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The concept of combining robust fault estimation within a controller system to achieve active Fault Tolerant Control (FTC)
has been the subject of considerable interest in the recent literature. The current study is motivated by the need to de-
velop model-based FTC schemes for systems that have no unique equilibria and are therefore difficult to linearise. Linear
Parameter Varying (LPV) strategies are well suited to model-based control and fault estimation for such systems. This con-
tribution involves pole-placement within suitable LMI regions, guaranteeing both stability and performance of a multi-fault
LPV estimator employed within an FTC structure. The proposed design strategy is illustrated using a nonlinear two-link
manipulator system with friction forces acting simultaneously at each joint. The friction forces, regarded as a special case
of actuator faults, are estimated and their effect is compensated within a polytope controller system, yielding a robust form
of active FTC that is easy to apply to real robot systems.
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1. Introduction

Friction phenomena are widely encountered in physical
(mechanical/mechatronic) systems and the problem of
control of systems with friction presents interesting chal-
lenges. In recent years there has grown a substantial lit-
erature on this subject (Armstrong-Hélouvry et al., 1994;
Olsson et al., 1998; Bona and Indri, 2005). From a con-
trol point of view, friction compensation strategies that re-
quire a detailed model of the friction characteristics have
limitations arising from nonsmooth nonlinearity and the
fact that friction modelling remains an imprecise subject,
thereby resulting in a robustness limitation.

The challenge of developing FTC schemes for sys-
tems with friction is even greater, particularly when the
friction effects can mask the presence of other unwanted
(fault) phenomena. Friction forces degrade the closed-
system performance and the concept of compensating or
removing the friction effects in a closed-loop system can
be viewed as an FTC problem. In the general case the
friction forces in a control system can be considered to
act as system component faults, or as actuator or sen-
sor faults. The idea of regarding friction forces as fault

effects was first considered by Patton et al. (2010) in a
study describing the use of sliding mode observer theory
as a robust method of friction force estimation within an
adaptive FTC fault compensation system, applied to an in-
verted pendulum system. Patton and Klinkhieo (2010) de-
scribe the concept of LPV fault estimation within an FTC
fault compensation framework, applied to a two-joint ma-
nipulator system with simple perturbation faults. The cur-
rent paper extends the theoretical approach of Patton and
Klinkhieo (2010) by (a) providing a proof for the LPV
estimator stability via pole-placement design in an LMI
region, (b) including the use of an LPV stabilizing con-
troller, and (c) introducing simultaneously acting friction
forces based on the manipulator model used by Patton and
Klinkhieo (2010).

The LPV modelling methodology has been widely
adopted in control system design in recent years, espe-
cially in relation to vehicle and aerospace control (Wu,
2001; Ganguli et al., 2002). Fault Detection and Diagno-
sis (FDD) methods (including fault estimation) and FTC
studies based on the LPV concept have also been devel-
oped in a number of works (Bokor and Balas, 2004; Henry
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and Zolghadri, 2005, Casavola et al. 2007; 2008; Weng
et al., 2008). However, the inclusion of a pole-placement
approach to guarantee the performance and stability re-
quirements of a multivariable LPV estimator is a new
contribution.

By using the LPV approach, the time-varying terms
of a nonlinear system are parameterised via smooth mea-
surements of suitable parameters. Hence, the nonlinear
dynamics are modelled as a system with a time-varying
linear structure (dependent on the measured parameters).
For control applications the LPV approach provides a
strategy for robust control and facilitates direct application
of classical control methods. The LPV approach to con-
trol also provides a starting framework for FTC in terms
of a baseline controller for the time-varying system.

LPV-based approaches to FDD can be divided into
two categories: (i) a linear-fractional-representation-
formalism-based approach and (ii) a polytopic-formalism-
based approach. This paper adopts the latter approach to
design a robust multivariable LPV fault estimator for a
nonlinear system with no unique equilibria.

The time-varying model system is represented by
an LPV polytope structure. The system is controlled
at each vertex via efficient interior-point algorithms and
LMIs, used within an H∞ framework and based on the
well known formalism of Apkarian et al. (1995). Using
the same framework, an LMI-based LPV pole-placement
strategy is developed from the time-varying measured pa-
rameters. The LPV estimator is applicable to systems
that have no unique equilibria. It is shown that the multi-
dimensional LPV fault estimator with pole-placement can
be determined efficiently with the solution of a set of
LMIs, and the friction forces are constructed effectively
and used in a compensation mechanism in each control
signal. The LMI-based pole-placement design is utilised
to guarantee the performance and stability of the estima-
tor. The concept of fault effect factors, first defined by
Chen et al. (1999), is outlined as a mechanism for achiev-
ing an active FTC scheme in which the nominal perfor-
mance can be recovered.

Being different from simple fault detection, wherein
the sensitivity of the fault is necessary, fault estimation
requires the achievement of the fault magnitude, error
steady state error. Therefore, the requirement of max-
imizing fault sensitivity can be transformed into that of
minimizing the fault error. In other words, the H∞/H−
fault residual generator of Hou and Patton (1996) can be
viewed as an H∞ fault estimator. The literature on the de-
velopment of the optimization-based method is well sum-
marized by Marcos et al. (2005).

A nonlinear two-link manipulator system (adopted
from the work of Patton and Klinkhieo (2010)) is a good
choice of an example to demonstrate the effectiveness of
fault estimation and the FTC scheme as it has no unique
equilibria, requiring the use of the LPV approach. Fric-

tion forces are simulated using the well-known Stribeck
friction model and combined with the manipulator system
as disturbance inputs. The estimated friction forces show
good correspondence with their real counterparts. Fur-
thermore, limit cycle oscillations in the system joint an-
gle outputs, generated by the friction forces, significantly
decrease when an on-line compensation system is applied.

Section 2 outlines the theoretical foundations of LPV
estimator design and introduces the LMI-based pole-
placement concept. In Section 3, the two-link manipu-
lator case study example is described and the Stribeck ap-
proach to modelling the friction forces is outlined prior to
constructing the corresponding active LPV FTC scheme.
Section 4 provides a concluding discussion of the work.

2. Theoretical foundation of a robust LPV
estimator

The LPV model can be abstracted as a linear system with
state-space matrices that are fixed with some vector of
varying parameters (Leith and Leithead, 2000; Wu, 2001).
Hence, a nonlinear system is reduced to LPV representa-
tion through linearisation along trajectories of the param-
eters. The nominal LPV system is expressed as

ẋ = A(θ)x + B(θ)u,

y = C(θ)x + D(θ)u,
(1)

where A(θ) ∈ R
n×n, B(θ) ∈ R

n×r, C(θ) ∈ R
m×n and

D(θ) ∈ R
m×r.

In contrast to Multiple Model Switching and Tuning
(MMST) and Interactive Multiple Model (IMM) methods,
LPV controllers or estimators do not require all local lin-
earisation points (Wu, 2001; Leith and Leithead, 2000).
The LPV design approach is well posed for a type of non-
linear systems in which the linearisation points cannot be
determined or are not unique, e.g., the two-link manipula-
tor system.

The LPV system with faults is described as follows:

ẋp = Ap(θ)xp + Bp(θ)u + Ep(θ)d + Fp(θ)f,

yp = Cp(θ)xp + Dp(θ)u + Gp(θ)d + Hp(θ)f,
(2)

where, xp ∈ R
n, u ∈ R

r, yp ∈ R
m and d ∈ R

q are
the states, control inputs, outputs, and disturbances, while
f ∈ R

g is the fault vector. θ ∈ R
s is a varying parameter

vector, and Ap(θ), Bp(θ), Cp(θ), Dp(θ), Ep(θ), Fp(θ),
Gp(θ) and Hp(θ) are matrices with appropriate dimen-
sions.

Based upon the work of Apkarian et al. (1995), the
assumptions that apply to fault LPV system (2) include
the following:

(A1) The parameter dependence is affine, that is, the state-
space matrices A(θ), B(θ), C(θ), D(θ), E(θ), F (θ),
G(θ) and H(θ) depend affinely on θ.
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Fig. 1. Polytopic LPV estimation system structure.

(A2) The time-varying parameter θ varies in a polytope Θ
of vertices θ1, θ2, . . . , θj(j = 2s), that is

θ ∈ Θ : = Co
{

θ1, θ2, . . . , θj

}

=
{ j∑

i=1

aiθi : ai ≥ 0,

j∑
i=1

ai = 1
}
.

(3)

From (A1) and (A2), it is clear that the state-space
matrices in (2) range in a polytope of matrices whose ver-
tices are the image of the vertices θ1, θ2, . . . , θj (j = 2s).
In other words,

[
Ap(θ) Bp(θ) Ep(θ) Fp(θ)
Cp(θ) Dp(θ) Gp(θ) Hp(θ)

]
∈

Co

⎧⎨
⎩

[
Ap(θi) Bp(θi) Ep(θi) Fp(θi)
Cp(θi) Dp(θi) Gp(θi) Hp(θi)

]

i = 1, . . . , j

⎫⎬
⎭ .

(4)

The polytopic estimator F(θ) can be written as

ẋf = Af (θ)xf + Bf (θ)
[

u
yp

]
,

f̂ = Cf (θ)xf + Df (θ)
[

u
yp

]
,

(5)

wherein xf ∈ R
n is the state vector of the estimator, f̂

is the estimation of the fault f , and Af (θ), Bf (θ), Cf (θ)
and Df (θ) are matrices with appropriate dimensions to be
designed. The LPV estimator (5) can also be rewritten as

F(θ) : =
[

Af (θ) Bf (θ)
Cf (θ) Df (θ)

]

∈ Co

⎧⎨
⎩

[
Af (θi) Bf (θi)
Cf (θi) Df(θi)

]

i = 1, . . . , j

⎫⎬
⎭ .

(6)

The structure of the estimator is shown in Fig. 1.
wherein the estimated error vector e = f̂ − f ∈ R

g re-
quires to be minimised. Here u and yp are shown in (2).

Define xpf and wudf to be [xp xf ]T and [u d f ]T , respec-
tively. Rewrite (2) as

ẋp = Axp + B1wudf + B2f̂ , (7)

e = C1xp + D11wudf + D12f̂ , (8)

yp = C2xp + D12wudf + D22f̂ , (9)

wherein A = Ap, B1 = [Bp Ep Fp],C2 = 0, C1 =
B2 = D22 = 0, C2 = Cp, D11 = [0 0 − I], D12 = I ,
D12 = [Dp Gp Hp].

The above system of Fig. 1 can then be expressed as

ẋpf = A′(θ)xpf + B′(θ)wudf ,

e = C′(θ)xpf + D′(θ)wudf ,
(10)

where

A′(θ) = A0 + BF(θ)C, B′(θ) = B0 + BF(θ)D21,

C′(θ) = D12F(θ)C, D′(θ) = D11 + D12F(θ)D21,

A0 =
[

A 0
0 0

]
, B0 =

[
B1

0

]
,

B =
[

0 B2

I 0

]
, C =

[
0 I

C2 0

]
,

D12 =
[

0 D12

]
, D21 =

[
0

D21

]
.

The definition of the LMI region and the existence
theorem for assignable poles inside this region are given
as follows:

Definition 1. (LMI region) A subset D of the complex
plane is called an LMI region if there exist a symmetric
matrix ι = [ιkl] and a matrix κ = [κkl] such that

D = {z ∈ C : fD < 0} (11)

with

fD := ι+ zκ+ zκT = [ιkl +κklz +κlkz]l<k,l<m. (12)

Theorem 1. (Chilali, 1996) The matrix Γ is D-stable if
and only if there exists a symmetric matrix H such that

TD(Γ, H) < 0, H > 0, (13)

where

TD(Γ, H) = ι ⊗ H + κ ⊗ (ΓH) + κT ⊗ (ΓH)T

= [ιklH + κklAH + κlkHAT ]l<k,l<m.

(14)
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Here, Problem 1 is defined to solve the estimation
problem with pole-placement.

Problem 1. For the LPV system (2) with the assumptions
(A1) and (A2), design a polytopic LPV estimator (5), such
that the L2-induced norm of the operator mapping wudf

into e is bounded by a scalar number γ for all parame-
ter trajectories θ in the polytope Θ. Also, all poles of the
LPV system (10) lie in the given LMI region D. The cor-
responding sub-optimal H∞ performance is given by

sup
0<‖wudf‖2<∞

‖e‖2

‖wudf‖2
< γ (15)

for all θ ∈ Θ.

Lemma 1. (Apkarian et al., 1995) For the LPV system
(10), the following statements are equivalent:

(i) L2-induced norm of the operator mapping wudf into
e is bounded by a scalar number γ for all parameter
trajectories θ in the polytope Θ.

(ii) For the parameter trajectories θ in the polytope Θ,
there exists P = PT > 0 satisfying the system of
LMIs:
⎡
⎣ XA′(θ) + A′T (θ)P PB′(θ) C′T (θ)

B′T (θ)P −γI D′T (θ)
C′(θ) D′(θ) −γI

⎤
⎦ < 0,

(16)
where i = 1, . . . , j.
The main result of this section is stated in Theorem 2,

which provides the solution of Problem 1.

Theorem 2. Consider the LPV system in (2) with As-
sumptions A1 and A2. Let NR = [NT

1 NT
2 ]T and NS =

[V T
1 V T

2 ]T denote the bases of the null spaces of [BT
2 DT

12]
and [C2 D21], respectively. There exists a polytopic LPV
estimator that can determine the solution of Problem 1 if
matrices 0 < R = RT ∈ R

n×n, 0 < S = ST ∈ R
n×n

can be found such that

[ NR 0
0 I

]T
⎡
⎣Ap(θi)R+RAT

p (θi) 0 B1(θi)
0 −γI D11

BT
1 (θi) DT

11 −γI

⎤
⎦

[ NR 0
0 I

]
< 0, i = 1, . . . , j, (17)

[ NS 0
0 I

]T
⎡
⎣SAp(θi)+AT

p (θi)S SB1(θi) 0
BT

1 (θi)S −γI DT
11

0 D11 −γI

⎤
⎦

[ NS 0
0 I

]
< 0, i = 1, . . . , j, (18)

UT
1 (αklS + βklAp(θi)S + βlkSAT

p (θi))U1 < 0,

i = 1, . . . , j (19)

V T
1 (αklR + βklRAp(θi) + βlkAT

p (θi)R)V1 < 0,

i = 1, . . . , j, (20)

[
R I
I S

]
≥ 0, i = 1, . . . , j. (21)

Proof. Based upon Theorem 1, the poles of the LPV
system (10) lie in the LMI region D if and only if there
exists X such that

MD(A′(θ), X)

= [αklX + βklA
′(θ)X + βlkXA′T (θ)] < 0.

(22)

By Lemma 1, Theorem 1 and considering the nota-
tion in (5)–(14), there exists a polytopic LPV fault estima-
tor (5) which solves Problem 1 if

Ψ(θi) + UT
x F(θi)V + V TFT (θi)Ux < 0, (23)

Φ(θi) + PTF(θi)Q§ + Q§TFT (θi)P < 0, (24)

where

Ψ(θi) =

⎡
⎣ XA0(θi) + AT

0 (θi)X XB(θi) 0
BT (θi)X −γI DT

11

0 D11 −γI

⎤
⎦ ,

(25)

Φ(θi) = αklX + βklA0X + βlkXAT
0 , (26)

Ux = [BT X 0 DT
12], (27)

V = [C D21 0], (28)

P = βlkBT , Q§ = CX. (29)

Based on the projection lemma, the LMIs of (23) and
(24) hold for some F(θi) if and only if

WT
Ux

Ψ(θi)WUx < 0, (30)

WT
V Ψ(θi)WV < 0, (31)

WT
P Φ(θi)WP < 0, (32)

WT
Q§Φ(θi)WQ§ < 0, (33)

where WUx , WV , WP and WQ§ denote any bases of the
null spaces of Ux, V , P and Q§, respectively.

Observing that

Ux =
[ BT 0 DT

12

]
⎡
⎣ X 0 0

0 I 0
0 0 I

⎤
⎦ , (34)

U =
[ BT 0 DT

12

]
, (35)

Q = C, (36)
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the basis for the null space of Ux and Q§ is given by

WUx =

⎡
⎣ X−1 0 0

0 I 0
0 0 I

⎤
⎦WU , (37)

WQ§ = X−1WQ, (38)

where WU and WQ denote any basis of the null space of
U and Q. Hence, the inequalities (30) and (33) can be
rewritten as

WT
U Ω(θi)WU < 0, (39)

WT
QΠ(θi)WQ < 0, (40)

with

Ω(θi) =

⎡
⎣A0(θi)X−1 + X−1AT

0 (θi) B0(θi) 0
BT

0 (θi) −γI DT
11

0 D11 −γI

⎤
⎦ ,

(41)
Π(θi) = (X−1)T αkl + (X−1)T βklA0 + βlkAT

0 X−1.
(42)

X and X−1 can be partitioned as

X =
[

S N
NT ∗

]
, X−1 =

[
R M

MT ∗
]

, (43)

where S, R, M, N ∈ R
n×n and S, R, M > 0, and ∗

stands for the matrix entries which are not of interest.
Then, X and X−1 are substituted into (25), (26), (41)

and (42), yielding Ψ(θi), Φ(θi), Ω(θi) and Π(θi):

Ψ(θi)=

⎡
⎢⎢⎣
SAp(θi)+AT

p (θi)S AT
p (θi)N SB1(θi) 0

NT Ap(θi) 0 NT B1(θi) 0
BT

1 (θi) BT
1 (θi)N −γI DT

11

0 0 D11 −γI

⎤
⎥⎥⎦ ,

i = 1, . . . , j, (44)

Ω(θi)=

⎡
⎢⎢⎣
Ap(θi)R+RAT

p (θi) Ap(θi)M B1(θi) 0
MT AT

p (θi) 0 0 0
BT

1 (θi) 0 −γI DT
11

0 0 D11 −γI

⎤
⎥⎥⎦ ,

i = 1, . . . , j, (45)

Φ(θi) = αkl

[
S N

NT ∗
]
+βkl

[
Ap(θi)S Ap(θi)N

0 0

]

+ βlk

[
SAT

p (θi) 0
NT AT

p (θi) 0

]
,

i = 1, . . . , j, (46)

Π(θi) = αkl

[
R M

MT ∗
]

+ βkl

[
RAp(θi) 0

MT Ap(θi) 0

]

+ βlk

[
AT

p (θi)R AT
p (θi)M

0 0

]
,

i = 1, . . . , j. (47)

Let

NR =
[

U1

U2

]
, NS =

[
V1

V2

]

denote the bases of the null spaces of [BT
2 DT

12] and
[C2 D21], respectively, where U1 and V1 span the null
spaces of BT

2 and C2. Then, the bases of the null spaces
of U , V , P and Q are respectively given by

WU =

⎡
⎢⎢⎣

U1 0
0 0
0 I
U2 0

⎤
⎥⎥⎦ , WV =

⎡
⎢⎢⎣

V1 0
0 0
0 I
V2 0

⎤
⎥⎥⎦ , (48)

WP =
[

U1 0
0 0

]
, WQ =

[
V1 0
0 0

]
. (49)

Substituting (44)–(49) into (31), (32), (39) and (40),
yields

[ NR 0
0 I

]T
⎡
⎣Ap(θi)R+RAT

p (θi) 0 B1(θi)
0 −γI D11

BT
1 (θi) DT

11 −γI

⎤
⎦

[ NR 0
0 I

]
< 0, i = 1, . . . , j, (50)

[ NS 0
0 I

]T
⎡
⎣SAp(θi)+AT

p (θi)S SB1(θi) 0
BT

1 (θi)S −γI DT
11

0 D11 −γI

⎤
⎦

[ NS 0
0 I

]
< 0, i = 1, . . . , j, (51)

UT
1 (αklS + βklAp(θi)S + βlkSAT

p (θi))U1 < 0,

i = 1, . . . , j, (52)

V T
1 (αklR + βklRAp(θi) + βlkAT

p (θi)R)V1 < 0,

i = 1, . . . , j, (53)

Based on the matrix completion result, the condition
X > 0 is equivalent to[

R I
I S

]
≥ 0, (54)

which completes the proof of Theorem 2. �
Once the matrices R and S defined in Theorem 2 are

obtained, the LPV estimator can be constructed as the fol-
lowing Algorithm 1.

Algorithm 1.

Step 1: Compute the full rank matrices M , N using SVD
such that

MNT = I − RS. (55)
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Step 2: Compute X as the unique solution of the linear
matrix equation:

X

[
I R
0 MT

]
=

[
S I

NT 0

]T

. (56)

Step 3: Compute F(θi) by solving (23) and (24).

Step 4: Solve the polytopic LPV estimator:

F(θ) =
j∑

i=1

ai
pF(θi), (57)

where ai
p is any solution of the convex decomposition

problem

θ =
j∑

i=1

ai
pθi. (58)

3. Two-link manipulator case study

3.1. Robust LPV fault estimator for a two-link ma-
nipulator. A two-link manipulator demonstrator system
(shown in Fig. 2) with actuator faults is illustrated. The
actuator faults are regarded as friction forces acting at the
joints of the system, changing in terms of the angular ve-
locity of the joints. Four types of dynamic torques arise
from the motion of the manipulator: inertial, centripetal,
coriolis and friction torques. Inertial torques are propor-
tional to the acceleration of each joint in accordance with
Newton’s second law. Centripetal torques arise from the
centripetal forces which constrain a body to rotate around
a point. They are directed towards the centre of the uni-
form circular motion, and are proportional to the square
of the velocity. Coriolis torques result from vertical forces
derived from the interaction of two rotating links and are
proportional to the product of the joint velocities of those
links. The model is shown in Fig. 2. The positions of the
two arms are defined by the joint angles φ = [φ1 φ2]T .
The system inputs are u = [u1 u2]T , which are the torques
acting onto the joints.

Load

m g2

m g1

lc
2

lc1

l1

fric2

u2

fric1

u1

g

Φ1

Φ2

.

.

Fig. 2. Two-link manipulator structure.

The dynamics of the manipulator (McKerrow, 1991;
Hassen et al., 2000) are shown as

Ξ(φ)φ̈ + O(φ, φ̇)φ̇ + g(φ) = u − fric(φ̇), (59)

where Ξ(φ) ∈ R
2×2 is the manipulator inertia tensor ma-

trix, O(φ, φ̇)φ̇ ∈ R
2 is the function containing the cen-

tripetal and Coriolis torques. g(φ) ∈ R
2 and fric(φ̇) the

gravitational and friction torques, respectively.
The physical system parameters are shown in Ta-

ble 1, with the following notation:

Ii: inertia of arm i,

l1: distance between joint 1 and joint 2,

lc1: distance of joint 1 from centre of mass arm 1,

lc2: distance of joint 2 from centre of mass arm 2,

m1: mass of arm 1 and load,

m2: mass of arm 2.

Table 1. Parameter values for the two-link manipulator system.
Parameters Values [%] Units

I1 0.83 kg · m2

I2 0.41 kg · m2

l1 1 m
lc1, lc2 0.5 kg

m1 10 kg
m2 5 kg
g 9.8 m/s2

The equations of motion including friction on the
joints are described by

(m1l
2
c1 + m2l

2
1 + I1)φ̈1 + (m2l1lc2 cos(φ1 − φ2))φ̈2

+ m2l1lc2 sin(φ1 − φ2)φ̇2
2 − (m1lc1 + m2l1)g sin(φ1)

= u1 − fric1(φ̇1), (60)

(m2l1lc2 cos(φ1 − φ2)φ̈1 + (m2l
2
c2 + I2)φ̈2

− (m2l1lc2 sin(φ1 − φ2))φ̈1 − m2glc2 sin(φ2)

= u2 − fric2(φ̇2). (61)

The friction forces acting on the joints are described
by the discontinuous Stribeck friction model (Putra et al.,
2004):

ffric = g(xp)Sign(xp), (62)

where

Sign(xp) =

⎧⎪⎨
⎪⎩
−1 if xp < 0,

[−1, 1] if xp = 0,

1 if xp > 0,
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and g(xp) = Fc + (Fs − Fc) exp(−|xp|/vs)δ is the
Stribeck friction function with Fc and Fs being the
Coulomb and static friction levels, respectively, and vs,
δ > 0 are the Stribeck velocity and shaping parameters,
respectively. In the friction simulation, the following pa-
rameter values are used: Fc = 5 N, vs = 0.15ms−1,
Fs = 2.5 N and δs = 1.22. Here, the quadratic terms
O(φ, φ̇) are not considered since they are not bounded.
Equation (59) can be simplified as

Ξ(φ)φ̈ + g(φ) = u, (63)

where

Ξ(φ) =
[

m1l
2
c1 + m2l

2
c1 + I1 m2l1lc2 cos(φ1 − φ2)

m2l1lc2 cos(φ1 − φ2) m2l
2
c2 + I2

]
,

g(φ) =
[ −(m1lc1 + m2l1)g sin(φ1)

−m2glc2 sin(φ2)

]
.

The nonlinear term in Ξ(φ) is clearly a bounded
function,

ϕ1(φ) = cos(φ1 − φ2) ∈ [−1 1]. (64)

Hence, Ξ(φ) can be represented by a polytope whose
vertices are defined by

Ξ(φ) ∈ Co{Ξ1 Ξ2}, (65)

where

Ξ1(φ) =
[

m1l
2
c1 + m2l

2
c1 + I1 m2l1lc2

m2l1lc2 m2l
2
c2 + I2

]
, (66)

Ξ2(φ) =
[

m1l
2
c1 + m2l

2
c1 + I1 −m2l1lc2

−m2l1lc2 m2l
2
c2 + I2

]
. (67)

To construct a state-space formulation, the vector
field g(φ) with ϕ ∈ R

2 can be arranged in the form
of Gg(φ)φ and the function ϕ2(φ) can now be defined,
which is bounded:

sin(φ1) =
( sin(φ1)

φ1

)
φ1 = ϕ2(φ1)φ1, (68)

sin(φ2) =
( sin(φ2)

φ2

)
φ2 = ϕ3(φ2)φ2, (69)

where −0.2 ≤ ϕ2 ≤ 1, −0.2 ≤ ϕ3 ≤ 1.
From the bound of function ϕ2(φ1), ϕ3(φ2) in terms

of the angle φ, Gg(φ) is considered to be a polytope as
follows:

Gg(φ) ∈ Co{Gg
1, G

g
2, G

g
3, G

g
4}, (70)

where

Gg
1 =

[
0.2(m1lc1 + m2l1)g 0

0 0.2m2lc2g

]
, (71)

Gg
2 =

[ −(m1lc1 + m2l1)g 0
0 0.2m2lc2g

]
, (72)

Gg
3 =

[
0.2(m1lc1 + m2l1)g 0

0 −0.2m2lc2g

]
, (73)

Gg
4 =

[ −(m1lc1 + m2l1)g 0
0 −m2lc2g

]
. (74)

To define the state space representation of the two-
link system, let

x = [φ1 φ2 φ̇1 φ̇2]
′

and

Wb =
[

0 0 0 1
0 0 1 0

]′

.

The LMI constraints with state feedback according
to the nonlinear equations in (59) and (60) are then given
by the following descriptor system:

[
I 0
0 Ξ(φ)

]
ẋ =

[
0 I

−Gg(φ) 0

]
x + Wbu. (75)

Let Π be a nonsingular matrix given by

Π =
[

I 0
0 Ξ(φ)

]
. (76)

The state space equation can be expressed as follows:

ẋ = A(φ)x + B(φ)u, (77)

where

A(φ) = Π−1

[
0 I

−Gg(φ) 0

]
,

B(φ) = Π−1Wb.

With the faults, choosing the scheduling parameter
as θ = [ϕ1 ϕ2 ϕ3]′,

ẋ = A(θ)x + B(θ)u + Fafa

= Aijx + Biu + Fafa,
(78)

i = 1, 2 and j = 1, 2, 3, 4, where Fa is a fault distribution
matrix and fa stands for actuator faults which represent
the friction forces acting on each joint.

A common constant gain matrix K is built to stabilise
the fault-free open-loop system on each vertex. Let Lc =
KSc. Then the quadratic stability conditions for an eight-
vertex system can be written as

AijSc + BiLc + ScA
T
ij + LT

c BT
i ≤ 0,

Sc = ST
c ≥ I, i = 1, 2, j = 1, 2, 3, 4. (79)
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The following matrices Sc and Lc were calculated
using the MATLAB LMI Toolbox after 55 iterations. The
corresponding controller is

Sc =

⎡
⎢⎢⎣

2.1051 0.0000 −4.7048 −0.0000
0.0000 2.1396 −0.0000 −4.1781
−4.7048 −0.0000 21.0304 0.0000
−0.0000 −4.1781 0.0000 16.3180

⎤
⎥⎥⎦ ,

(80)

Lc =
[−75.6297 0.0000 −176.2102 −0.0000
−0.0000 −20.9682 0.0000 −139.6002

]
,

(81)

K =
[−109.3065 0 −32.8321 0

0 −53.0095 0 −22.1276

]
.

(82)

The eight-vertex of a closed-loop system is combined
by Aij and Bi, which are given as follows:

A11 =

⎡
⎢⎢⎣

0 0 1.0000 0
0 0 0 1.0000

−4.2519 9.3277 −7.1627 7.2397
6.3765 −31.0910 10.7419 −24.1312

⎤
⎥⎥⎦ ,

(83)

A12 =

⎡
⎢⎢⎣

0 0 1.0000 0
0 0 0 1.0000

−4.2519 18.9467 −7.1627 7.2397
6.3765 −63.1531 10.7419 −24.1312

⎤
⎥⎥⎦ ,

(84)

A13 =

⎡
⎢⎢⎣

0 0 1.0000 0
0 0 0 1.0000

−27.7655 9.3277 −7.1627 7.2397
41.6399 −31.0910 10.7419 −24.1312

⎤
⎥⎥⎦

(85)

A14 =

⎡
⎢⎢⎣

0 0 1.0000 0
0 0 0 1.0000

−27.7655 18.9467 −7.1627 7.2397
41.6399 −63.1531 10.7419 −24.1312

⎤
⎥⎥⎦ ,

(86)

A21 =

⎡
⎢⎢⎣

0 0 1.0000 0
0 0 0 1.0000

−4.2519 −9.3277 −7.1627 −7.2397
−6.3765 −31.0910 −10.7419 −24.1312

⎤
⎥⎥⎦ ,

(87)

A22 =

⎡
⎢⎢⎣

0 0 1.0000 0
0 0 0 1.0000

−4.2519 −18.9467 −7.1627 −7.2397
−6.3765 −63.1531 −10.7419 −24.1312

⎤
⎥⎥⎦ ,

(88)

A23 =

⎡
⎢⎢⎣

0 0 1.0000 0
0 0 0 1.0000

−27.7655 −9.3277 −7.1627 −7.2397
−41.6399 −31.0910 −10.7419 −24.1312

⎤
⎥⎥⎦ ,

(89)

A24=

⎡
⎢⎢⎣

0 0 1.0000 0
0 0 0 1.0000

−27.7655 −18.9467 −7.1627 −7.2397
−41.6399 −63.1531 −10.7419 −24.1312

⎤
⎥⎥⎦ ,

(90)

B1 =

⎡
⎢⎢⎣

0 0
0 0

0.2182 −0.3272
−0.3272 1.0905

⎤
⎥⎥⎦ , (91)

B2 =

⎡
⎢⎢⎣

0 0
0 0

0.2182 0.3272
0.3272 1.0905

⎤
⎥⎥⎦ . (92)

The actuator fault estimate f̂a for system (78) can
then be implemented by using Algorithm 1.

The fault-free system outputs of two joint rotation
angles can be shown in Figs. 3 and 4.
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Fig. 3. Fault-free response of Angle 1.
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Fig. 4. Fault-free response of Angle 2.

With the faults (friction forces), the nonlinear sys-
tem outputs of two angles are shown in Figs. 5 and 6, re-
spectively. The corresponding faults (friction forces) are
shown in Fig. 7.

The desired LMI region D is forced to lie in the half-
plane x < −0.5. Also, choosing γ to be 2.7550, after
15 iterations, the γ-suboptimum estimator Fi(θ) is cal-
culated, corresponding to each vertex. The LPV estima-
tor is then built through the combination of Fi(θ), i =
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Fig. 5. Response of Angle 1 with faults.
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Fig. 6. Response of Angle 2 with faults.
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Fig. 7. Friction forces acting on two joints.

1, 2, . . . , 8. Figures 8 and 9 show the results of the fric-
tion estimation, with a Gaussian random disturbance d of
zero-mean and variance 0.02.

Simulation results show that the robust LPV fault es-
timator provides a good online estimation performance for
both friction forces simultaneously. The solid line repre-
sents the fault signal and the dotted line depicts the esti-
mated fault signal.

3.2. Active LPV FTC scheme. The dynamic system
of (78) includes an additive term of the actuator faults.
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Fig. 8. Estimated friction acting on Joint 1.
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Fig. 9. Estimated friction acting on Joint 2.

However, the faults can have a multiplicative effect in the
system representation. A multiplicative actuator fault rep-
resentation can be defined as

ẋ = Aijx + Bi[Ir − ηa]u, (93)

where ηa is the so-called fault-effect factor, and ηa =
diag[ηa

1 , ηa
2 , . . . , ηa

r ], and 0 ≤ ηa
i < 1 represents a fault

in the i-th actuator while ηa
i = 0 means that the i-th actu-

ator operates normally (fault-free), whilst ηa
i > 0 means

that some degree of the fault effect occurs in the actuator
(Chen et al., 1999). The distribution matrix Fa is equal
to the matrix B in an actuator fault case. The estimation
of the fault-effect factor ηa is determined from the fault
estimation f̂ provided by the LPV fault estimator.

In Section 3.1, a constant controller is developed to
achieve the stability of the eight-vertex system. However,
sometimes, specified nonlinear system outputs have to be
considered, e.g., the mode distribution or pole position,
which require an LPV controller Klpv to be achieved. The
LPV controller can be expressed by

Klpv = K + K(θ), (94)

where K is the developed constant controller.
The structure of the active LPV FTC system is shown

in Fig. 10, wherein KFTC(η̂a, θ) is the adaptive LPV con-
troller for the FTC mechanism, depending on the on-line
estimation η̂a and measurement θ.

Theorem 3. Consider the system in (93) with i = 1, . . . , r
actuator faults (ηa �= 0) acting independently within the
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Polytopic control system

KFTC(η̂a, θ)

LPV estimator

uFTC θ

η̂a

Fig. 10. Active LPV fault-tolerant control scheme.

control system with an LPV gain matrix Klpv. Define ζ =
[I − η̂a]. The new control action (assuming nonzero fault
effects) is given as

uFTC = (ζ† + (I − ζ†ζ)Z)Klpvx

= KFTC(η̂a, θ)x,
(95)

where ζ is required to be of full row rank, † represents the
pseudo-inverse, Z is the free matrix. The degree of free-
dom of designing the LPV controller can be fully utilised
by choosing various Z (Chen, 2009).

Proof. Based upon the system state equation with faults
(93) and the new control input uFTC, the fault compensa-
tion system is given by

ẋ = Ax + BζuFTC

= Ax + Bζ(ζ† + (I − ζ†ζ)Z)Klpvx

= Ax + Bunom.

(96)

It can be seen that the term (I − ηa) acting on the sys-
tem (93) can be removed through replacing u with uFTC,
which completes the proof. �

Figure 12 shows the system outputs after the fault has
been compensated. Apparently, the system output oscilla-
tions caused by frictions can be decreased. The nominal
performance of the system outputs generated by the LPV
controller can be effectively recovered after the fault com-
pensation is activated at 40 s. This demonstrates very well
the fault-tolerance of the active LPV FTC system.

4. Conclusions

The principle of the LPV design approach for robust
fault estimation with pole-placement has been introduced
through the use of a set of LMIs using efficient interior-
point algorithms. The robust LPV fault estimator design
approach is well posed for fault detection and diagnosis
of a nonlinear system. Not only can the robustness of the
estimation error be improved, corresponding to the sys-
tem control inputs, disturbances and the faults, but also
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Fig. 11. Angle response of Joint 1 with active FTC.
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Fig. 12. Angle response of Joint 2 with active FTC.

the structure of the robust LPV estimator can be modified
online through the measurement of the varying parame-
ters. As an example of a practical type of actuator fault,
the friction forces acting in the joints of a two-joint ma-
nipulator system are generated using the Stribeck friction
model. The simulation results show that the simultane-
ously acting friction forces can be estimated effectively
using the polytope estimator, and the actuator faults can
be compensated through the developed active LPV FTC
scheme.
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