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CONSTRAINED CONTROLLABILITY OF RETARDED
DYNAMICAL SYSTEMS

JErzy KLAMKA*

Recent years have witnessed a good deal of research focused on abstract control
dynamical systems defined in infinite-dimensional linear spaces. The main pur-
pose of the present paper is to study the concept of constrained approximate
relative and approximate absolute controllability for linear stationary abstract
retarded dynamical systems defined in infinite-dimensional Hilbert spaces. First,
using the methods of functional analysis, the brief and compact theory of such
dynamical systems is recalled and the general integral form of solution is pre-
sented. It is generally assumed that the admissible controls are non-negative
square integrable functions. Using the methods taken from the spectral theory
of linear unbounded operators, the necessary and sufficient conditions for con-
strained approximate relative controllability are formulated and proved. These
conditions are a generalization for infinite-dimensional retarded dynamical sys-
tems of the results derived recently for finite-dimensional dynamical systems
with delays. Moreover, some additional remarks and comments on the relation-
ships between different concepts of controllability are given. Finally, as simple
illustrative examples, the necessary and sufficient conditions for constrained
approximate relative controllability with non-negative controls for retarded dis-
tributed parameter parabolic-type dynamical systems with one constant delay
and with homogeneous Dirichlet boundary conditions are presented.

1. Introduction

In recent years controllability problems for different kinds of dynamical systems have
been considered in many publications. An extensive list of publications containing
more than 500 positions can be found in the monograph (Klamka, 1991). However,
most literature has been concerned with the so-called unconstrained controllability
problems. Only a few papers deal with the so-called constrained controllability prob-
lems, i.e. with the case when the control functions are restricted to take their values in
a prescribed admissible set (Brammer, 1972; Carja, 1988; Chukwu, 1979; 1987; Naka-
giri and Yamamoto, 1989; Narukawa, 1982; Peichl and Schappacher, 1986; Saperstone,
1973; Saperstone and Yorke, 1971; Schmittendorf and Barmish, 1980; 1981; Son,
1990). Moreover, it should also be stressed that up to now constrained controllabil-
ity problems for abstract retarded dynamical systems defined in infinite-dimensional
Hilbert spaces have not been considered in the literature besides the paper (Klamka,
1993). In order to fill this gap, the present paper studies in detail the constrained
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controllability problems for some special kind of linear abstract stationary retarded
dynamical systems with one lumped constant delay in the state variable.

The main purpose of the present paper is to formulate and prove the necessary
and sufficient conditions for the so-called constrained approximate relative controlla-
bility using some general results given recently in the paper (Son, 1990). Moreover, it
will be pointed out that in the special case of finite-dimensional retarded stationary
dynamical systems it is easily to obtain from general results the computable con-
strained relative controllability criteria. Finally, simple numerical examples which
illustrate the general theory will be presented. In these examples the computable
necessary and sufficent conditions for constrained approximate relative controllabil-
ity of linear retarded distributed parameter dynamical systems described by partial
differential equations of parabolic type are given.

1. Abstract Retarded Dynamical Systems

Let us consider a linear abstract stationary retarded dynamical system with one con-
stant delay in the state variables described by the following differential equation

&(t) = Aoz (t) + Arz(t — h) + ibjuj(t) (1)

The initial conditions for eqn. (1) are as follows (Nakagiri, 1981; Nakagiri and Ya-
mamoto, 1989; Webb, 1976):

z(0)=g¢° € X, z(s)=g'(s) for s€[—h,0] (2)

where z(t) € X, X is a Hilbert space, g'(s) € La([~h,0],X), h > 0 is a constant
delay, A; : X — X is a bounded linear operator, b; € X for j = 1,2,3,...,r,
Ao : X D D(Ag) — X is the infinitesimal generator of a strongly continuous semi-
group of bounded linear operators 7'(t) : X — X, ¢ > 0. Moreover, it is generally
assumed that this semigroup is compact.

The scalar controls u;(t) € IR, j = 1,2,3,...,r are assumed to be square inte-
grable and non-negative, i.e. u;(t) >0 forall t >0 and j=1,2,3,....,r. Hence, the
admissible values of the controls form a non-negative, convex, closed cone V € IR"
with the vertex at zero.

Let B :IR" — X be a linear bounded operator defined as follows:
Bu(t) = > _bju;(t)
7=0

Let BV C X denote the image of the cone V under the linear transformation
represented by the linear operator B. Of course, BV is a closed convex cone in the
Hilbert space X. For the cone BV we define in the Hilbert space X the so-called
polar cone:

BV ={z € X :(z,v) <0 forall v€ BV}
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Now, let us introduce some fundamental notations which will be usefull in the
next sections of the present paper. For a Hilbert space X we denote by Lo([—h, 0], X)
the usual Hilbert space of X-valued square integrable functions defined on the finite
interval [—h,0]. Let My([—h,0],X) = X x La([—h,0],X) be a Hilbert space with
the usual norm (see e.g. (Nakagiri, 1981; Nakagiri and Yamamoto, 1989; Webb, 1976)
for more details). This space is often denoted shortly as M.

The fundamental theory of general abstract retarded dynamical systems is stud-
ied in detail in the papers (Nakagiri, 1981; Nakagiri and Yamamoto, 1989; Webb,
1976), where different formulae for the solution are formulated and proved. Dynami-
cal system (1) is a special case of general linear abstract stationary retarded dynami-
cal systems given e.g. in the papers (Nakagiri, 1981; Nakagiri and Yamamoto, 1989).
Therefore, it is possible to express the solution z(t,¢°% ¢',u) € X of the eqn. (1)
with the initial conditions (2) and the control function u € V; = Ly([0,t],V) in the
following compact form

W(t)g°(¢ / W(t—s—h)A1g*(s)ds
z(t, %, gt u) = ] W(t —s) Zb uj(s)ds fort >0 (3)

L g(t) for t €[~h,0]

where the linear bounded operator W(¢) : X — X, ¢t > 0 is the unique solution of
the following abstract integral equation

t
T(t) +/ T(t—s)A1W(s—h)ds fort >0
w(t) = ’ (4)
0 fort <0
Using the general response formula (3) we may associate with the differential

equation (1) the so-called solution operator S(t) : My — My,t > 0 defined as follows
(Nakagiri, 1981; Nakagiri and Yamamoto, 1989; Webb, 1976):

S(t)g = (:E(t,g,[)), rt(s,g,O)) € My for g€ M, (5)

where (s, g,0) = z(t + s,9,0) for s € [—h,0).

The operators S(t),t > 0 are linear and bounded in the Hilbert space Ms.
Moreover, the family of the operators S(t) forms a strongly continuous semigroup
on the Hilbert space M> with the infinitesimal generator A : My D D(A) — M,
defined as follows (Nakagiri, 1981; Nakagiri and Yamamoto, 1989; Webb, 1976):

D(4) = {g=(¢",9") € M2([-h,0],X):

7:(0) = ¢° € D(4o), g'€ WS([~h,0], %)}
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A0 = (400 + g (o) dg (s )) for (¢°,9") € D(A) (6)

The spectrum ¢(A) of the operator A plays an important role in the investigation
of controllability for the retarded dynamical system (1)
3. Basic Definitions

In this section we shall recall some basic definitions concerning different types of
controllability for retarded dynamical system (Fattorini, 1966; 1967; Nakagiri and
Yamamoto, 1989; Son, 1990; Triggiani, 1975; 1976).

Let V be anon-negative cone in the space IR”. We define the so-called attainable
set Cy(V) at time ¢ > 0 in the space M, as follows

Ci(V) = {(2(t,0,u), z:(5,0,u)) € Mz : u € V;} ' (7)

- Moreover, we denote

Coo(V) = |J Cu(V)

>0

Similarly, we define the relative attainable set K;(V) at time ¢ > 0 in the space X
as follows

Ki(V)={z(t,0,u) € X :u e V} ’ (8)
Moreover, we denote
Keo(V) = [ Ku(V)
>0

Now, we are in a position to give formal definitions for constrained exact and ap-
proximate absolute controllability, and for constrained exact and approximate relative
controllability of the retarded dynamical system (1).

Definition 1. Dynamlcal system (1) is said to be V-exactly absolutely controllable
if Co(V) =

Definition 2. Dynamical system (1) is said to be V-approximately absolutely con-
trollable if cl(Ceo(V')) = M3, where the symbol cl stands for the closure operation.

Definition 3. Dynamical system (1) is said to be V-exactly relatively controllable
if Keo(V)=X : ‘

Definition 4. Dynamical system (1) is said to be V-approximately relatively con-
trollable if cl(Ko (V) =

‘From the above definitions it follows immediately that V-exact absolute control-
lability always implies V-exact relative controllability. Similarly, it is obvious that
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V-approximate absolute controllability always implies V-approximate relative con-
trollability. Moreover, V-exact absolute (relative) controllability is always a stronger
property than V-approximate absolute (relative) controllability

Since the conditions for constrained exact absolute and relative controllability
are very restrictive, in the sequel we shall entirely concentrate on the investigation of
constrained approximate absolute and relative controllability.

4. Constrained Approximate Controllability

In this section we shall formulate the necessary and sufficent conditions for V-
approximate absolute controllability and V-approximate relative controllability of
the dynamical system (1). In order to do that, let us formulate the so-called spectral
decomposition property for the linear operator A.

Assumption 1. (Spectral decomposition property) For every o € IR the spectral set
0 consists of a finite number of eigenvalues of the operator A with finite multiplicity,
where o(A) denotes the spectrum of the operator A and the spectral sets are defined
as follows: 04 = c(A)N{z € C:Rez>a}.

Theorem 1. Suppose that

1) the operator Ao is the infinitesimal generator of a compact semigroup T(t),
1) the operator Ay is invertible, i.e. Kerd; =0,
iil) the operator A satisfies spectral decomposition property,
iv) the set V is a non-negative cone in the space IR",
v) the dynamical system (1) is approzimately absolutely controllable without any
constraints.

Then the dynamical system (1) is V-approzimately absolutely controllable if and
only 1f

Ker(sI — A — exp(—sh)A])N(BV)? =0 forall se R (9)

Proof. The proof of Theorem 1 is based on Theorem 4.1 presented in the paper
(Klamka, 1993). It is easy to verify by simple inspection that all the assumptions of
the cited theorem are satisfied and hence our theorem is valid. |

Let us observe that assumption (ii) means that the linear retarded dynamical
system (1) is spectrally complete in the Hilbert space M. Furthermore, it should be
pointed out that for the finite-dimensional case, i.e. when X = IR”, from Theorem 1
as a corollary we can obtain immediately the well-known result about V-approximate
absolute controllability.

Corollary 1. Suppose that
i) X=1R"
il) rank A1 =n
1) rank [sI — Ag — exp(—sh)A1,B]l=n for seC
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Then the dynamical system (1) is V-approzimately absolutely controllable if and only
if condition (9) holds.

Proof. Since in this case the Hilbert space X is finite-dimensional, then the operator
A generates the compact semigroup T'(t), for ¢ > 0 (see e.g. (Klamka, 1993) for
more details). Moreover, condition (i) implies that the matrix A; is invertible.
Finally, condition (iii) means that our retarded dynamical system is approximately
controllable without any constraints (Fattorini, 1966; 1967; Nakagiri and Yamamoto,
1989; Triggiani, 1975; 1976). Therefore, all the assumptions of Theorem 1 are satisfied
and, in consequence, equality (8) is the necessary and the sufficient condition for V-
approximate controllability of the dynamical system (1). Hence our corollary follows.

Similarly as in the infinite-dimensional case, assumption (ii) means that our
retarded dynamical system is spectrally complete.

Now, let us concentrate on V-approximate relative controllability of the dynami-
cal system (1). In order to formulate the verifiable necessary and sufficient conditions
for V-approximate relative controllability we shall consider only special but in prac-
tice a very popular case of the dynamical system (1). Namely, we shall consider the
case, when the linear operator Ag is self-adjoint with simple eigenvalues and the
operator A; = anl, ap € R and I is the identity operator in the Hilbert space X.
This situation often arises in the case of distributed parameter dynamical systems
described by retarded partial differential equations of parabolic type. Moreover, for
simplicity of notation, we shall assume that the number of admissible controls is equal
to two, 1.e. r = 2.

In order to formulate a constrained approximate relative controllability condition
let us introduce some additional notation. Namely, let us denote: s; € R, :1=1,2,..
as the real eigenvalues of the self-adjoint operator 4g and z; € X, 1 = 1,2, ... as the
eigenvectors of the operator Ay corresponding to the eigenvalues s;, 1 = 1,2, ....

Theorem 2. Suppose that
i) the operator Ag is self-adjoint and generates a compact semigroup,
i) the operator A; = anlI, where a € R and I is the tdentity operator in the
Hilbert space X,
iii) the eigenvectors z; € X, i = 1,2,... form a complete orthonormal set in the
Hilbert space X,
iv) r=2, ie ult) =[u(t),ua(t)T.

Then the dynamical system (1) is V-approzimate relative controllable if and only if

(bl, :l:,')(bg, .’Ei) <0 for i= 1, 2, 3... (10)

Proof. Theorem 2 is a direct consequence of the results recently presented in Section 5
of the paper (Klamka, 1993) and in the paper (Nakagiri and Yamamoto, 1989). Hence,
the detailed proof is omitted. [ ]
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5. Parabolic-Type Retarded Dynamical Systems

In this section we shall consider approximate relative controllability problems for a
very important class of retarded distributed parameter systems, namely the dynam-
ical systems described by linear partial differential equations of parabolic type with
homogeneous boundary conditions of Dirichlet type and a constant delay in the state
variables.

Let © O IR™ be an n-dimensional closed rectangle in the space IR™ with the
boundary T andlet Y =T x [0,00). Let y = (¥1,¥2,, - Yk, -, Yn) € IR". Then the
rectangle Q is defined as follows

Q={yeR*:0<y; <dp for k=1,2...,n}

We shall concentrate on a retarded dynamical system described by the following linear
partial differential equation of parabolic type

dw(t,y) _ 5~ Pu(t,y)
ot 0k=1 dy?

+ anw(t — h,y) + bi(y)ui (t) + ba(y)ua(t) (11)

defined in the domain € x [0,00), where ag € R, ap € R are constant coefficients
and h > 0 is a constant delay. Furthermore, b;(y) € L2(Q) for j=1,2.

The homogeneous Dirichlet type boundary conditions for eqn. (11) are as follows
w(t,y) =0 on ¥ (12)
The initial conditions for the delayed equation (11) are of the following form
w(0,y) = w'(y) € L2(Q) = X (13)
w(r,y) = wo(,y) € La([—h, 0], X) = La([—h, 0], L2(2))
where w°(y) and wo(r,y), 7 € [~h,0] are given functions.

Moreover, it is assumed that admissible controls u; € Ly([0,00),IR*) for j =
1,2, i.e. they are non-negative and square integrable. Therefore, the cone V = {v C
IR? : v; > 0,v3 > 0} is closed, convex and has non-empty interior in the space IR2.

It is well known (see e.g. Nakagiri, 1981; Nakagiri and Yamamoto, 1989; Webb,
1976) for details) that eqn. (11) with the boundary condition (12) and the initial
conditions (13) has the unique solution w(t,y). Moreover, the complete state z
at time t > 0 is defined as follows 2z = {w(t,y), wi(r,y)} € Mao([-h,0],X) =
Lz(Q) X L2({'—h,0], Lz(Q))

Now, let us express the delayed partial differential equation (11) in the fol-
lowing abstract form (Fattorini, 1966; Klamka, 1991; Nakagiri, 1981; Nakagiri and
Yamamoto, 1989; Triggiani, 1975; 1976; Webb, 1976).

z(t) = Aoz(t) + apz(t — h) + byuy(t) + baua(t) (14)
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where z(t) = w(t,y) € X = Lp(Q) for t >0, b; € X, for j = 1,2. The linear
- differential unbounded operator Ay : X O D(Ao) — X is defined in the following
way

D(Ap) = {w(y) =z € X : Aqw(y) € X and w(y) =0 for y €}

=L d2w(t,
Aozonw(y) = Qg E %
k

k=1

It is well-known (Klamka, 1991) that the operator A is self- adjoint and has a
pure discrete-point spectrum consisting entirely of an infinite sequence of real eigen-
values {—s4}, where

2 2 2 2
o, Qg Q) TQn
Se=a —_ —2 —_
. o(<dl) (T2) e (T2 + +(dn>)
and a = (a1, @3, ...,@, ..., ) is an arbitrary n-dimensional vector of positive inte-
gers. It is clear, that the multiplicities of the eigenvalues depend on the parameters

di, k=1,2,...,n and generally they may be greater than one. It should be mentioned
‘that this fact plays an important role in the controllability investigations.

The normalized eigenvectors z4(y) C D(Ao) corresponding to the eigenvalue s,
form a complete ortonormal set in the space X and are given by the following formula

:z:a(y):2%(d1d2...dk...dn)_%sin my1 sin wyz ...sin Zrﬂyk ...sin Wa"yn
d1 dz d}c dn

Moreover, the linear unbounded differential operator A is the infinitesimal generator
of a strongly continuous semigroup of linear bounded and compact operators.

Now, we shall formulate the necessary and sufficient conditions for approximate
relative controllability of the dynamical system (11).

Theorem 3. Suppose, that all the eigenvalues s-a of the operator Ao are simple.
Then the dynamical system (11) is approzimately relatively controllable with non-
negative controls if and only if

(b1, wa){bz, wa) < 0 for every indez o (15)

Proof. In order to prove Theorem 3 it is sufficient to verify the assumptions of Theo-
rem 2. First of all, let us observe that the operator Ag is self-adjoint and generates
a compact semigroup, so assumption (i) is satisfied. Next, from the form of eqn. (11)
it follows immediately that assumption (ii) holds. Moreover, since the operator Ag
is self-adjoint and has a simple spectrum, then the eigenvectors w;(y), i = 1,2,3, ...
form a complete ortonormal system in the Hilbert space X = Ly(2). Hence assump-
tion (iii) follows. Assumption (iv) is evidently satisfied. Hence Theorem 3 follows.

|
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6. Examples

We illustrate the theory we have developed in the previous sections based on simple
examples of linear retarded distributed parameter dynamical systems. We shall con-
sider constrained approximate relative controllability of a dynamical system described
by a linear partial differential equation of parabolic type with zero Dirichlet boundary
conditions and with one lumped constant delay.

Example 1. Let us consider the following linear retarded partial parabolic differential
equation with one constant delay

ow(t,y) . d?w(t,y)
gt Y Gy?

+ew(t,y) + anw(t — h,y) + bi(y)ur (8) + b2(y)ua(t)  (16)

defined for y € [0,d] and ¢t € [0,00), and satisfying the homogeneous Dirichlet
boundary conditions

w(t,0) = w(t,d)=0 for t € [0,00) (17)
The initial conditions for the delayed equation (16) are as follows

w(0,y) = w’(y) € Ly([0,d],R) = X (18)

w(t,y) = wo(r, y) € La([—h,0] x [0,d],IR) (19)

Moreover, it is assumed that ag,ap, and ¢ are real coefficients, and A > 0 is a
constant delay, b;(y) € Ly([0,d],IR) for j = 1,2. The admissible controls are square
integrable and non-negative, i.e. u;(t) >0 for t >0, j =1,2.

For the retarded dynamical system (16) the complete state at time ¢ > 0, de-
noted as 2, is a pair of the functions 2z; = {w(t,y), w:(7,y)} € Ma([-h,0],X) =
X x Ly([—h,0],X), where X = Lo([0,d],IR).

In the abstract setting, the linear retarded partial differential equation (16) can
be represented by the following retarded abstract ordinary differential equation:

:c(t) = Aotﬂ(t) + ahm(t - h) + blul(t) + szz(t) (20)

where z(t) € X = Ly([0,d],IR) and the linear unbounded differential operator 4, is
defined as follows

?w(y)

Aoz = Ajuw(y) = a 7

+ cw(y) (21)

The domain D(Aq) C X = Ly([0,d],IR) is defined as follows
D(4o) = {u(y) = X € X : Aow(y) € X, w(0) = w(d) = 0} (22)

It is well-known (see e.g. Triggiani, 1975; 1976) that the linear unbounded differ-
ential operator Ay is self-adjoint and generates a compact semigroup. Moreover, its
real single eigenvalues are s; = —i?7%/d? + ¢ for i = 1,2,3,.... The corresponding
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orthonormal eigenvectors are z;(y) = 2°®sin(iry/d), for i = 1,2, 3, ... The eigenvec-
tors z;(y) € D(Ao), i = 1,2,3,... form a complete orthonormal set in the Hilbert
space X.

Now, we shall verify the constrained approximate relative controllability of the
retarded dynamical system (11). In order to do that, let us observe that assumptions
(1), (ii), (iii) and (iv) of Theorem 2 are satisfied. Therefore, the dynamical system
(11) is constrained approximately relatively controllable if and only if inequalities (10)
are satisfied. Taking into account the form of the inner product in the Hilbert space
Ly([0,d],IR), from relation (10) we immediately obtain the following inequalities

(/Odbl(y) sin (m7y> dy) (/Odbz(y) sin (%g) dy) <0 for i=1,2,3,.. (23)

Hence, the dynamical system (16) is approximately relatively controllable with non-
negative controls if and only if inequalities (23) hold.

However, it should be stressed that for unconstrained controls the condition for
approximate relative controllability of the retarded dynamical system (16) is less re-
strictive. Namely, the dynamical system (16) is approximately relatively controllable
if and only if

(Adbl(y)Sin(i%y-) dy)2+ (/Od bz(y)sin(i”Ty) dy)2 #0 for i=1,2,3,... (24)

From formulae (23) and (24) it follows immediately that for the retarded dynamical
system (1) constrained approximate relative controllability always implies approxi-
mate relative controllability without any constraints.

Example 2. As the second example we shall consider a linear partial differential
equation of parabolic type, defined on an infinite interval. This dynamical system is
described by the following partial differential equation with one constant delay:

2209 - T80 4 (k= e, )+ anwli = h) + s @) +ba(sat) (25)

defined for y € IR and ¢ € IRT, and with the initial condition
w(0,y) = w’(y) € Lo(R) = X
The initial conditions for the delayed equation (25) are as follows
w(t, y) = wo(7,y) € La([—h, 0], Lo(IR))
Moreover, h > 0 is a constant delay, an € IR is a constant coefficient, & is an integer

and b1(y) € La(R), b2(y) € La(IR). The admissible controls are non-negative and
square integrable, i.e. u;j(t) € Ly([0,00), Rt) for j =1,2.
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For the retarded dynamical system (25) the complete state at time ¢t > 0 denoted
as z; is a pair of functions

z = {w(t,y), we(r,y)} € Ma([—h,0], X) = X x Ly([-h, 0], X)
where X = Ly(IR).

In an abstract setting, the retarded partial differential equation (25) can be repre-
sented by the following retarded abstract ordinary differential equation

z(t) = Aokz(t) + az(t — h) + byui(t) + baua(t) (26)

where w(y) = ¢ € X = L2(IR), and the linear unbounded differential operator Ay
is defined as follows:

Agr : X D D(AO;C) — X

D(Aox) = {w(y) = z € La(IR) : Aorw(y) € L2(IR)} (27)

Aoxz = Aoyu(y) = dz;j/ﬁy) T (k- v)uly)

Now, let us collect some well-known facts about spectral properties of the op-
erator Agg. First of all, let us observe that the linear unbounded operator Agy is
self-adjoint and has the compact resolvent for all integers k. Moreover, it is an in-
finitesimal generator of a compact analytic semigroup of linear bounded operators.
The operator Agr has only a discrete pure point spectrum consisting entirely of single
eigenvalues sx; = —2i+k — 1, for ¢ = 0,1,2,.... The corresponding eigenfunctions
zi(y) € D(Aox) for i =0,1,2,... have the following form:

z;(y) = (2ii!)_0‘57r‘0‘25Hi(y) exp(—0.5y2), 1=0,1,2,...

where H;(y), i=0,1,2,... are Hermite polynomials defined as follows

i

Hi(y) = (-1) exp(yQ)d—yi exp(—y2), 1=0,1,2...

The eigenfunctions z;(y), ¢ = 0,1,2,... form a complete orthonormal system in the
Hilbert space X = Ly(IR).

Now, let us investigate the constrained approximate relative controllability for
the retarded dynamical system (25). First of all, similarly as in Example 1, let us
observe that all the assumptions of Theorem 2 are satisfied. Therefore, the retarded
dynamical system (25) is constrained approximately relatively controllable if and only
if inequalities (10) are satisfied. Taking into account the form of the inner product
in the Hilbert space Ly(IR) from relations (10) we obtain immediately the following

inequalities
([ ) ([ mmay) <o or i=012. )

— 00 [00)
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Hence, the retarded dynamical system (25) is approximately relatively controllable
with non-negative controls if and only if inequalities (28) are satisfied.

Example 3. Let us consider a two-dimensional linear parabolic partial differential
equation with Dirichlet type boundary conditions and a constant delay in the state
variables.

dult,y,z) _ Quwltyz) 0wty 2)

ot Oy? 022
+ahw(t - h) Ys Z) + bl (y7 z)ul (t) + b2 (y; z)u2(t) (29)

defined in a two-dimensional rectangular domain Q € {(y, ) € IR?; y([0,d], z€ [0, )}
with the boundary T.

The homogeneous Dirichlet boundary conditions are of the following form

w(t,y,z) =0 for (y,2) €T andt >0

The initial conditions for the equation are given by the following formulae
w(0,y,2) = w'(y,2) € Ly(Q,R) = X
U)(t, Y, Z) = wO(T) Y 2) € L2([_h: 0])X) for t € [—ha O]

Hence, the complete state for the retarded dynamical system (29) is given by the
following relation

2t = {w(ta Y, Z), wt(T: Y, Z)} € X x LZ([_h) OJ:X) = M2([_h1 0]’X)
Similarly as in the previous examples, it is assumed that the admissible controls
are square integrable and non-negative, i.e. u;(t) € Ly([0,00),IRt), for j =1,2.

In an abstract form, the retarded partial differential equation (29) can be repre-
sented by the following ordinary abstract differential equation

£(t) = Aox(t) + z(t — h) + brus(t) + baus(t) (30)
where z(t) = w(t,y,2) € X = Ly(Q,IR), Ao : X D D(Ay) — X is a linear un-
bounded differential operator defined as follows

D(Ao) = {w(y,z)=z€ X :
Aow(y,z) € X and w(y,z) =0 for (y,2) €T}
Ow(y, 2) + %w(y, 2)
0y? 022
It is well-known that the operator Ay is self-adjoint and has a pure discrete point
spectrum consisting of entirely the real eigenvalues o = {s;x = (in/d)2+(kw/p)?; i =

1,2,.., k=1,2,..}. Moreover, the corresponding eigenfunctions have the following
form

A[]w(y) Z) =

2 i kw
' = —z=sin| —y|sin| —z) for i=12.., k=1,2..
zir(y, 2) \/&'Esm(dy) sm(p z) or i1=1,2.., k )
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Now, let us verify the constrained controllability conditions for the dynamical
system under consideration. First of all let us assume that the parameters d and p
of the rectangle Q are such that all the eigenvalues s;x are simple. Hence, taking
into account the form of the inner product in the Hilbert space L3(€2) and inequality
(10) we obtain the following relations:

(b1(y, 2), zik (¥, 2)) (b2(y, 2), Tir(y, 2))

- (.//nbl(% 2), zik(y, Z)dydz)

. (// ba(y, z), Tix(y, z)dydz) <0 for :=1,2,..,k=1,2,...  (31)
Q

Therefore, the retarded dynamical system (29) is approximately relatively controllable
with non-negative controls if and only if relation (31) holds.

6. Conclusions

In the present paper, constrained controllability problems for linear abstract retarded
dynamical systems have been investigated. Using some very general results taken
from the paper (Son, 1990) the necessary and sufficient conditions for constrained
approximate relative controllability with non-negative controls have been formulated
and proved. Moreover, the relationships between different types of controllability
for abstract retarded dynamical systems have been explained and discussed. Finally,
simple illustrative examples have been studied in detail. These examples represent a
linear retarded dynamical system with distributed parameters described by a partial
differential equation of parabolic type with homogeneous Dirichlet boundary condi-
tions and a constant delay in the state variables.

Moreover, it should be pointed out that the results given in the present paper
can be easily extended to the case of abstract retarded dynamical systems with many

lumped constant delays in the state variables and also to other types of control con-
straints.
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