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ITERATIVE LEARNING CONTROL — AN OVERVIEW
OF RECENT ALGORITHMS

Davip H. OWENS*, NoTKER AMANN*, Eric ROGERS**

Recent results in an important area of Iterative Learning Control are reviewed.
Iterative Learning Control is a new control technique for repetitive systems
where the controller learns from previous experience. The paper includes a short
survey of work in this area and shows new results that extend previous work. All
control algorithms use feedback control instead of the feedforward control often
used in Iterative Learning Control. Several important aspects as robustness of
learning, convergence conditions, convergence types and limitations due to plant
properties are addressed.

1. Introduction

Iterative Learning Control is a new technique to control systems that constantly repeat
the same task. One economically important and often studied example is that of robot
manipulators (Arimoto, 1990). These execute one task, e.g. following a geometrical
trajectory, repetitively. Using normal control, they exhibit the same performance
(performance designates the tracking precision of the desired output signal) at each
repetition/trial. Motivated by human learning, the basic idea of Iterative Learning
Control is to use information from previous executions of a trial in order to improve
performance from trial to trial (Arimoto et al., 1984). Mathematically expressed, this
means that the control input u41(t) at the (k+1)-th trial to the plant is given as a
function of previous inputs and errors (Arimoto, 1990) "

upy1 = flug, ex) (1)

where e; denotes the error at trial k.

The intuitive notion of “improving performance progressively” can be refined to
a convergence condition on the error, i.e. (in some norm topology)

Jim [|ex ()] = 0 @)

This is a stability problem on a 2D-product space, typically of the form IN x L3[0, T7.
This places the analysis of Iterative Learning Control systems firmly outside of the
traditional realm of control theory although it is illustrated below how “classical”
control theory is a valuable tool in the area. The rigourous analysis of the behaviour

of the combined learning and dynamical system is only now emerging (Rogers and
Owens, 1992).
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Previous work can be divided into two classes. In the larger class, non-linear
systems and particularly the specific non-linear class of mechanical systems, as found
in robotics, are studied. The methods considered there normally make use of special
characteristics of mechanical systems. This paper falls into the other class, where
linear systems are considered in their generality. This enables the use of well-known
analysis and design methods from “classical” control theory. For example, frequency
domain methods (Owens and Neuffer, 1992; Padieu and Su, 1990) allow the derivation
of convergence conditions as norm bounds on the operator that relates the error from
trial k to trial k+1 (the so-called “error transition operator”).

In contrast to other papers in this area, this paper studies Iterative Learning
Control schemes based on a learning law that takes the error of the current trial into
account, as in the functional algorithm

up41 = ug + flexy1) (3)

as opposed to the normally used scheme (1) which includes the previous trial error
only. A discussion of algorithms of the form (1) can be found in Moore (1993). The
use of the previous error in the control law corresponds to “feedforward” (trial to
trial) control while the algorithm (3) uses a “feedback” (current trial) control. The
use of feedback control enables convergence for a wider class of systems (Owens and
Neuffer, 1992) and has besides that the usual advantages of feedback control, e.g.
stabilisation of the closed loop and the potential for increased robustness.

The outline of the next sections is as follows: in Section 2 high gain controllers are
studied, connecting learning control to adaptive stabilisation (Ilchmann, 1993; Owens
et al., 1987). Section 3 takes a look at Iterative Learning Control as a form of 2D-
systems theory. In Section 4, frequency domain convergence conditions are reviewed
and H.o-optimal Iterative Learning Control is introduced. In the last section, an
Iterative Learning Control algorithm that is optimal with regard to the Ly-norm is
shown. The comparison of the algorithms addresses the issues of weak versus strong
convergence, limitations of Iterative Learning Control due to plant properties and the
form of the limit error.

2. High Gain Feedback

In this section, Iterative Learning Control for plants subject to severe uncertainty is
studied. This approach is a generalisation of the concepts of universal adaptive sta-
bilisation (Byrnes and Willems, 1984; Ilchmann, 1992) to Iterative Learning Control
and makes use of constant, high gain controllers. It is assumed that the plant, given
in state-space as

:i:k(t) = A:L‘k(t)+B'uk(t) .
ek(t) =7r—- ka(t) (4)

where zi(t) € R™,ui(t) € R™,ex(t) € R™,r € R™ and 0 < t < T < oo, is
unknown, but satisfies the following properties:

e it is minimum phase
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e CB is square, non-singular and has spectrum in the open right half complex
plane.

The learning law considered has the form:

wpa(t) = ue(t) + Kerea (1) (5)

Under the above conditions and if the scalar, positive gain K is sufficiently large, it
can be shown that the error sequence has the following properties:

1. The error satisfies a slow change condition:

o0
> llew+s — exllipgo.m < 0 (6)
k=0

2. It is a monotonically non-increasing sequence:
2 2
lex+1llZmo,ry < llekllzppom (7

3. ex41 — ex converges in norm to zero as k — oo in Ly(0,00) N Lo (0, 00).

4. The error sequence {ex} is uniformly bounded and it converges to zero in the
weak topology on L7*[0,T], i.e.

lim (f,e) =0 Vf € LF[0,T] (®)

The proofs are given by Owens (1992).

The difficulty of this scheme for practical applications is to find a large enough
gain (which depends upon the system in a complex manner). This problem was eased
through a recent extension where the control gains K are adaptively changed (Owens,
1993). At each trial, a gain Ky, is employed. This gain is adapted according to

Kiy1 = Ki + |lek+1 — ek“%;n[o,T] %)

Under the same conditions as above, it holds additionally to the above properties
of {ex} that the gain sequence {Kj4+1} converges to a limit gain Ko if the error
sequence {ex} is bounded. Sufficient conditions for boundedness of the error sequence
is either that the system is SISO and positive real. Or, boundedness can be guaranteed
if the initial choice K; is sufficiently large. In these cases, it is easy to show that
the learning operator has norm of less than one, connecting this analysis to the one
of Section 4. Figure 1 shows a simulation of an Iterative Learning Control system
using the adaptive gain update. The (positive real) plant in the Laplace-domain is
9(s) = (3s + 1)/(s + 1)?, while the reference signal is r(t) =1 — (1 + 2t)e"2*. The
initial guess for K is K3 =0 and T is 6 time units.

The adaptation of Kj1 parallels the basic control k = y? introduced by Byrnes
and Willems (1984) in adaptive stabilisation theory. One advantage of this method
is that the plant may be unknown as long as it belongs to the above defined class.
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Fig. 1. ILC system using adaptive high gain feedback.

It is however disappointing that only weak convergence is achieved. This means that
all Fourier-coefficients of the limit error go to zero, but it could still be the case that
the error does not go pointwise to zero as k — oo.

3. 2D Systems Theory for Iterative Learning Control

Iterative Learning Control under the aspect of 2D-systems theory stresses the repet-
itive action of the system. The problem of convergence in the k-direction is in this
light a stability problem. In (Edwards and Owens, 1982; Rogers and Owens, 1992),
a stability theory for repetitive systems is derived. In the following, a general Itera-
tive Learning Control system is transformed into a “linear repetitive system” so that
the stability theory of Edwards and Owens (1982) and Rogers and Owens (1992) is
applicable. ’

The learning law of the Iterative Learning Control system considered here uses
information from several previous trials, thus making up an n-th order Iterative
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Learning Control system. It also incorporates forgetting factors o; so that the inputs
of previous trials are weighted. The learning law is thus:

n n
uppr(t) = Y ciwrg1-i(t) + Y Kiler1-i(t) + Koler+1](2) (10)
i=1 i=1
The inclusion of several previous inputs and errors brings as advantage that the
algorithm is more robust against disturbances that occur only in single trials. To
convert this into the general form of a linear repetitive process, the error is considered
as the “pass profile” and the reference as disturbance. The system equation for
ex+1(t) follows from (10) and the plant equation ez41(t) = r(t) — Glur+1](t) as

ersr = (I+GKo)™! {i(a,-l — GEKi)erp1-i + (1 = zn:ai)r} (11)

Defining a supervector ég41(t) consisting of the errors appearing in (11) is comparable
to introducing the (global) state of the 2D-system. The error supervector is given by

ek+1-n(t)

éx(t) = . (12)
ek_l(t)

ek(t)
The notation is further streamlined by introducing the compact notation for the
operators E;[](t) as Eo = (I + GKo)™! and E; = ;I — GK; for i=1,...,n. This
yields the final form of the system:

éxp1 = Ly ép + by (13)
with
[ o 1 0
0 0
L= : : P (14)
0 0 0 1
| BoEn EoEny EoEnz -+ EoB
and
[ 0
0
bi(t) = : r(t) (15) .
0
1=

This is a linear repetitive process with operator Ly acting on the state (the error
supervector) éx+1 and adisturbance b(t) that is the same for all trials k. The stability



430 D. H. Owens, N. Amann and E. Rogers

theory from (Edwards and Owens, 1982; Rogers and Owens, 1992) shows that this
system is asymptotically stable (in a precisely defined sense) if and only if the spectral
radius of Lz is p(Lr) < 1. The astonishing result for a finite trial length 7' < oo is
that the spectral radius p(Lr) is given by the maximal eigenvalue of Dy,

p(Lr) = maxXi(Dr,) (16)

where Dyp.,. is the direct feedthrough matrix of the state space realization of the
system Lp. If the plant is strictly proper and the controllers are proper, the matrix
Dy, is independent of the plant and controllers and is given by

0 1 0 e 00
0 0
Dp.=| : S (17)
0 0 0 |
L @n Qp-_1 Qp-p -+ Q1 |

and ); are the roots of its characteristic polynomial
AP — oA - —apiid =, =0 (18)
For example, for a first order system (n = 1), this requires that the solution of
A—a=0 (19)

has modulus less than unity, i.e. || < 1 is a necessary and sufficient condition for
(asymptotic) stability along the k-axis.

This result supports the specialised result of Arimoto (1984) for his original
learning law. He used there an improper controller K and showed that the resulting
learning system converges if the controller gain is chosen such that a specific term has
norm less than unity. As it turns out, his condition is exactly equal to the condition
on the spectral radius as given above.

The counter-intuitive result is that stability is largely independent of the plant
and the controllers. This is a direct result of the assumption of a finite trial end-time
T because on a finite time interval, a linear system can only produce a bounded
output, even if it is unstable. In the stability notion considered here these unstable
outputs are still “acceptable”. The problem with this result is thus that even if
{ex(t)} is guaranteed to converge to a limit ec(t), this terminal error profile might
be unstable and/or it might be worse than e;(t), i.e. that the learning did not result in
an improvement of the error. For an acceptable ey (t), additional conditions on Ej,
taking the plant and the learning structure into account, have to be satisfied. These
additional objectives lead to similar conditions on the norm of the learning operator
as the ones reviewed in Section 4.

Further analysis (omitted here for brevity) shows however that there is 4 trade-
off between the magnitude of the limit error e (t) and the rate of convergence, i.e.
the ratio [lex+1 — eco||/||éx — €co|]. Depending on the relaxation factors «;, there is
either a fast convergence rate to a large terminal error or slow convergence to a small
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limit error. Specifically, if max(};) is close to unity, a small e () can be expected
and if max(};) is close to zero, fast convergence is enforced with a large terminal
error. Only if b(¢) = 0 and thus only if Z?=1 a; = 1 can a terminal error of zero
be achieved. ‘It is easy to show that in this case A = 1 is a root of (18). Therefore,
the spectral radius of Ly can at best be p(L7) = 1. The situation is reminiscent of
classical control where the inclusion of an integrator into the controller, which is on
the border of stability, results in a zero error for constant disturbances.

Addressing algorithm performance is another step that still largely remains to
be done. One possible methodology is suggested in the next section for a simpler
learning algorithm.

4. H_-Optimal ILC

The desire to improve algorithm performance and particularly the convergence rate
was addressed through the use of Hoo-optimal control. As is known from (Padieu and
Su, 1990; Owens and Neuffer, 1992), the convergence condition in the frequency do-
main for a learning system on [0, 00) is that the error transition operator L(s) which
relates the error in one trial to the error of the next trials and which is defined by

ex+1(s) = L(s)ex(s) (20)

has Hoo-norm less than or equal to one. It is a sufficient condition on finite time inter-
vals. Furthermore, if it has Hoo-norm v with v < 1, the learning rate is exponential
and the following estimate for the error norm holds point-wise:

lex+1(jw)| = 74" |eo(jw) (21)

In order to achieve a fast reduction of the error norm, it is thus sufficient to have
a learning operator with a small Ho-norm 7y. The strategy for the design of iter-
ative learning controllers is then to construct learning controllers K(s) such that
[IL(s)|loc = 7 is minimised. For a learning control law of the form

up+1(8) = uk(s) + K(s)ex+1(s) (22)

the error transition operator L(s) is equal to the sensitivity matrix S(s) = (I +
G(s)K(s))~!. This simple form allows the use of standard algorithms for the design of
the Ho.-optimal controller (Doyle et al., 1989). To satisfy regularity conditions of the
design algorithm, a mixed sensitivity problem of the form {|.S, K.S||, is sensible to use
because the inclusion of the term K.S can be justified by the goal to achieve stability
robustness of the closed loop with regard to the time axis and additive perturbations
to the plant. A frequency dependent weight was included to shape the sensitivity
function. In (Owens and Rogers, 1992), this idea is introduced for repetitive systems
and the relationship of H,-minimised controllers to high gain feedback is discussed.

A practically important question is the necessary shape for the weight function
in the Ho,-optimisation problem. Taking the norm of (20) suggests that the maximal
singular value &(L(jw)) should be as small as possible for a frequency range as large
as possible to achieve a fast reduction of the error. This objective can be refined as
explained below.
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In order to reduce the error, the weight should be chosen such that the learning
operator has small maximal singular values especially at the frequencies where the
first errors have large magnitude. The first error eo(t) is for the particular choice of
u(t) = 0 equal to the reference r(t). In order to satisfy invertibility conditions, the
reference signal is usually chosen as the output of a strictly proper system. It has

then large magnitude for small frequencies and is above a certain frequency decreasing
with at least 20 dB/decade.

The H-optimisation approach, as becomes evident even in the SISO case, can
only be successful for a restricted class of systems. It is well-known that for non-
minimum phase plants and plants of relative degree greater than one the sensitivity
function has always peaks of 5(S(jw)) > 1 (Maciejowski, 1989). The studies under-
taken showed however that even in these cases the use of iterative learning control can
be of practical advantage. This is because even if the error e; in the limit ¥ — oo
may become infinite, it can decrease substantially during the first few trials.

The error transition operator can normally through the inclusion of weighting
functions in the design criterion be forced to have an amplification of much less
than one for small frequencies. If the region where #(S(jw)) > 1 can be pushed
to high enough frequencies (this depends on the plant structure, e.g. the location of
non-minimum phase zeros), then the application of Iterative Learning Control will
reduce |eg(jw)| = |r(jw)| and the next few errors as well. Only after a number
of trials |ex(jw)| will be noticeably large at the frequencies where it is amplified
and small everywhere else. This is a kind of “practical convergence” where during a
limited number of trials |ex (jw)| decreases and only then does the expected divergence
appear. The algorithm can be terminated at that point with small tracking error.

The conclusions of these considerations is that Iterative Learning Control in the
described scenario can be used until the error norm is below a desired tolerance ¢ or
until it increases. As a guideline, it is suggested that the learning controller is designed
such that it has a large bandwidth, a small gain especially at low frequencies and no
ar only a small peak of &(S) > 1. These are essentially the same “rules of thumb”
for the shape of (S) as in classical controller design.

Figure 2 shows a simulation of an Iterative Learning Control system illustrating
“practical convergence”. Up to the 15-th trial, Iterative Learning Control results in
an error reduction and only afterwards increases the error again. If learning is stopped
after the 15-th trial, its use has resulted in a decrease of max|ex(t)| from k =1 to
k =15 of approx. 1/10. ,

Another possibility of optimised controller design for non-minimum phase plants
is to proceed as suggested above, i.e. to design a controller K such that [1S]]oo 1s
minimised. This controller is then used, but the learning law is changed to

Upy1 = aug + Kegyq (23)

The factor « is chosen such that ||S|jc = 1/a. Because the error transition operator
is proportional to a (see Section 3), this achieves that the H.,-condition for L(s)
is just satisfied. The disadvantage of this method is that the limit error is no longer
zero, as discussed in Section 3.
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Fig. 2. ILC system showing “practical convergence” (up to the 15th iteration).
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5. Norm-Optimal ILC

The newest algorithm for Iterative Learning Control developed by the authors is
Norm-Optimal Iterative Learning Control. This algorithm is given in an abstract
Hilbert space setting. It uses a “classical” linear quadratic optimality criterion in
order to achieve rapid convergence. The introduction of a performance criterion sim-
plifies the two-dimensional stability problem of Iterative Learning Control because the
integral criterion ‘averages out’ the time-dimension and reduces the 2D-convergence
problem to the simpler question of convergence of a one-dimensional, scalar sequence.
A strictly non-increasing error sequence is achieved through a well-conceived choice of
the performance criterion. The algorithm is as follows: at each iteration, the change
in input ug4+1 — ug is computed as to minimise the cost criterion Jx4+1 with

Tet1 = llersal® + Ajursr — wil)? (24)

where the norm ||-||> might be for continuous systems the Ly-norm, i.e. the integral of
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the squared signal in the interval [0, 7], and X is a positive weight. This approach to
generating the control increment aims to reduce the error at each trial whilst bounding
the change in the control input. From the formulation of (24) follows immediately
that

llers1ll? < Jega < llexll? (25)

The monotonic ordering shows that this algorithm really is a descent algorithm. The
right inequality is the consequence of optimality: the optimal value of Jk+1 is less
than all non-optimal values and thus less than the value for the input Up+1 = Ug.
For this choice of input, the error eg41 equals er. The left inequality follows because
norms are always non-negative.

The algorithm is conceptually related to the Levenberg-Marquardt algorithm
(Marquardt, 1963) for the minimization of non-linear functionals. Its properties are
by now well-known and promise good results for Iterative Learning Control. This
algorithm can be seen as a weighted combination of Newton’s method and a steepest
descent method. The factor A trades off between these two: as A — 0, it approaches
a pure Newton’s method and for A — oo, it goes into a pure steepest descent method.

Using methods from functional analysis, it can be shown that

1) The algorithm converges in the sense that

lim J}c =Jdoo = lim ||ek||2 (26)
k—o0 k—ro00
2) The change in input converges in norm to zero:
lim ||Jug41 —ug]| =0 (27)
k—o0
3) The error converges weakly to zero in the range of G-
{er} —0 (28)
4) If either r € range(G) or range(G) is dense then the error converges in norm
to zero:
{ex}—0 (29)

The proofs are omitted and may be reviewed in (Amann et al., 1995).

The minimization problem (24) requires only standard methods for its solution
(Kwakernaak and Sivan, 1972; Anderson and Moore, 1989). The optimal solution is
in abstract form given as

Uk41 = Uk + G*Ck+1 (30)

where G* is the adjoint operator of the plant. This formulation however requires
non-causal operations because the adjoint operator is feeding back future errors. It
can however be recast into a causal algorithm under the assumption of full state
knowledge as a consequence of the causality structure of Tterative Learning Control.
In Iterative Learning Control, the reference and the previous input are known over
the whole time interval before each trial. For the causal formulation, G*eg, is given
as state-feedback with the well-known, time-dependent Riccati gain matrix K (t) and
an additional predictive or feedforward term &g41(t) which is computed as solution
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of a time-reversed differential equation before each trial. The causal algorithm is then
for a continuous plant (A4, B,C) as follows

wepr(t) = w(t) = 1B [K(t) whea(t) = Eea (1)

K(t) = ~ATK(@) - KA+ KOBB K@) - €7C, 0<t<T, K(T)=0

T
@) = - (4-BE Q) €)= 0770 + KOB (D), o) =0

There are various other aspects of this algorithm which are currently being studied.
A rather important one is that the rate of reduction of the error can be arbitrar-
ily changed by the factor A in (24). The more the change in input is weighted in
comparison to the error, the slower the rate of reduction of the error. This can also
be observed in simulations. Also, the extension to MIMO systems is straightforward
and requires merely the inclusion of weight-matrices into the norms in (24). Other
aspects are how to improve robustness with respect to uncertainty of the plant, e.g. by
including a learning observer to make all states available. Using different norms can
positively affect the numerical conditioning and convergence behaviour, e.g. weighting
the error at t = T was found to be advantageous. The behaviour of non-minimum
phase plants in this algorithm was studied in (Amann and Owens, 1994). Because
the algorithm is given in abstract form, it can as well be applied to discrete-time
systems. As last point, the question of whether and how geometrical convergence can
be achieved is currently being investigated.

Figure 3 shows a simulation of Iterative Learning Control for the plant g(s) =
(s +0.5)/(s+1)? and the same reference r(t) asin Fig. 1. The error was ten times
higher weighted as the input in (24). Full plant and state knowledge was assumed.
The good convergence behaviour of this algorithm is evident.

6. Conclusions

The paper presented the current state of research and gave an overview of the ad-
vantages and drawbacks of current and proposed learning algorithms. The different
methods differed, besides others, in the available knowledge about the plant (the ro-
bustness regarding uncertainty about the plant) and the kind of convergence achieved.
The analysis for a finite trial duration showed the importance of the studied stabil-
ity /convergence notion and resulting from that, of the inclusion of the terminal er-
ror in the analysis. It showed also that there is an unresolvable trade-off between
a zero-terminal error and the speed of how quick (any) terminal error is reached.
This points to other (well-known) problems of Iterative Learning Control for “dif-
ficult” plants. The largest difficulties are posed by non-minimum phase plants and
plants with a high relative degree. One possibility for these systems, suggested e.g.
in (Padieu and Su, 1990), is to use a prefilter for the input that enables convergence
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Fig. 3. Simulation of Norm-Optimal Iterative Learning Control for the plant
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in norm but leads to a non-zero terminal error. Another method was proposed here.
It was shown that Iterative Learning Control can be of use for a limited number of
trials even for systems that violate convergence conditions (applying per definition to
k — 00).

In the last section, Norm-Optimal Iterative Learning Control was introduced.

This algorithm makes good use of the causality structure of Iterative Learning Con-
trol and achieves in the limit an error that is minimal in a least-squares sense. It
allows good control over the rate of convergence with design parameters but needs
the assumption of state-feedback.
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