Z}(\Lambda, u)$ or to $\nu \in \mathcal{T}_T^{-1}(\mathcal{Z}(\Lambda, u)) = \mathcal{C}(\Lambda, u)$.

Now, we can prove the following existence theorem.

Theorem 4. Suppose $F: I \times \mathbb{R}^n \to \operatorname{Comp}(\mathbb{R}^n)$ satisfies conditions (H), has convex values and is such that $F(t, \cdot)$ is u.s.c. for fixed $t \in I$. Then for every $x_0 \in \mathbb{R}^n$ and a nonempty set $B \subset \mathbb{R}^n$ a boundary value problem (3) has at least one solution if and only if there exists a nonempty convex and weakly compact set $\Lambda \subset T_T^{-1}(B - x_0)$ such that $C(\Lambda, u) \cap \mathcal{F}(F \square T)(u) \neq \emptyset$ for every $u \in \Lambda$.

Proof. Suppose $x \in A\mathbb{C}(I, \mathbb{R}^n)$ is a solution of (3) and put $u = \dot{x}$. We have $u \in \mathcal{F}(F \square \mathcal{T})(u)$ and $u \in \mathcal{T}_T^{-1}(B - x_0)$. Taking $\Lambda = \{u\}$ we obtain $\mathbf{T}_{\Lambda}(u) = \{0\}$. Then $u + \mathbf{T}_{\Lambda}(u) = \{u\}$ and therefore $[u + \mathbf{T}_{\Lambda}(u)] \cap \mathcal{F}(F \square \mathcal{T})(u) \neq \emptyset$. By this and Lemma 3 it follows $\mathcal{C}(\Lambda, u) \cap \mathcal{F}(F \square \mathcal{T})(u) \neq \emptyset$.

Suppose there is a nonempty convex weakly compact set $\Lambda \subset \mathcal{T}_T^{-1}(B - x_0)$ such that $\mathcal{C}(\Lambda, u) \cap \mathcal{F}(F \Box \mathcal{T})(u) \neq \emptyset$ for every $u \in \Lambda$. Put $\mathbf{S}(u) := \mathcal{F}(F \Box \mathcal{T})(u)$ for $u \in \Lambda$. By (ii) of Proposition 2, S has nonempty convex and weakly compact values. Moreover by Corollary 1, S is upper hemicontinuous on Λ and using Lemma 3 we deduce that S satisfies the assumptions of Ky Fan fixed point theorem. Therefore there is in Λ a fixed point for S. Let $u \in \Lambda$ be such fixed point. It is easy to see that $x = x_0 + \mathcal{T}u$ is a solution of the boundary value problem (3).

Corollary 2. Suppose $F: I \times \mathbb{R}^n \to \text{Comp}(\mathbb{R}^n)$ satisfies the assumptions of Theorem 4 and let $x_1 \in \mathbb{R}^n$ be given. The boundary value problem (3) with $B = \{x_1\}$ has at least one solution if and only if there exists a nonempty convex weakly compact set $\Lambda \subset T_T^{-1}(x_1 - x_0)$ such that $x_1 - x_0 \in \int_0^T F(t, x_0 + (Tu)(t))dt$ for every $u \in \Lambda$.

Indeed, for every nonempty set $\Lambda \subset \mathcal{T}_T^{-1}(x_1 - x_0)$ we have $\mathbb{N}_{\mathcal{T}_T}(\mathcal{T}u) := \{p \in \mathbb{R}^n : \langle \mathcal{T}_T u, p \rangle = \langle x_1 - x_0, p \rangle\} = \mathbb{R}^n$ for every $u \in \Lambda$ because $s(x_1 - x_0, p) = \langle x_1 - x_0, p \rangle$ and $\mathcal{T}_T u = x_1 - \dot{x}_0$. Therefore, $\mathcal{Z}(\Lambda, u) = (x_1 - x_0)$ and $\mathcal{C}(\Lambda, u) = \mathcal{T}_T^{-1}(x_1 - x_0)$ for every nonempty set $\Lambda \subset \mathcal{T}_T^{-1}(x_1 - x_0)$ and $u \in \Lambda$.

Now suppose there exists a nonempty convex weakly compact set $\Lambda \subset \mathcal{T}_T^{-1}(x_1 - x_0)$ such that $x_1 - x_0 \in \int_0^T F(t, x_0 + (\mathcal{T}u)(t))dt$ for every $u \in \Lambda$. Then, for every $u \in \Lambda$ there exists $\nu \in \mathcal{F}(F \Box \mathcal{T})(u)$ such that $\int_0^T \nu(t)dt = x_1 - x_0$, i.e. $\nu \in \mathcal{T}_T^{-1}(x_1 - x_0) = \mathcal{C}(\Lambda, u)$. Thus $\mathcal{C}(\Lambda, u) \cap \mathcal{F}(F \Box \mathcal{T})(u) \neq \emptyset$ for every $u \in \Lambda$ and the existence of solutions of (3) follows immediately from Theorem 4. If (3) has at least one solution x then taking $\Lambda = \{x\}$ we have $\dot{x} \in \mathcal{F}(F \Box \mathcal{T})(\dot{x})$ and $\int_0^T \dot{x}(t) dt = x_1 - x_0$. Thus for $u \in \Lambda$ one has $x_1 - x_0 \in \int_0^T F(t, x_0 + (\mathcal{T}u)(t)) dt$.

Corollary 3. Let U be a nonempty subset of \mathbb{R}^m and suppose $f : I \times \mathbb{R}^n \times U \to \mathbb{R}^n$ satisfies the Carathéodory conditions and let $x(\cdot, x_0, u)$ be a solution of an initial value problem

$$\begin{cases} \dot{x}(t) = f(t, x(t), u(t)) \text{ for a.e. } t \in [0, T] \\ x(0) = x_0 \end{cases}$$

for fixed measurable function $u: I \to U$. Then for every measurable function $\tilde{u}: I \to U$ such that $\int_0^T f(t, x(t, x_0, \tilde{u}), \tilde{u}(t)) dt = x_1 - x_0$ the boundary value problem

$$\begin{cases} \dot{x}(t) = f(t, x(t), \tilde{u}(t)) \text{ for a.e. } t \in [0, T] \\ x(0) = x_0, \ x(T) = x_1 \end{cases}$$

has at least one solution $x(\cdot, x_0, \tilde{u})$.

Example 1. Given real constant matrices A and B of dimensions $n \times n$ and $n \times m$, respectively and $x_0, x_1 \in \mathbb{R}^n$ find a control function $u \in L([0,T], \mathbb{R}^m)$ to a boundary value problem

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t), \text{ for a.e. } t \in [0,T] \\ x(0) = x_0, x(T) = x_1. \end{cases}$$

According to Corollary 3 a desired control function $u \in L([0,T]), \mathbb{R}^m)$ must satisfy an integral equation

$$\int_0^T [Ae^{-At}x_0 + Ae^{-At}\int_0^t e^{-As}Bu(s)ds + Bu(t)]dt = x_1 - x_0$$

which is equivalent to $\int_0^T e^{-At} Bu(t) dt = e^{-AT} x_1 - x_0$. Thus a desired control function $u \in L([0,T], \mathbb{R}^m)$ must be such that $\Phi(\cdot)Bu(\cdot) \in \mathcal{T}_T^{-1}(e^{-AT} x_1 - x_0)$, where Φ is a fundamental matrix of $\dot{x} = Ax$. In this particular case we can take $u = \sum_{i=1}^k \mathbb{C}_i \chi_i$ with $\mathbb{C}_i \in \mathbb{R}^m$; i = 1, 2, ..., k satisfying $\sum_{i=1}^k \Delta_i B \mathbb{C}_i = x_0 - e^{-AT} x_1$, where χ_i denotes the characteristic function of $I_i = [t_{i-1}, t_i]$ with $0 = t_0 < t_1 < ... < t_{k-1} < t_k = T$ and $\Delta_i = \Phi(t_i) - \Phi(t_{i-1})$ for i = 1, 2, ..., k.

Now, immediately from Theorem 4 the following existence theorem is obtained.

Theorem 5. Let $x_0 \in \mathbb{R}^n$ and a nonempty subset B of \mathbb{R}^n be given. Assume F satisfies conditions (H), has convex values and is such that $F(t, \cdot)$ is u.s.c. for fixed $t \in I$. The boundary value problem (3) has at least one solution if and only if there are a nonempty convex weakly compact set $\Lambda \subset T_T^{-1}(B-x_0)$ and a family $\{K_u\}_{u \in \Lambda}$ of measurable set-valued functions $K_u : [0,T] \to Cl(\mathbb{R}^n)$ such that

- (i) $\int_0^T K_u(t) dt \subset \mathcal{Z}(\Lambda, u)$ for $u \in \Lambda$
- (*ii*) $F(t, x_0 + (\mathcal{T}u)(t)) \cap K_u(t) \neq \emptyset$

for each fixed $u \in \Lambda$ and a.e. $t \in [0,T]$.

Proof. Let $\Phi_u(t) := F(t, x_0 + \mathcal{T}u)(t)) \cap K_u(t)$ for fixed $u \in \Lambda$ and a.e. $t \in [0,T]$. It is clear that for every fixed $u \in \Lambda$, Φ_u has an integrable selector. Suppose $w \in L([0,T], \mathbb{R}^n)$ is such that $w(t) \in \Phi_u(t)$ for a.e. $t \in [0,T]$ and fixed $u \in \Lambda$. Then $w \in \mathcal{F}(F \square \mathcal{T})(u)$ and $\int_0^T w dt \in \mathcal{Z}(\Lambda, u)$ for fixed $u \in \Lambda$ or equivalently $\mathcal{F}(F \square \mathcal{T})(u) \cap \mathcal{C}(\Lambda, u) \neq \emptyset$ for each fixed $u \in \Lambda$. Now our result follows immediately from Theorem 4.

Corollary 4. Let $x_0 \in \mathbb{R}^n$ and a nonempty subset B of \mathbb{R}^n be given and suppose F satisfies conditions (H), has convex values and is such that $F(t, \cdot)$ is u.s.c. for fixed $t \in I$. The boundary value problem (3) has at least one solution if and only if there exists a nonempty convex weakly compact set $\Lambda \subset T_T^{-1}(B-x_0)$ such that $\frac{e^T-1}{e^t}F(t, x_0 + (Tu)(t)) \cap \mathcal{Z}(\Lambda, u) \neq \emptyset$ for $u \in \Lambda$ and a.e. $t \in [0,T]$.

The result follows immediately from Theorem 5 with $K_u(t) := \frac{e^t}{e^T - 1} \mathcal{Z}$ (Λ, u) for $t \in [0, T]$ and fixed $u \in \Lambda$.

Example 2. Given real numbers x_0 and x_1 find a control function $\nu \in L([0,T], \mathbb{R}^n)$ to a boundary value problem

$$\begin{cases} \dot{x} = x + \nu \text{ for a.e. } t \in [0, T] \\ x(0) = x_0, \ x(T) = x_1 \end{cases}$$
(4)

According to Corollary 4 a control function $\nu \in L([0,T], \mathbb{R}^n)$ is such that a function $u_{\nu} := \dot{x}_{\nu}$ with $x_{\nu}(t) = e^t(x_0 + \int_0^t e^{-\tau}\nu(\tau)dt)$ satisfies conditions: $\int_0^T u_{\nu}(t)dt = x_1 - x_0$ and $x_0 + \int_0^t u_{\nu}(\tau)dt + \nu(t) = \frac{e^t}{e^T - 1}(x_1 - x_0)$ for $t \in [0,T]$. In such case the assumptions of Corollary 4 will be satisfied with $\Lambda = \{u_{\nu}\}$. Denoting $w(t) = \int_0^t e^{-\tau}\nu(\tau)d\tau$ we can define a desired control function ν by the formula $\nu(t) = e^t \dot{w}(t)$ for a.e. $t \in [0,T]$ where w is a solution to the initial value problem:

$$\begin{cases} \dot{w} + w = \frac{x_1 - x_0}{e^T - 1} \\ w(0) = 0. \end{cases}$$

It is easy to see that $w(t) = \frac{e^t - 1}{e^t} \left(\frac{x_1 - x_0}{e^T - 1} - x_0 \right)$ and then $\nu(t) = \frac{x_1 - x_0}{e^T - 1} - x_0$. Finally, we can easily check that a function $x(t) = x_0 + (e^t - 1)\frac{x_1 - x_0}{e^T - 1}$ is a solution of a boundary value problem (4) with $\nu = \frac{x_1 - x_0}{e^T - 1} - x_0$.

Example 3. Given real numbers x_0 and x_1 find a control function $\nu \in L([0,T], \mathbb{R}^n)$ to a boundary value problem

$$\begin{cases} \dot{x} = x\nu \text{ for a.e. } t \in [0,T] \\ x(0) = x_0, \quad x(T) = x_1 \end{cases}$$
(5)

Similarly as above, we can take $\Lambda = \{u_{\nu}\}$ with $u_{\nu} = \dot{x}_{\nu}$ where $x_{\nu}(t) = x_0 \exp \int_0^t \nu d\tau$ and $\nu \in L([0,T], \mathbb{R}^1)$ is such that $\int_0^T u_{\nu} d\tau = x_1 - x_0$ and $(x_0 + \int_0^t u_{\nu} d\tau)\nu(t) = \frac{e^t}{e^T - 1}(x_1 - x_0)$ for $t \in [0,T]$. Hence it follows that the above function ν satisfies a functional equation $d/dt \left(x_0 \exp \int_0^t \nu d\tau\right) = \frac{e^t}{e^T - 1}(x_1 - x_0)$ which can be written in the form $x_0 \exp \int_0^t \nu d\tau - x_0 = \frac{e^t - 1}{e^T - 1}(x_1 - x_0)$. By such control function ν the solution of a boundary value problem (5) is defined by $x(t) = \frac{e^t - 1}{e^T - 1}(x_1 - x_0) + x_0$. Indeed, we have

$$\dot{x}(t) = \frac{e^t}{e^T - 1} (x_1 - x_0) \text{ and } x(t)\nu(t) =$$

$$= \left[\frac{e^t - 1}{e^T - 1} (x_1 - x_0) + x_0\right] \left[\frac{(e^T - 1)x_0 \frac{e^t}{(e^T - 1)x_0} (x_1 - x_0)}{(e^t - 1)(x_1 - x_0) + x_0(e^T - 1)}\right] =$$

$$= \frac{(e^t - 1)(x_1 - x_0) + x_0(e^T - 1)}{E^T - 1} \cdot \frac{e^t(x_1 - x_0)}{(e^t - 1)(x_1 - x_0) + x_0(e^T - 1)} =$$

$$= \frac{e^t}{e^T - 1} (x_1 - x_0).$$

Then $\dot{x}(t) - x(t)\nu(t)$ for a.e. $t \in [0,T]$. It is also easily seen that $x(0) = x_0$ and $x(T) = x_1$.

References

Aubin J.P. (1979): Mathematical Methods of Game and Economic Theory.-Amsterdam, New York, Oxford: North-Holland Publ. Comp.

Aubin J.P. and Cellina A. (1984): Differential Inclusions.- New-York, Tokyo, Berlin: Springer-Verlag; Heidelberg.

- Aubin J.P. and Ekeland I. (1984): Applied Nonlinear Analysis.- New York: Wiley Interscience.
- Bridgland I.R., T.F. (1970): Trajectory integrals of set-valued functions.- Pac. J. Math v.33, pp.43-67.
- Castaing C. (1967): Sur les multi-applications measurable.- Rev. Fr. Inf. Recher Oper. v.1, pp.91-126.
- Hiai F. and Umegaki H. (1977): Integrals, conditional expections and martingals of multifunctions.- J. Multivariate Anal., v.7 pp.149-182.
- Kisielewicz M. (1989): Subtrajectory integrals of set-valued functions and neutral functional-differential inclusions.- Funk. Ekvac. v.32, pp.163-189.
- Kisielewicz M. (1991): Subtrajectory integrals of set-valued functions and stochastic integral inclusions.-J. Math, Anal. Appl. (submitted to print).
- Papageorgiu N.S. (1985): On the theory of Banach space valued multifunctions. 1 Integration and conditional expection.- J. Multivariate Anal., v.17, pp.185-206.
- Papageorgiu N.S. (1987): On measurable multifunctions with applications to random multivalued equations. Math. Japonica v.32, pp.437–464.
- Kuratowski K. and Ryll-Nardzewski C. (1965): A general theorem on selectors.- Bull. Polon. Acad. Sci., v.13, pp.397-403.