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A method for decentralized stabilization of fractional positive descriptor linear systems is proposed. Necessary and suffi-
cient conditions for decentralized stabilization of fractional positive descriptor linear systems are established. The efficiency
of the proposed method is demonstrated on a numerical example.
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1. Introduction

A dynamical system is called positive if its trajectory
starting from any nonnegative initial state remains forever
in the positive orthant for all nonnegative inputs. An
overview of the state of the art in positive systems theory
was given by Farina and Rinaldi (2000) or Kaczorek
(2002; 2014a; 2014b; 2010). Models having positive
behavior can be found in engineering, economics, social
sciences, biology and medicine, etc.

A dynamical system is called fractional if it
is described by fractional differential equations.
Mathematical fundamentals of fractional calculus
were given and by Oldham and Spanier (1974), Ostalczyk
(2008) and Podlubny (1999). Positive fractional linear
systems were investigated by Caputo and Fabrizio (2015),
Kaczorek (2013; 2010; 2012), or Losada and Nieto
(2015). Stability of positive descriptor systems was
addressed by Kaczorek (2011a) and Virnik (2008).

Descriptor (singular) linear systems were considered
in many papers and books (Bru et al., 2000; 2003;
State, 1976; Dai, 1989; Dodig and Stosic, 2009; Duan,
2010; Fahmy and o’Reill, 1989; Sajewski, 2016a;
2016b). Positive standard and descriptor systems and
their stability were analyzed by Dodig and Stosic (2009),
Duan (2010), or Sajewski (2016b). Descriptor standard
and positive discrete-time and continuous-time nonlinear
systems were analyzed by Kaczorek (2014a; 2012;
1997) and Van Dooren (1979). The Drazin inverse
was applied to the analysis of descriptor systems by

Kaczorek (2013), who also addressed singular standard
and positive linear systems (Kaczorek, 2002; 1997),
along with minimum energy control of descriptor positive
systems (Kaczorek, 2014b) and positive linear systems
with different fractional orders (Kaczorek, 2010; 2011b).
Positive fractional continuous-time linear systems with
singular pencil were also addressed by Kaczorek (2012).

This work is intended as an attempt to characterize
decentralized stabilization of fractional positive descriptor
continuous-time linear systems. The paper is organized
as follows. In Section 2 some definitions and theorems
concerning fractional positive linear continuous-time
systems are recalled and a method of stabilization of
linear systems by state-feedback is proposed. The main
result of the paper, a method of decentralized stabilization
of fractional descriptor linear systems, is presented in
Section 3. In Section 4, concluding remarks are given.

The following notation will be used: R, the set of
real numbers; R

n×m, the set of real n × m matrices;
R

n×m
+ , the set of n×m matrices with nonnegative entries

and R
n
+ = R

n×1
+ ; Z+, the set of nonnegative integers;

Mn, the set of n × n Metzler matrices (with nonnegative
off-diagonal entries); In, the n × n identity matrix; AT ,
the transposition of matrix A.

2. Preliminaries

In this paper, the following Caputo definition of the
fractional derivative of α order will be used (Kaczorek,
2011a; Oldham and Spanier, 1974; Ostalczyk, 2008;
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Podlubny, 1999):

0D
α
t f(t) =

dαf(t)

dtα
=

1

Γ(1− α)

∫ t

0

ḟ(τ)

(t− τ)α
dτ,

0 < α < 1, (1)

where

ḟ(τ) =
df(τ)

dτ

and

Γ(x) =

∫ ∞

0

tx−1e−t dt,

while R(x) > 0 is the Euler gamma function.
Consider the fractional continuous-time linear

system

dαx(t)

dtα
= Ax(t) +Bu(t), 0 < α < 1, (2a)

y(t) = Cx(t), (2b)

where x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
p are the state,

input and output vectors, respectively, and A ∈ R
n×n,

B ∈ R
n×m, C ∈ R

p×n.

Definition 1. (Farina and Rinaldi, 2000; Kaczorek, 2002)
The fractional system (2) is called (internally) positive if
x(t) ∈ R

n
+, y(t) ∈ R

p
+, t ≥ 0 for all x(0) ∈ R

n
+ and every

u(t) ∈ R
m
+ , t ≥ 0.

Theorem 1. (Farina and Rinaldi, 2000; Kaczorek, 2002)
The fractional system (2) is positive if and only if

A ∈ Mn, B ∈ R
n×m
+ , C ∈ R

p×n
+ . (3)

Definition 2. (Farina and Rinaldi, 2000; Kaczorek,
2011a) The positive fractional system (2) for u(t) = 0
is called asymptotically stable if

lim
t→∞x(t) = 0 for allx(0) ∈ R

n
+. (4)

Theorem 2. (Farina and Rinaldi, 2000; Kaczorek, 2011a)
The positive fractional system (2) for u(t) = 0 is asymp-
totically stable if and only if one of the following equiva-
lent conditions is satisfied:

1. All coefficients of the characteristic polynomial

det[Ins−A] = sn+an−1s
n−1+· · ·+a1s+a0 (5)

are positive, i.e., ai > 0, i = 0, 1, . . . , n− 1.

2. All principal minors M̄i > 0, i = 1, . . . , n, of the
matrix −A are positive, i.e.,

M̄1 = |−a11| > 0,

M̄2 =

∣∣∣∣ −a11 −a12
−a21 −a22

∣∣∣∣ > 0,

M̄n = det[−A] > 0.

(6)

3. There exists a strictly positive vector

λ = [λ1, . . . , λn]
T , λk > 0, k = 1, . . . , n,

such that
Aλ < 0. (7)

If detA �= 0 then we may choose λ = A−1c, where
c ∈ R

n is strictly positive.
We are looking for a gain matrix

K = ND−1, D = diag[d1, . . . , dn], dk > 0,

k = 1, . . . , n, N ∈ R
m×n (8)

such that
A+BK ∈ Mn (9)

is asymptotically stable.
Substitution of (8) into (9) yields

A+BK = (AD +BN)D−1. (10)

Using the known (Boyd et al., 1994; Giorgio and Zuccotti,
2015) procedures we choose the matrices D and Nso that

AD + BN ∈ Mn, (AD +BN)D−1 < 0. (11)

If (11) holds, then the matrix (10) is an asymptotically
stable Metzler matrix.

To find the matrices D and N , one of the well-known
linear programming or LMI procedures can be used (Boyd
et al., 1994; Giorgio and Zuccotti, 2015).

Definition 3. The positive system (1) (or, equivalently,
the pair (A,B)) is called stabilizable by the state feedback
if there exists a gain matrix (8) such that the closed-loop
system matrix

Ac = A+BK ∈ Mn (12)

is asymptotically stable.

Remark 1. In a general case, the controllability of
the pair (A,B) is not sufficient for the stabilization of a
close-loop system with a Metzler matrix. The pair (A,B)
should be stabilizable.

3. Decentralized stabilization of fractional
descriptor linear systems

Consider the fractional descriptor linear continuous-time
system

E
dαx

dtα
= Ax +Bu, (13)

where x = x(t) ∈ R
n, u = u(t) ∈ R

m are respectively
the state and input vectors, and A,E ∈ R

n×n,
B ∈ R

n×m.
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Assumption 1. The matrix E possesses n1 < n linearly
independent columns (the remaining columns are zero).

Assumption 2. The pencil of (13) is regular, i.e.,

det [Es−A] �= 0 for some s ∈ C, (14)

where C is the field of complex numbers.

Defining the new state vector

x̄ = x̄(t) = P−1x(t) =

[
x̄1

x̄2

]
,

x̄1 ∈ R
n1 , x̄2 ∈ R

n2 , n2 = n− n1 (15)

and premultiplying Eqn. (13) by a matrix Q ∈ R
n×n, we

obtain

QEPP−1ẋ = QAPP−1x+QBu (16)

and
dαx1

dtα
= Ā11x1 + Ā12x2 + B̄1u, (17)

0 = Ā21x1 + Ā22x2 + B̄2u, (18)

where

QEP =

[
In1 0
0 0

]
, (19a)

Ā = QAP =

[
Ā11 Ā12

Ā21 Ā22

]
, (19b)

Ā11 ∈ R
n1×n1 , Ā22 ∈ R

n2×n2 , (19c)

B̄ = QB =

[
B̄1

B̄2

]
, (19d)

B̄1 ∈ R
n1×m, B̄2 ∈ R

n2×m. (19e)

The matrices Q and P can be obtained with the use
of the following elementary row and column operations
(Kaczorek, 2002; 2011a):

1. Multiplication of the i-th row (resp. column) by a
real number c. This operation will be denoted by
L[i× c] (resp. R[i× c]).

2. Addition to the i-th row (resp. column) of the j-th
row (resp. column) multiplied by a real number c.
This operation will be denoted by L[i+ j × c] (resp.
R[i+ j × c]).

3. Interchange of the i-th and j-th rows (resp. columns).
This operation will be denoted by L[i, j] (resp.
R[i, j]).

From Assumption 1 it follows that the matrix P is a
permutation matrix and P−1 = PT ∈ R

n×n
+ . Therefore,

if x(t) ∈ R
n
+, t ≥ 0, then P−1x(t) ∈ R

n
+, t ≥ 0.

The matrix Q ∈ R
n×n can be obtained by performing

an elementary row operation on the identity matrix In.

Consider the fractional descriptor unstable positive
linear system

[
In1 0
0 0

]
dα

dtα

[
x1

x2

]

=

[
A11 A12

A21 A22

] [
x1

x2

]
+

[
B1

B2

]
u, (20a)

where

, x1 ∈ R
n1 , x2 ∈ R

n2 , u ∈ R
m and

A11 ∈ Mn1 , A22 ∈ Mn2 , A12 ∈ R
n1×n2
+ , (20b)

A21 ∈ R
n2×n1
+ , B1 ∈ R

n1×m
+ , B2 ∈ R

n2×m
+ .

(20c)

We are looking for a decentralized controller,

u =

[
K1 0
0 K2

] [
x1

x2

]
,

K1 ∈ R
n1×n1 , K2 ∈ R

n2×n2 , (21)

such that the closed-loop system
[

In1 0
0 0

]
dαx

dtα

[
x1

x2

]

=

[
A11 +B1K1 A12

A21 A22 + B2K2

] [
x1

x2

] (22)

is positive and asymptotically stable.
The problem can be solved with the use of the

following procedure.

Procedure 1.
Step 1. Given A22 ∈ Mn2 and B2 ∈ R

n2×m
+ , compute a

gain matrix K2 such that

Â22 = A22 +B2K2 ∈ Mn2 (23)

and is asymptotically stable.
Then, from (22), we have

x2 = −Â−1
22 A21x1 ∈ R

n2
+

⇐⇒ x1 ∈ R
n1
+ , t ≥ 0, (24)

where −Â−1
22 A21 ∈ R

n2×n1
+ since, by Theorem 2,

−Â−1
22 ∈ R

n2×n2
+ and A21 ∈ R

n2×n1
+ .

Substituting (24) into

x̂1 = (A11 +B1K1)x1 +A12x2, (25)

we obtain
ẋ1 = (Â11 +B1K1)x1, (26)

where

Â11 = A11 −A12Â
−1
22 A21 ∈ R

n1×n1
+ . (27)
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Step 2. Knowing Â11 ∈ R
n1×n1
+ and B ∈ R

n1×m
+ ,

compute a gain matrix K1 such that

Â11 +B1K1 ∈ Mn1 (28)

is asymptotically stable.
If the condition (28) is satisfied, then from (26) we

have
x1 ∈ R

n1
+ , lim

t→∞x1(t) = 0, (29)

which implies

x2 ∈ R
n2
+ , lim

t→∞x2(t) = 0. (30)

It is well known that the eigenvalues of the matrix
Ac = A + BK can be arbitrarily assigned to the
state-feedback matrix K if and only if the pair (A,B) is
stabilizable. Therefore, the following theorem has been
proved.

Theorem 3. The positive descriptor system (20) can be
stabilized by the decentralized controller (21) if and only
if the pairs (A22, B2), (Â11, B1) are stabilizable.

Remark 2. Note that the closed-loop system is positive
and asymptotically stable if the gain matrices K1 and K2

are chosen so that the matrices A22 + B2K2 and Â11 +
B1K1 are asymptotically stable Metzler matrices, but the
matrix

[
A11 +B1K1 A12

A21 A22 +B2K2

]
(31)

is not necessarily asymptotically stable.

Example 1. Consider the positive descriptor system (20)
with the matrices

[
A11 A12

A21 A22

]
=

⎡
⎢⎢⎣

1 2 1 0
1 −3 0 1
1 1 −2 1
0 2 0 1

⎤
⎥⎥⎦ ,

[
B1

B2

]
=

⎡
⎢⎢⎣

1
0
0
1

⎤
⎥⎥⎦ (n1 = n2 = 2).

(32)

The system is unstable since the matrices A11and A22

have positive diagonal entries. �

Find a decentralized controller (21) which is
stabilized for the system (20) with (32).

Using Procedure 1, we obtain what follows.

Step 1. Note that the pair

(A22, B2) =

([ −2 1
0 1

]
,

[
0
1

])

is controllable, and using (8) we obtain that

K2 = N2D
−1
2

=
[
2 −3

] [
2 0
0 1

]−1

=
[
1 −3

] (33)

and the matrix

Â22 = A22 +B2K2

=

[ −2 1
0 1

]
+

[
0
1

] [
1 −3

]

=

[ −2 1
1 −2

]
∈ M2

(34)

is asymptotically stable.
Taking into account that

− Â−1
22 =

1

3

[
2 1
1 2

]
, (35)

we obtain

Â11 = A11 −A12Â
−1
22 A21

=

[
1 2
1 −3

]
+

[
1 0
0 1

]
1

3

[
2 1
1 2

] [
1 1
0 2

]

=
1

3

[
5 10
4 −4

]
.

(36)

Note that the matrix (36) is unstable and the pair
(Â11, B1) is controllable.

Step 2. Using (8), we obtain that

K1 = N1D
−1
1

=
[ −4 −3

] [ 1 0
0 1

]

=
[ −4 −3

]
(37)

and the matrix

Â11 +B1K1 =
1

3

[
5 10
4 −4

]
+

[
1
0

] [ −4 −3
]

=
1

3

[ −7 1
4 −4

]
∈ M2

(38)

is asymptotically stable.
Note that the closed-loop system (22) with the matrix

[
A11 +B1K1 A12

A21 A22 +B2K2

]

=

⎡
⎢⎢⎣

− 7
3

1
3 1 0

4
3 − 4

3 0 1
1 1 −2 1
0 2 1 −2

⎤
⎥⎥⎦ (39)

is positive and asymptotically stable although the Metzler
matrix (39) is not asymptotically stable.
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4. Concluding remarks

A method for decentralized stabilization of fractional
positive descriptor continuous-time linear systems has
been proposed. Necessary and sufficient conditions for
decentralized stabilization of fractional positive descriptor
systems have been established (Theorem 3). A procedure
for computation of decentralized feedbacks has been
proposed. The effectiveness of the procedure has been
demonstrated on a numerical example. The considerations
discussion can be easily extended to the fractional positive
descriptor discrete-time linear systems and to fractional
positive linear systems described by the new definitions of
fractional derivatives (Caputo and Fabrizio, 2015; Losada
and Nieto, 2015). An open problem is the extension of the
method to positive nonlinear systems.
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