Appl. Math. and Comp. Sci., 1995, vol.5, No.3, 561-571

PROPERTIES OF MODEL REDUCTION TECHNIQUES

BASED ON THE RETENTION OF FIRST- AND
SECOND-ORDER INFORMATION

Wiestaw KRAJEWSKI*, ANnToNnio LEPSCHY**, UMBERTO VIARO**

In the recent literature on model simplification considerable interest has been
focused on the techniques leading to reduced models that match a suitable
number of both first-order and second-order information indices. By limiting
attention to the information supplied by the Markov parameters and the entries
of the impulse-response Gramian, respectively, the paper considers three main
approaches. The related algorithms are briefly presented and discussed. Some
examples concerning both SISO and MIMO systems illustrate the procedures
and compare their performance with that of alternative reduction techniques.

1. Introduction

The problem of model simplification is an important topic in linear system theory and
has attracted considerable attention over the past decades. Many methods have been
developed to deal with this problem. Among the methods considered earlier on, the
most popular and important ones were the aggregation and the Padé techniques (Aoki,
1968; Bultheel and Van Barel, 1986; Davison, 1966). Later on, methods based on the
minimization of the L norm of the approximation error were suggested (Wilson,
1970; 1974). In the 1980s, techniques related to the minimization of the Hankel norm
(Glover, 1984) and to the truncation of balanced realizations (Moore, 1981) were
extensively studied.

In the recent literature, remarkable interest has been devoted to the construction
of reduced models that retain a selected set of both first- and second-order information
indices of the given original system (Agathoklis and Sreeram, 1990; Anderson and
Skelton, 1988; Krajewski et al., 1994a; Yousuff et al., 1985). In the following, we
are concerned with the properties of these methods and with the performance of the
corresponding reduced-order models.

The first-order information indices are usually provided by the so- called Markov
parameters. In the case of continuous-time systems, they correspond to the initial
values (t = 0) of the impulse response and its derivatives, which in turn coincide with
the coefficients of the asymptotic series expansion of the transfer function (s = 00).
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Alternatively, one may consider the coefficients of its MacLaurin expansion (s = 0),
which are related to the time moments of the impulse response. Expansions at dif-
ferent points can also be taken into account.

The second-order information is usually provided by the entries of the impulse-
response Gramian. Alternatively, the so-called system Gram matrix can be used.
In the SISO case, the essential second-order information is supplied by the diagonal
entries of such matrices because any other entry can be obtained from a diagonal entry
and from a suitable number of first-order information indices (Markov parameters or
time moments, respectively) (Nagaoka, 1987). In the MIMO case, the situation is not
substantially different (Krajewski et al., 1994b).

Reduced models that retain first-order indices only, can easily be obtained via
the Padé technique. A serious drawback of this computationally simple procedure
is that the stability of the reduced model of a stable system is not ensured. On the
contrary, matching second-order information indices ensures stability. The techniques
considered in this paper, which force the coincidence of an equal number of both
first- and second-order information indices, achieve this objective without appreciably
increasing the computational complexity. In addition to that, the McMillan degree
of the corresponding transfer function matrices is related to the number of retained
indices.

In the sequel, we briefly analyse and compare such techniques. Some illustrative
examples are also discussed.

2. Preliminaries

Consider an asymptotically stable time-invariant linear system with p inputs and
m outputs described by the k-th order matrix differential equation relating the output
vector y(t) to the input vector u(t):

k-1 k-1
W0+ Y R = Y Gu®() (1)
i=0 i=0

where the superscript (i) denotes the i-th derivative, F; € R™*™ and G; € R™*?.
This equation corresponds to the left matrix fraction description (MFD):

U(s) = FH(s)G(s)i(s) = W(s)i(s) 2

where the hat denotes the Laplace transform, F(s) = Is* + Fo_1s*~1 + ...+

Fo, G(s) = Gk—15*"1 + ...+ Go and W(s) is the transfer matrix. Assume ad-
ditionally that a minimal state-space realization of the above system is

#(t) = Az(t) + Bu(t) ()
y(t) = Ca(t) (4)

where z(t) € R® and A,B and C have the appropriate dimensions. Note that,
if F~1(s)G(s) is irreducible, then n is equal to mk; otherwise n < mk (Kailath,
1980).
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As already observed, the first-order information can be given by the Markov pa-
rameters, which are equal to the coefficients W; € IR™*? of the asymptotic expansion
of W(s), i.e.

(oo}
W(s)=Y Wis™ (5)
i=1 ’
or the coefficients of the MacLaurin expansion of the system impulse-response matrix
W(t), i.e.
ti—l

w(t)=> wi o) , (6)

i=1

with W; = W(-1)(0). The Markov parameters can also be expressed in terms of the
matrices A, B and C in (3) and (4) as

W;=CA"!B (7)

As regards the second-order information indices, one may refer to the MacLaurin
expansion coefficients R; € IR™*™ of the output correlation function corresponding
to a white noise input:

E{y(t + )y (t)} = i Rig (8)

where E denotes expected value and the superscript * denotes (conjugate) transpose.
The covariance matrices R; are given by

B = lim lim T2 =7 WO _ cpixe (9)

where X (steady-state covariance) satisfies the Lyapunov equation:
AX+XA*+BB*=0 (10)

With reference to the k-th order differential equation (1), the second-order informa-
tion is also conveyed by the entries of the impulse-response Gramian:

P =[P;;lij=1,. % (11)
with

Py= [ WED@ W @ B, (12
Observe that, in the SISO case, for n = k we get

P =o0w,07 (13)

where W, is the controllability Gramian and @ is the observability matrix.
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It has been shown (Krajewski et al., 1994a) that in the SISO case all the el-
ements of P can be obtained from its k diagonal entries (energies) and from the
first k& Markov parameters, whereas in the MIMO case the “essential” second-order
information is provided by the so-called pseudoenergies, whose number is m?k , since
all the other entries of P can be formed from them and from the entries of the first
k matrix Markov parameters.

3. Model Reduction Techniques

By limiting attention to the reduction methods that use the Markov parameters as
first-order data and the elements of P as second-order data, three distinct approaches
have been followed in the literature.

Approach 1

The g¢-Markov COVER (covariance equivalent realization) method suggested in
(Yousuff et al., 1985) aims at the retention of ¢ Markov parameters and ¢ output
covariances of the original system. Precisely, the reduced- order model

to(t) = Arz,(t) + Bru(t) (14)
yr(t) = Crz(t) (15)

is a g-Markov COVER equivalent realization of system (3), (4) if and only if the
matrices A, By, C, satisfy the constrains

C.A"'B, = CA™!'B, i=12,...,q (16)
C,AIX,C, = CATIXC, i=1,2,...,¢q (17)

where X is the solution of (10) and X, the solution of the equation
A X, + XA} + B, B} =0, (18)

According to (Yousuff et al., 1985) model (14), (15) can be obtained using the follow-
ing algorithm.

Algorithm 1

1. Determine the solution X of (10).

2. Form the g¢-th observability matrix:
O; = [C*, A*C,..., (A*)7IC* ] e RMX™ (19)

3. Construct a matrix U; whose columns form an orthonormal basis for the range
of O,.

4. Compute the matrices
L, = U0, (20)

T, = XOUL(UFO,X O U) ™ (21)
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5. Compute
A, = L. AT, (22)
B, =LA (23)
Cr = CTr (24)

The resulting model is not the only g¢-Markov COVER, as shown
in (Anderson and Skelton, 1988) where a parametrization of all the possible g-Markov
COVER’s in terms of (multivariable) cost-decoupled Hessenberg forms is given. Note,
however, that the transformation to such a form becomes a formidable task for large n.

Approach 2

In (Agathoklis and Sreeram, 1990), a method for constructing a reduced- order model
of an original SISO system has been suggested which leads, in general, to matching
the first ¢ Markov parameters and the ¢ x ¢ leading principal submatrix of the
original impulse-response Gramian. Consequently, the energies (squared Ly norms)
of the impulse response and its first ¢ — 1 successive derivatives are retained. This
result is achieved using the following algorithm.

Algorithm 2

1. Transform the given n-th order SISO system (A4,b,c¢) into a controllability form
(4,5,7)

4 =cl4c, (25)

b= c, (26)

¢ =cC (27)
where

C=1[bAb,..., A1y (28)

2. Compute the impulse-response Gramian P by solving
AP+ PA+TE=0 (29)

3. Take the ¢ x ¢ leading principal submatrices P, and Q; of P and Q = ¢,
respectively. ’

4. Compute the controllability form A, of the reduced-order system from the equation
-7 —
A Pp+ P A, +Qy =0 (30)
5. Form the corresponding reduced vectors b, and ¢, as

b = [1,0,...,0] € R? (31)
Cr = [wl,wz,...,’wa (32)

where w; is the (scalar) i-th Markov parameter.
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Approach 3

A reduction method, valid for SISO and MIMO systems and based on MFD’s, has been
presented in (Krajewski et al., 1994a; 1994b). It leads, in general, to matching the
first ¢ scalar (SISO case) or matrix (MIMO case) Markov parameters and the first ¢
impulse energies (SISO case) or m?q pseudoenergies (MIMO case). Such approximant
has therefore been named g-Markov ENER (energy equivalent realization) (Krajewski
et al., 1994a).

The impulse-response Gramian P of the original system can directly be evaluated
from the coefficients of the corresponding MFD as shown in the quoted papers. The
reduced model can be found according to the following algorithm.

Algorithm 3

1. Form the submatrices P;;,i=1,...,¢+1, j =1,...,¢, of the original impulse-
response Gramian P (see (11) and (12)).

2. Determine the denominator coefficient matrices Frgo, Fr1,...,Frq-1 of the re-
duced MFD by solving the set of matrix equations
q
Y FriciPij=—Pu1j, i=1,...,9 (33)
i=1
3. Compute the numerator coefficient matrices G0, Gy 1,...,Grg—1 of the reduced
MFD:
g—i—-1
Gri= Y FrigiWj+ Wi, i=0,...,¢-1 (34)
=1

As noted earlier, it follows from (34) that the (matrix) Markov parameters W, ;,i =
1,...,q, of the reduced model always coincide with the corresponding parameters W;
of the original system, whereas the relevant entries of the impulse-response Gramian
are matched in the generic case in which the resulting reduced MFD is irreducible.

4. Main Features

i) The covariance coefficients R;, defined in (8) and (9) and used in the con-
struction of g-Markov COVER’s (cf. Approach 1 of Section 3), are equal to
the first (block) column entries of the impulse-response Gramian P defined in
(11) and (12).

ii) In the SISO case, the off-diagonal entries of P can be uniquely determined
from its diagonal entries (energies of the impulse response and its derivatives)
and from an equal number of Markov parameters. Similarly, in the MIMO
case, all the entries of P can be uniquely determined from a suitable number of
pseudoenergies and from the entries of the relevant Markov parameter matrices.

iii) From the previous points, it follows that the g-Markov ENER'’s (cf. Approach
3 of Section 3) are particular g-Markov COVER’s, but ¢g-Markov COVER’s
exist that are not g-Markov ENER’s.
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iv) The ¢g-Markov ENER is generically unique, whereas there is an infinite number
of reduced models of order ¢ that match ¢ Markov parameters and ¢ covari-
ances. A parametrization of all g¢-Markov COVER’s is given in (Anderson and
Skelton, 1988). The g-Markov COVER obtained according to Approach 1 of
Section 3 is one of these, precisely, that corresponding to the choice of the
matrix U;.

v) The external stability of the reduced models obtained according to all three al-
gorithms of Section 3 is always ensured even if the resulting system (Ar, B, C,)
Is not minimal or the resulting MFD is not irreducible. In these cases, all the
relevant Markov parameters are matched, whereas not all the covariances or
energies are matched.

vi) Approach 2 of Section 3 could be extended to MIMO systems according to the
procedure used in (Krajewski et al., 1994b).

vii) Approach 3 of Section 3 leads, in general, to an irreducible MFD of or-
der mgq. This, however, can easily be converted into a minimal state-space
representation. In fact, it can be realized in-the block observability form,
where A, is the my x m; block companion form with the first block row
equal to [-F,_1,—F,_s,...,~Fp), B, is equal to [W;T, o, WIT and C, =
[0,...,0,1].

5. Examples

In this section, we consider three rather simple examples and compare the results
obtained using the algorithms of Section 3 with those obtained using different tech-
niques (Lz-optimal, Moore’s balancing). For this purpose, a reference is made to the
relative squared L, error norm:

_Iw=w, e

*= e (3)

Example 1. Let us first refer to the elementary SISO example already considered in
(Kabamba, 1985) to show that Moore’s balancing approach does not always lead to
models that are good in the L? sense. The original system is described by the triplet

0.005  —0.99 1
_A = b = =
[—0.99 —5000.0]’ [100 } c=[1w] e

or, alternatively, by the transfer function

_ 10001s + 4852
52+ 5000.0055 + 24.0199"

W (s) (37)
All the algorithms of Section 3 can be used and lead to the first-order model

A, = —4951.5, b, =10001, ¢ =1 (38)
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or, equivalently,

= 10001

We(s) = sae515 (39)

which is very close to the optimal model in the L, sense (Kabamba, 1985). In fact,
the value of § for (38) and (39) is 0.00956, whereas 6 = 0.00851 for the Lz-optimal
model. Note that, in this case, Moore’s balancing method leads to very bad value of
6 = 0.99.

Example 2. Let us consider now the 6-th order SIMO system (Gawronski and Juang,
1990) described by the triplet:

[ —0.21053 —0.10526 —0.0007378 0 0.0706 0
1 —0.03537 —0.000118 0 0.0004 0
A= 0 0 0 1 0 0
0 0 —605.16  —4.92 0 0
0 0 0 0 0 1
L 0 0 0 0 —3906.25 -12.5 |

BT=[-—7.211 —0.05232 0 7947 0 —448.5]

1 0 0 0.000334 0 -0.00772
c= 3 8 (40)
010 0 0 0
The 4-th order state-space model obtained using Algorithm 1 is as follows:
[ —14.15 —1.794 -—1.515 5480.99 —43.107
A = 0.709 —-0.123 -0.076 —0.15 B = —7.558
"7 | o017 071 —0016 071 |’ " | o0.014
. —0.705 -0.105 -0.074 —0.132 —2.637
[0 0707 0.018 —0.707
C, = 0 0.707 0.018 -0.70 (41)
[0 0 0999 0.025

A model with the McMillan degree equal to 4 can also be obtained using Algorithm 3
with ¢ = 2. The MFD of the reduced model turns out to be given by

01 —0.0025 0.219 0.0257 0.111

—3.479 110.1
Gr(s) = [ —0.052 ] ot [ —7.212 ] (42)

F,(s)z[l O]Sz [ 14.206 —3873.19]3 [3875.738 ~135.52
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which can be directly realized in the (minimal) block observability form (cf. item (vii)
of Section 4)

[ —14.206 3873.19 —3875.738 135.52 —41.883
0.0025 -0.219 -0.0257 -0.111 -7.209
Aro = s ro =
1 0 0 0 —-3.479
o 1 0 0 ~0.052
[0 0 10
Cro= . 43
_0 0 01 (43)

Models (41) and (43) are equivalent. The corresponding value of § is 8.9473 10~°
which is of the same order of magnitude as the value for Moore’s model (§ =
7.4618 10~°), whereas the L,-optimal model is characterized by § = 5.8262 10~€.
Note that the §-values corresponding to different reduction techniques considered in
(Gawronski and Juang, 1990) are appreciably larger.

Example 3. Let us consider now a MIMO system with 2 inputs and 2 outputs
described by the triplet

[ —15 4000 —4000 100 40 —3838
4= | 0002 —03 003 ~01| .| -9.903 —072
1 0 0 0 -4 -10
0 1 0 0 0.05 -1
o000 (44)
(0001

Both algorithms, i.e. Algorithm 1 and Algorithm 3 lead to the same reduced model:

A = —0.1854 -0.1027 B = -4 -10 CC= 10 (45)
0.5281 —0.0139 —-0.05 -1 0 1
The corresponding value of § is 1.21378, whereas Moore’s model and La-optimal

model are characterized by § = 0.0753 and 6 = 0.075, respectively. However, the
time of computations is much larger for the latter models.

6. Conclusions

The reduction methods aiming at the retention of both first-order and second-order
information indices ensure the stability of the model of a stable original system as
well as a good fit of its response. This result is achieved in a fairly simple way, i.e.
by solving sets of linear equations.
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The three approaches considered in this paper refer to the first-order information
supplied by the Markov parameters and to the second-order information given by
appropriate entries of the impulse-response Gramian. The first and the third approach
of Section 3 can also be applied to MIMO systems, whereas the second holds for SISO
systems only. ‘

The guidelines of the algorithms corresponding to the three approaches have been
given; the related MATLAB computer programs are available on request. As shown
by the examples of Section 5, they lead to satisfactory results.

The methods can be extended in a rather easy manner to the cases in which the
first-order information is provided by different expansion coefficients, e.g. the Taylor
expansion of W(s) about suitable points instead of the asymptotic expansion, and
the second-order information by the energies of suitable system responses instead of
the impulse-response energies.
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