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UNCERTAIN SYSTEMS AND MINIMUM
ENERGY CONTROL!

ZB1GNIEW EMIRSAJLOW*, StuaArRT TOWNLEY**

The paper considers two minimum energy control problems for an uncertain
linear infinite-dimensional system with a bounded input operator. Uncertainty
in the system description is modelled by unknown bounded perturbations of the
system operator and the input operator. We present a new approach to comput-
ing estimates for the deviation of the final state of the perturbed system from
the final state of the unperturbed system. This approach involves differential
Lyapunov equations and a novel concept of the so-called composite semigroup.

1. Introduction

'The purpose of this paper is to sketch a mathematical framework for an analysis
of minimum energy control problems for uncertain linear infinite-dimensional sys-
tems with bounded input operators. The uncertainty in the model is deterministic
and 1s described by unknown additive bounded perturbations to the system operator
(a semigroup generator) and the input operator. Although we assume that the input
operator and perturbations are bounded, our approach can be extended to a wide
range of classes of systems with an unbounded input operator as well as unbounded
perturbations, e.g. as in (Emirsajlow et al., 1995) and (Weiss, 1994). Since this would
also involve substantial work, the results will be published elsewhere.

In order to state our problems precisely we need to introduce the following no-
tation and basic assumptions.

o H is areal Hilbert space identified with its dual. H plays the role of the state
space. A is a linear operator on H generating a strongly continuous semigroup
T(t) € L(H), t > 0, which describes the free dynamics of the system. The
domain of A, denoted by D(A), is a Hilbert space when equipped with the
scalar product (-,-)peay = (4, A-Yg+ (-, ). D(A*)* is a Hilbert space defined
as the dual to the domain D(A*) of A*. (D(A*) is a Hilbert space defined
analogously as D(A)).
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e U, the control space, is a real Hilbert space identified with its dual. B €
L(U,H) is the input operator.

e Ay € L(H) and Ag € L(U,H) are unknown additive perturbations of the
system operator A and the input operator. B, respectively.

With the pair {A, B} we associate a nominal control system ¥ described by
z(t) = Az(t) + Bu(t), z(0)=1zo, t€[0,00) (1)

where the state function z(-) € Cioc[0, 00; H), the control u(-) € LE.(0,00;U). We

loc
interpret a solution of the differential equation (1) in the mild sense which means that

for all o € H it is given by the integral formula
t .
2(t) = T(t)vo + / T(t - r)Bu(r)dr, ¢ € [0,00) @)
0

In order to make the situation more realistic we assume that in fact the sys-
tem dynamics are uncertain and can be modelled as the following perturbed control
system Xa

.i‘A(t) = AAmA(t) + BAu(t), .’I:A(O) =Zp (3)

where Ap = A+ A4 and Bap = B+ Ap.

It is a well-known result, e.g. see (Kato, 1966; Pazy,1983), that for every Ay € -
L(H) the operator Aa = A+ A4 generates a strongly continuous semigroup Ta(t) €
L(H),t>0,and D(Aa) = D(A). For every u(-) € L?.(0,00;U) and zo € H there
exists a mild solution za(-) € Cioc[0,00; H) of (3) given by the integral formula

.’Z:A(t) = TA(t).’l:g + ‘/Ot TA(t - T')BAU.(T‘) dr, te€e [0,00) (4)

In order to state the two minimum energy control problems under consideration
we assume the we are given a fixed time interval [0, 7], where 7 € (0, 00), a final state
t; € H and a number o € (0,00). This allows us to define the following two sets of
feasible conirols’

Uo = {u(") € L*(0,m;U) : o(r) = 21} (5)
and

Ua = {u(-) € L*(0,7;U) : [lz(7) — allfy < o} (6)
Then our minimum energy control problems take the following forms.

(E) : Find a control ug(-) € Uy which minimizes the energy

B = [ ()l (7)

(A) : Find a control ua(-) € Uy which minimizes the energy (7).
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It is convenient to recall the following notions.

Definition 1. For ¢ € [0, 7), the set R(t) C H, defined by
R(t)={s€H: 2= / T(r — t)Bu(t)dt, u € LX(0, 7 U)} (8)
t
is called the reachability set of ¥ on [t, 7].

Definition 2. For ¢ € [0,7), a system T is said to be ezactly controllable on [t,7] if

R(t) = H and approzimately controllable on [t, 7] if R(t) = H.

The following result is obvious.

Corollary 1. If a system X is ezactly controllable on [0,7], then for all zy,z, €
H Problem (E) possesses a unique solution ug(:) € Uy and if ¥ is approzimately
controllable on [0, 7], then for all zo,z1 € H and a € (0,00) Problem (A) possesses
a unique solution ua(-) € Uy. n

Since perturbations Ay € L(H) and Ag € L(U, H) are unknown, it is possible
to compute the controls ug(-) and ua(-) only for the nominal system E. If we now
apply these controls to the perturbed system X, then in general za(7) # 2(7). The
main purpose of this paper is to develop techniques for estimating the distance

lza(r) — 2(7)lla =7 (9)

in terms of the nominal system parameters A, B (in fact, norms of some related
operators) and norms [|Aallccay, [|ABlcw,m)-

A basic estimate for (9) will be derived in Section 7 by combining auxilary esti-
mates derived in Sections 4 and 6. Before this, in Section 2, we recall from (Emirsajlow
1989a; 1989b) explicit formulae for the controls ug(-) and u4(-). Then, in Section 3,
we make use of these formulae to derive expressions for the difference z a(t)—z(r) in
both problems, i.e. Problem (E) and (A). Section 5 is devoted to differential Lyapunov
equations where the notion of a composite semigroup is introduced. We complete the
paper with Section 8 presenting a simple example and Section 9 containing some
concluding remarks.

2. Explicit Formulae for Controls ug(-) and wa(-)

Detailed proofs of all the results presented in this section can be found in (Emirsajlow
1989a; 1989b) and are therefore omitted.

Definition 3. An operator M(t) € L(H), t € [0, 7], defined by
M@t) = / T(r—r)BB*T*(r —r)dr = / T(r—t)BB*T*(r—t)dr  (10)
t t

is called the controllability gramian of ¥ on [, T].

It follows from this definition that for every ¢ € [0, 7] the operator M(t) € L(H)
s self-adjoint and non-negative. It is also easy to show that if the system ¥ is exactly
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controllable on [t,7], then M(?), is coercive, and if ¥ is approximately controllable
on [t,7] then M(t) is positive. Consequently, for every € € (0,00) there always
exists an inverse

K (t)=M7Yt)= (M@®)+e)™ ' € L(H), te[0,7] (11)

which is self-adjoint and coercive, and if ¥ is exactly controllable on [t, 7], then there
exists an inverse

K({t)=M"'(t)e L(H), te[0,7) (12)

which is self-adjoint and coercive.
The following results hold for Problems (E) and (A) and will be useful in the
following sections. .

Theorem 1. If ¥ is ezactly controllable on [0, 7], then there exists a unique solution
of Problem (E) given by

ug(t) = B*T* (7 — t)qo (13)
where qo € H is a unique solution to the equation

M(0)go = z1 — T(7)zo (14)
and

ug(t) = B*T*(r — t)K(0)(x1 — T(7)z0) (15)
Moreover, the minimum energy is given by

E(ug) = (M(0)g0, 90} = (K(0)(z1 — T(7)z0), z1 — T(7)z0)m (16)

"

Theorem 2. If ¥ is approzimately controllable on [0, 7], then there exists a unique
solution of Problem (A) given by:
(a) For a €(0,||z1 — T(r)zo||%)

ua(t) = B*T* (1 — t)q. (17)
where qc € H s a unique solution to the equation

M.(0)ge = z1 — T(7)zo (18)
and

us(t) = B*T* (1 — 1)K (0)(z1 — T(7)z0) (19)
where ¢ € (0,00) uniquely satisfies the condition

e?|Ke(0) (21 — T(r)zo)||f = o (20)
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Moreover, the minimum energy is given by
E(ua) = (M(0)ge, ge)ur = (Ke(0)(z1 — T(7)20), 21 — T(r)zo)n — /e (21)
(b) For a € [||lz1 — T(r)zo||%, 00)
ua(t)=0 (22)

3. Expressions for the Difference za(7)— z(7)
Applying ug(-) to Xa leads to the following expression for the final state

,
zA(T) :/ Ta(r —r)BaB*T* (7 — r)godr + Ta(r)zo
0

= / Ta(r = r)BaB*T* (1 — r)K(0)(z1 — T(7)zo) dr + Ta(7)zo (23)
0
Hence it follows that if we define an operator Ma(t) € L(H), t € [0, 7], by

Ma(t) = ./T Ta(r - r)BaB*T* (7 —r)dr

= / " a(r—t)BaB T (r — t)dr (24)

then we easily obtain the following expression for the difference za(7) — z(7) in
Problem (E)

za(r) = 2(1) = (Ma(0) — M(0))g0 + (Ta(r) — T(7))z0

= (Ma(0) = MO)K(0)(@1 — T(r)zo) + (Ta(r) = T()zo )
In turn, in Problem (A) we obtain
£a(r) = 2(r) = (Ma(0) = M(0)ge + (Ta(r) - T(r))ao o)

= (Ma(0) = M(0))Ke(0)(z1 — T(r)zo) + (Ta(r) — T(r))zo

In the above expresssions (25) and (26) both states zo,z; € H are allowed to be
arbitrary. This implies that also states ¢o,q. € H can be arbitrary. Thus, in order
to estimate the norm

lza(m) —2(m)lle (27)
in both cases we have to find a method of estimating the operator norms

1Ma(0) — M(0)ll () (28)
and

ITa(m) = T()llecan (29)

In the next section we derive an estimate on (29). In Section 5 we give a useful
characterization of the operators M(-) and Ma(-) by means of differential Lyapunov
equations and then, in Section 6, we derive an estimate for (28).
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4. An Estimate for | Ta(7)— T(7)||cm)

Fix 7 > 0. In order to state the main result of this section we need to introduce three
operators L, € L(C([0,7];H)), N, € L(C([0,7);H),H), T, € L(H,C([0,7]; H)),
defined as follows

(L+h)(t) = /: T(t — r)h(r)dr, he C([0,7]; H), t'e [0,7] (30)

N:h

(L, h)(r) = /O " T(r—nh(r)dr, heC(0,rH)  (31)

(T,h)(t) = T(t)h, heH, telo,7] (32)

Unless stated otherwise, the norms of these operators will be understood in the sense
of the above definitions.

Theorem 3. If Ay € L(H) is such that

lAallce < 1L (33)
then
(IN- T[] A all

“TA(T) - T(T)||£(H) S 1— ”LT””AA”L(H) (34)
Proof. Let us notice that

z(t) = T(t)zo, 2(t) = Az(t), t € [0,00], z(0) = zo
and

za(t) = Ta(t)zo, za(t) = Aaza(t), t €[0,00], 2a(0) = zo
Hence

za(t) = T(t)zo + /ot T(t —r)Agza(r)dr, te[0,00) (35)

and making use of (30), (31), we obtain
za(t) = (Trzo)(t) + (LrAaza)(t), t€]0,7]

It can be proven easily that the operator (I — LyA4) € L(C([0,7]; H)) is boundedly
invertible for all Ay € L(H). This implies that

za(t) = (I = LrAA) ' Trzo)(t), te€(0,7] (36)
It follows from (35) that

za(r) — 2(1) = Ny Aaza
and putting (36) into this expression gives

TA(T)Z() — T(T)ZQ = NTAA(I — LTAA)_ITT.’BO
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Since zg € H can be arbitrary, we obtain
Ta(r) = T(7) = Ny AA(I = Lo AT (37)

This is an exact formula for the difference Ta(7) — T(7), valid for all Ay € L(H).
Making use of standard functional analysis results, see e.g. (Trenogin, 1980), we ob-
tain (34). ]

5. Differential Lyapunov Equations and a Composite Semigroup

Differentiating (10) and (24) with respect to t leads to the following differential
Lyapunov equations

M(t)h = —AM(t)h — M(t)A*h — BB*h, M(r)=0,t€[0,7] (38)
and |
Ma(t)h = — AMp(t)h — Ma(t)A*h
— BaB*h — AaMa(t)h, Ma(r)=0,t€[0,7] | (39)

for M(-) and Ma(-). Here h € D(A*) and (38) and (39) hold in D(A*)*.

In order to prove that (38) and (39) have unique solutions M(-), Ma(:) €
C([0,7]; L(H)), where L(H) is equipped with a strong operator topology, we intro-
duce a special type of a continuous semigroup which we call a composite semigroup.

A continuous composite semigroup T; : L(H) — L(H), t € [0,00), is defined by
T.X =TH)XT*(t), X € L(H), t€]0,00) (40)

where T'(t) € L(H), t € [0,00), is generated by A. The infinitesimal generator
A: L(H) D D(A) — L(H) of T; is defined as usual, i.e. its domain

. (T:X)h -
D(A) = {X € L(H): lim M} (41)
t—0+t t
where the limit exists in H for every h € H, and then
_ o (X)h— Xh
(ax)h = i, )
where X € D(A) and h € H.
It can be shown that the operator A satisfies
(AX)h= AXh+ XA*h (43)

for X € D(A), h € D(A*). Using the composite semigroup we can rewrite (38),
respectively (39), in the form

M(t) = —AM(t) — BB*, M(r)=0,t€[0,7] (44)
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respectively
Ma(t) = —AMa(t) — AaMa(t) — BaB*, Ma(7)=0,t€[0,7] (45)

Now, standard results on linear differential equations on Banach spaces, e.g. (Pazy,
1983), imply the existence and uniqueness of a solution M(-) € C([0, 7]; D(A)) N
C([0,7); L(H)) of (44), where D(A) is a Banach space equipped with the graph
norm ||X||pay = lAX ey + 1 X|lc)- In turn, the standard perturbation results
for semigroups on Banach spaces, e.g. (Kato, 1966; Pazy, 1983), guarantee the ex-
istence and uniqueness of a solution Ma(-) € C([0,7]; D(A)) N C*([0,7]; L(H)). In
other words, the operator Aa = A+ Aa, where Ay : L(H) — L(H), generates a
continuous semigroup Tt : L(H) — L(H) and D(Aa) = D(A).

6. An Estimate for ||Ma(0) — M(0)||cwm

Using the results of Section 5 we obtain the following expressions for M(-) and Ma(),
respectively,

M(t) = / "(T,_.BB")dr (46)
and
MA(t) = /T(TT_,AAMA(T')) dr + /T(ﬂ_rBAB*) dr (47)

where t € [0,7]. Now, we need to introduce two operators L, € L(C([0, 7]; L(H))),
N, € L(C([0,7]; L(H)), L(H)) defined as follows

(L, X)) = /t (To_ X () dr (48)
where t € [0,7] and X(-) € C([0, 7]; £(H)), and
N. X = (L, X)(0) = /0 T X(r)dr, X() € C(0, 7 L)) (49)

Unless stated otherwise, the norms of N, and L, will be understood in the sense of
the above definitions.
We are now ready to prove the following important theorem.

Theorem 4. For every Ay € L(H) such that
lAalleey < IIL-(I7 (50)
and every Ap € L(U, H), the following estimate holds

IN-[l[|Lr BB ||| Aall ez
Ma(0)—M(0 <
[|Ma(0) Ollecy < 1L Aall e

[N IEr [[11B* 1A all ey | A Bll o,y (51)
1= Lo 1 Aalleca

+ (IN- 1 B*[[llABll (v, m)
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Proof. Using (48) we can rewrite (46) and (47) as

M(t) = (L, BB*)(t), te€0,7] (52)
and

Ma(t) = (I = L;A4)"'L,BaB*)(t), te0,7] (53)

where the bounded invertibility of (I —L:A4) € L(C([0,7];L(H))) can be easily
justified. Hence,

Ma(t) = M(8) = (LoAa(I —L.Ag)" L, BaB*)(2)
+(L,ApB*)(t), te(o,7] (54)

and using (49), we finally get

Ma(0) — M(0) = N,A4(I —L;As)"'L,BB*
+N,ApB*+ N, As(I - L;Ax) 'L, AgB*  (55)

This is an exact formula for the difference Ma(0) — M(0), valid for all Ay € L(H)
and Ap € L(U, H). Now, using the standard estimate on the operator (I—L;A4)7!,
see e.g. (Trenogin, 1980), we easily obtain (51). ' [

7. Estimates for ||za(7) — 2(7)||x

Combining (25), (26) and using Theorems 3 and 4 we immediately obtain the required
estimates on the distance {|za(7) — z(7)||# in both problems under consideration.

Theorem 5. Suppose Ay € L(H) is such that

A alleqry < min {[|Z. (17" IL (171} (56)

Ap € L(U,H) and the assumptions of Theorems 1 and 2 hold for Problems (E)

and (A), respectively. Then, the distance ||za(7) — z(7)||g in Problem (E) can be

estimated as follows

[IN[[[|L- BB* ||| Al ccary
1= ||IL[|[|Aallccay

IlNrIIHLTIlIIB*HIIAAIIL(H)HABHL(U.m} o]l
L= [[Lr (Il Aallecay

IV (TN A allecy
L= Ll Aalleca)

lea(r) — e(D)lly < { +INAB Al

llzollm (57)
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and in Problem (A), as follows
IN-[[[ILr BB* ||[|Aa]| ccary
1= |IL- 1 Aalleca

L Anlle ellH
] — HLT”“AAHC(H)

NI A all ey
1= {IZ [l Aall ey

where we assume q. = 0 in the case of part (b) of Theorem 2. ]

lea(r) —2(llr < { + INAB A5l o,

llzoll&x (58)

Actual use of the estimates (57) and (58) requires computation of the operator norms
[N+, |Ls|| and ||N-||, ||L+||, ||T+|| which is not necessarily easy. It is well-known,
see e.g. (Pazy, 1983), that every strongly continuous semigroup has an exponential
growth bound. Hence, there exist constants C' > 1 and w € (—oo, 00) such that

IT@®)|lecay < Ce**, t€[0,00) (59)
Using (59) we can obtain crude estimates for the above operator norms. In particular,
wT —_ 1
NAPRye )
w
ew'r — 1
Al <
2wr _ 1
N,| < ¢2¢
2wt — 1
L.|| < ¢?°

where C; is defined as follows

if <0
Cr = ¢ l v (65)
Ce¥™ if w>0

8. A Simple Example

The purpose of this section is to test on a simple scalar example how conservative
estimates (57) and (58) are. In this example we make use of estimates on the operator
norms derived in the previous section.

Let the nominal system X be described by the following scalar differential equa-
tion

i(t) = ax(t) + bu(t), z(0) = zo, t € [0,00) (66)
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where a,b,zo € IR!, and the perturbed system X; by
£5(t) = (a+6a)zs(t) + (b+ &)u(t), =z5(0) = zo, t € [0, 00) (67)

where é,,0, € IR'. Moreover, we assume we are given 7 € (0,00), z; € IR! and
a € (0,|zy —e*zo|). If a #0 and b # 0, then I is exactly controllable on every
interval [0, 7]. In this simple case exact controllability and approximate controllability
coincide.

Using Theorems 1 and 2 we obtain the following formulae for the controls ug(-)
and u4(-)

up(t) = be*"=tgo, te[0,7] | (68)
where go € R! is given by

2a ©, — €%z
0= T (©9)

and
ua(t) =be®""g, te [0,7] (70)
where ¢. € IR! is given by

2a z1 — " zo — Jarsign(z; — %" zp)
b2 e2a'r -1

qde =

(71)
2a /assign(z1 — %7 z0)
0 b2 eZa‘r -1

Applying ug and us to ¥ and X5 allows us to calculate expressions for the final
states z5(7) and (7). For Problem (E) we obtain

z(r) = =, (72)
b(b +68) . (2ars e
2a(r) = oty 4 LD aerirr g (79)
and for Problem (A) we obtain

b2
z(1) = e*"zo + %(62‘" —1)g.

= z1 —asign(z; — e* zq) (74)
b(b+6p)
— olatéa)T (2a+6.)T _
zs(r) = e zo + e tb, (e 1)g. (75)

Thus we can compute an exact value for the distance |z5(7) — z(7)| in both problems.
In this example, C' and w, in estimate (59) are given by

C=1, w=a (76)
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and hence (see (60)—(64))

e -1
(AT
at
-1
MLl < =
=l < G
62‘"—1
<
N < S
e2a-r_1
L <
Iy < S

where C, is defined as follows

CT={1 %f
e*T if

Since in this case

a<0
a>0

b2
LTBB* - 2a1 _ 1
L BB*|| = o—(e* — 1)

(77)

(78)
(79)

(80)

(81)

(82)

(83)

we can use formulae (57) and (58) to estimate the distance |z5(7) — z(7)| in Prob-

lems (E) and (A) whenever §, € R! satisfies

2
|5a|<min{ a , ¢ }
esT — 1 e2(11',__1

(84)

Below we present results of computations performed for ¢ = -1, b =1 7 = 1,
zog=1, 21 =0, @ = 0.01 and three combinations of §, and 6, satisfying the same

bounds |6,] < 0.05 and |63 < 0.05.
o 4§, =0.05, 6, = 0.05,

(E):
(A):

0.0063,

|z5(r) — 2(7)| =
= 0.0006,

)
|lzs(r) — z(7)]
o 6, =0.05, 8 = —0.05,

(E):
(A):

lzs(7) — z(7)| = 0.0312,
|zs(7) — z(7)| = 0.0278,

o 6, =-0.05, 6 = 0.05,

(E):
(A):

|zs(T) — z(7)| = 0.0298,
|zs(7) — z(7)| = 0.0266,

£ =0.0513
£ =0.0430
£ =0.0513
£ =0.0430
£ =0.0513
£ =0.0430
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In the above expressions, £-s denote estimates on the distance |zs(7)—z(7)| provided
by Theorem 5, i.e. for the worst case situation. It follows from these computations
that the estimates (57) and (58) are reasonably tight and may be of practical use.

9. Concluding Remarks

It was already mentioned in Section 7 that the actual use of estimates (57) and (58)
requires computation of the operator norms ||[N.||, ||L.|| and ||N:||, [|L-]|, |IT%]-
The crude estimates on these norms presented in Section 7 involve constants C' and
w obtained from the exponential bound (59). This can be regarded as a disad vantage.
Alternatively, we can define these operators in different spaces by replacing the space
C([0,7]; £(H)) by L?(0,7;L(H)) and then trying to compute the resulting operator
norms using parametrized optimization problems. Furthermore, practical usefulness
of estimates (57) and (58) should be tested on examples which are more representative
of infinite-dimensional systems than our simple scalar example.
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