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A deterministic mathematical model of the Middle East respiratory syndrome (MERS) disease is introduced. Medical
masks, supportive care treatment and a government campaign about the importance of medical masks will be involved in
the model as time dependent variables. The problem is formulated as an optimal control one to minimize the number of
infected people and keep the intervention costs as low as possible. Assuming that all control variables are constant, we
find a disease free equilibrium point and an endemic equilibrium point explicitly. The existence and local stability criteria
of these equilibria depend on the basic reproduction number. A sensitivity analysis of the basic reproduction number with
respect to control parameters tells us that the intervention on medical mask use and the campaign about the importance
of medical masks are much more effective for reducing the basic reproduction number than supportive care intervention.
Numerical experiments for optimal control problems are presented for three different scenarios, i.e., a scenario of different
initial conditions for the human population, a scenario of different initial basic reproduction numbers and a scenario of
different budget limitations. Under budget limitations, it is much better to implement the medical mask intervention in the
field, rather than give supportive care to control the spread of the MERS disease in the endemic prevention scenario. On
the other hand, the medical mask intervention should be implemented partially together with supportive care to obtain the
lowest number of infected people, with the lowest cost in the endemic reduction scenario.
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1. Introduction

MERS is a respiratory disease caused by a coronavirus
or MERS-CoV, first found in Saudi Arabia in 2012
(Al-Tawfiq et al., 2012; Gautret, 2013; Zaki et al., 2012).
More than 1791 cases have already been reported, with
more than 640 ending in death up to 2016 (WHO, 2016).
Infection with MERS can occur through direct contact
between persons and/or camel to person (Reusken et al.,
2013). The virus is not the same as the coronavirus
that caused SARS (severe acute respiratory syndrome) in
2003. It apparently evolved by a coronavirus that existed
in bats and camels. The virus can be transmitted from
direct contact with infected people or through the air after
sneezing (Assiri et al., 2013; Haagmans et al., 2014). The
symptoms of MERS can be varied, and include fever,
cough, shortness of breath, etc. Moreover, polymerase
chain reaction (PCR) tests are now available to detect
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MERS-CoV in humans.

There is no specific treatment for MERS patients and
no vaccine to protect people from the MERS infection,
although efforts to find the vaccine are still in progress
(Omrani et al., 2013; WHO, 2013). The main treatment
for the MERS disease is to provide supportive care to
the patients. To prevent the spreading of the MERS
infection, the patient should be isolated properly and the
carers should use personal protective equipment to avoid
infection.

Mathematical models for some kinds of
non-respiratory and respiratory diseases have been
developed by many authors. The diseases include
HIV-AIDS (Saha and Roy, 2017; Obaid et al., 2013),
dengue (Aldila et al., 2012; Paez Chavez et al., 2017),
influenza (Novkaniza et al., 2016; Xu and Ai, 2016),
swine flu (Aldila et al., 2014; Pattnaik et al., 2013),
tuberculosis  (Gerberry, 2016; Okuonghae, 2013),
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and also MERS (Cauchemez et al., 2014; Chowell
et al.,2014; Ejima et al., 2014; Malik et al., 2015; Poletto
etal., 2014; Xia et al., 2015).

Cauchemez et al. (2014) estimated the incubation
period and generation time from case cluster data.
Chowell et al. (2014) studied a MERS-CoV transmission
model with index cases and secondary cases. Ejima
et al. (2014) found that the information of the incubation
period upon the emergence of a novel disease and
its initial growth rate is helpful in understanding the
spread of the MERS. Malik et al. (2015) introduced
a mathematical model for the MERS disease with a
deterministic approach and accommodated vaccination
to susceptible humans as well as quarantine to infected
people as the intervention programs. The model was
developed with a human population split into two groups
(local residents and visitors). They found that the effective
contact rate and the MERS-induced death rate are some
of the most influential parameters to determine the spread
of MERS. Poletto er al. (2014) proposed an integrative
maximum likelihood to assess the MERS transmission
scenario and incidence of sporadic infections. Xia et al.
(2015) simulated the propagation process from the data
for two different dynamical models and calculated the
basic reproduction number Ry.

In this article, a mathematical model of the MERS
disease with a deterministic approach will be introduced
as an optimal control problem. The medical mask
intervention, a health campaign about the importance of
medical masks and also intervention using a supportive
care treatment are introduced into the model as a time
depending variable. = A mathematical model will be
introduced in the next section with a mathematical
analysis given in the following section. In Section 4,
an optimal control problem characterization will be
presented and followed by numerical simulations. Some
conclusions will be given in the last section.

2. Mathematical model for optimal control
of the MERS disease

In this section, we formulate an optimal control model for
the MERS disease in order to derive optimal prevention
and treatment strategies with minimal implementation
costs. Intervention to prevent people from contracting
the MERS disease includes medical mask use and a
government campaign about the importance of using
medical masks to prevent people from contracting MERS.
On the other hand, intervention to treat infected people
is also included in the model as a supportive care
intervention. Adding these interventions, it is expected
that the number of healthy people can be increased at the
end of the intervention period.

The control functions wj(t),us(t) and wus(t)
represent time-dependent efforts of the medical mask use

rate, drop-out rate and supportive care rate, respectively.
Prevention efforts include how government conducts a
campaign in the mass media about how important it is
to use medical masks to prevent people from contracting
MERS-Cov. If this campaign is a success, many people
will use medical masks (uq), reducing the number of
those who stop using them (drop out rate, us(t)). On
the other hand, supportive care efforts are carried out
by screening patients, and by supervising drug intake
and patients’ conditions. To develop the model, we
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Fig. 1. Transmission diagram to construct the MERS model in
the system ().

divide the human population into five categories using
S1(t), S2(¢t), I1(t), I2(t) and R(t) to describe the total
number of susceptible humans, susceptible humans
with medical masks, infected humans, infected humans
with medical masks and recovered/temporary immune
humans, respectively. Susceptible humans S (¢) who
use medical masks will be separated into the category
of susceptible humans with medical masks (S2(t)) and
will be placed back into S (¢) if they stop using medical
masks. The same process happens with the category
of infected humans, I;(¢) and I»(¢t). Members of the
infected human 7 (¢) and Io(t) will get treatment which
will improve their natural immune system from 7 to
~o + 1. See Fig.[Ilfor the complete transmission process
between all categories.

To 51mp11fy, let Sq (t) =51, 5% (t) =551 (t) =1,
I5(t) = Iy and R(t) = R. According to all assumptions
explained before and the transmission diagram in Fig.[I]
the mathematical model for the spread of MERS including
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medical mask intervention and supportive care is given by

ds

d—tl = 9 — lefl — ul(t)Sl + UQ(t)SQ (13)
+0R — S,

d

% = Ul(t)Sl — UQ(t)SQ - ,uSQ, (lb)

dr

d_tl = 651]1 — ul(t)h + U,Q(t)IQ (1C)
= Y0(1 —us(t)) L1 (o +11)us(t) Iy
—(p+81h,

dl,

E = Ul(t)ll — U,Q(t)IQ — ")/0(]. — ’U,3(t))]2 (ld)
= (o +)us(t) 2 — (p+ &) 1o,

dR

= o —us®) i+ (o +yus(® - (le)

+ (1 —uz(t)l2 + (o +71)us(t)l2
— uR —6R,

with nonnegative initial conditions for all categories
(51(0) = 0, 52(0) = 0,11(0) = 0, 12(0) = 0, R(0) = 0).
The total population size of humans is

N = Sl(t) + Sg(t) + Il(t) + Ig(t) + R(t)
=0 —puN = (L) + 12(1)),

where 6, u and £ are the constant recruitment rate, natural
death rate and death rate caused by MERS, respectively.
Note that ws(t) is the rate of infected humans who
received treatment. Therefore, 1 — us(¢) means the
number of infected humans who did not get treatment.
The rest of the functions and parameters in the model are
defined as follows:

o 0 constant  per recruitment rate

[individual /day];

capita

B: infection rate per capita [(time x day x
individual) ~!]. For example, if the infection rate of
the MERS disease is 0.1 and we a total population is
N, then 3 is 0.1/N.

o u;(t) for i = 1,2,3 described in the previous
paragraph [day ~!].

e 1, & natural death rate and death rate caused by
MERS [day '].

® 7o,71: natural recovery rate and effective treat-
ments rate to increase the natural recovery rate,
respectively, [day ~]. Thus, vo(1 — uz(t))I; fori =
1, 2 describes the number of humans who recovered
naturally, since they did not get treatment. On the
other hand, (yo + v1)us(t)I; for i = 1,2 describes
the number of humans who recovered because of
treatment intervention.

aamcs

e ¢§: drop-out rate from R to S; because temporary
immunity vanished [day ]

For meaningful biological purposes, we assume that
the recruitment rate is always positive and bounded by the
upper bound 6;. From the system equation (), we find
that

dN
Eze—ﬂN—f(Il-FIz)S@—MN- (2)

Since we assume that N is constant, we obviously have
N < 0/ for the initial value N (0) < 0/ p.
Based on the above discussion, we define

0
r= {(51,52711,12,3) ERS,0<N < ;} (3)

In the remaining part of this article, we will restrict our
human variable (further called a state variable) to this set.

Theorem 1. Lerw;(t) = u; fori = 1,2, 3. T is positively
invariant under the system (D).

Proof. Let

G1=—(8+u1 + ),

Gy = —(uz + ),

Gz = —(u1 +v(1 —u3) + (o +71)us + p+§),
Gy=—(ua+v%1 —uz)+ (yo+7)us+p+¢),
Gs=—(0+p).

It is possible to get

dX;
dt

with X; for i = 1 — 5 replaced with S1,55, I1, I, R,
respectively, and for X;(0) > 0. Therefore, solutions with
an initial value in I' remain nonnegative for all ¢ > 0.
Moreover, since

> G X;

from (@) we find that

N <

T

Therefore, I is positively invariant under the system (I)).
|

Together with the mathematical model of MERS
as described in the system (1), we consider an optimal
control problem with the objective functional given by

Ty 5 3
J(XZ-,UZ-):/ SwiXP+ D pid | dt, (4
0 i=1 j=1
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with X; described as in Theorem 1. Here w;, ¢t =1,...,5
is the weight cost for the human population, whereas
vj, 7 = 1,2,3 denote weight constants for the control
variable. Coefficient w; signifies a weight parameter for
cost that relates to a consequence of the presence of
infected people, while ¢; means a weight parameter for
cost that occurs because of the intervention that has to
be undertaken to control the spread of MERS. Since we
would like to minimize the number of infected humans
and interventions efforts in Eqn. @), we set w; > 0 for
1 = 3,4 and the rest are zero. Since higher values of
u1 and ug will lead to a higher intervention cost, we set
1 > 0 and w3 > 0. On the other hand, since a higher
value of uy entails a lower effort in the campaign about
medical mask importance, we set @2 < 0. To balance the
objective functional cost, w; and ¢; should satisfy

wi U?

p;  XP

From the point of view of mathematics, to guarantee
the existence of a solution to the optimal control problem,
a convex and differentiable function for J should be
chosen. One alternative option is using a convex quadratic
function. For this purpose, we assumed that the cost for
medical masks, the drop-out rate and also treatment are in
quadratic form, that is, 1 u% is the cost for medical mask
use, @ou3 is the cost to reduce the drop-out rate from the
with-medical-mask category to the without-medical-mask
category, and psu3 is the cost for the supportive care
effort. The cost of reducing the drop-out rate results from
the government effort to implement a campaign on how
important it is to wear a medical mask to reduce the spread
of MERS, while the cost for treatment could come from
the cost of drugs. Here w33 and wyx? describe the cost
of hospitalization and that resulting from an impact of the
number of infected humans in the field, respectively. A
higher number of infected humans will increase the cost
function.

Overall, the preference of using the quadratic
function as the cost function type from the biological point
of view is given as follows. If the number of infected
humans is still low, for example, less than 10 infected
humans, then the cost to be spent to handle the infected
people accounts only for the cost related to the number
of infected people (almost linearly with respect to the
number of infected people). On the other hand, if the
number of infected people becomes larger and larger,
say, than 10, then the cost will not only relate to the
treatment of the infected people, but also to improving
the quality and quantity of hospital services, the cost of
training health workers about MERS disease spreads, the
cost related to the health campaign, etc. Therefore, the
quadratic function for the cost function is one of possible
options.

From the optimal control problem description in the
previous paragraph, we want to seek an optimal control
function (uf, u3, u3) such that

J(ul, uz, u3)
= min {J(Ul,UQ,Ug,Xi)|(U1,U2,’UJ3) S \I/}

subject to the system equation (I)) and where the control
set

U = (u1,u2, u3)|u;(t) )

is a piecewise continuous function on [0, T¢], a; < u; <
bj, while a; and b; for j = 1,2, 3 are lower and upper
bound control values, respectively, in [0, 1].

3. Mathematical model analysis for an
autonomous system

In this section, a mathematical analysis to find the
equilibrium points of the system (I and then study their
existence and stability criteria will be conducted. The
basic reproduction number as an endemic criterion will
also be shown in this section.

Let assume that all control variables are constant
in time, u;(t) = w; for j = 1,2,3. Therefore, the
autonomous system (I) now has the form

ds

d—tl =0 — BS1I; — u1S1 + u2So + 6R — Sy, (6a)

ds

d—t2 = u151 — UQSQ — ,uSQ, (6b)

dl;

E :lell 7U1[1+U212 7’)/0(1711,3)]1 (6C)
= (o +y)ush — (p+ &),

dr.

d_t2 =uly —ualy —yo(1 —uz)ls (6d)
— (vo+m)usls — (p+ &)1z,

dR

Fri Yo(1 —uz)lh + (y0 +71)usl (6e)
+ v0(1 — u3) o + (o + 71 )uslz
— uR —0R.

Theorem 2. (Equilibrium points) The autonomous sys-
tem (@) has two different equilibrium points, which we call
disease-free equilibrium 1 point given by

(Slv‘SQ?IleQ?R)

B < O(ug + ) Ouq
p(ur +ug +p) " plur +uz + p)

7
70707())7 ()
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and an endemic equilibrium Qg, given by

(81,52, 11,15, R)
_ <E(U1 +UQ+E) ulE(U1+UQ+E)
Blug + E) 7 B(u+uz)(uz + E)’
(6+p) (R —1)
BG(uz + E)(u1 + uz + E) (1 + ug)’
w1 (6 4+ p)(Ry — 1)
BG(uz + E)(u1 +uz + E)(p + u2)’
(uzm1 +70)(Fa — 1))
)

BG(/L + ug)(ug2 + E)
with

E =usy +p+ &+,

G = puzyr + (6 + p)(p+ &) + uyo
and

Ry — BO (1 +u2)
o (uzy1 + p+ & +0) (14w + ug)
uz Y1+ p+uz + 8§+ ®)
usyr +p+ur +us+ &+

Proof.  Setting the right hand sides of the system (&)

to zero and then solving these equations for S1, .S, I1, I5
and R will yield the desired result. |

As a biological interpretation, the disease free
equilibrium point describes when all non-susceptible
human categories are equal to zero. At this equilibrium
point, we find that the total human population is given by
N = 6/u. On the other hand, the endemic equilibrium
point o, illustrated as a condition when all categories are
positive, with a positive value criterion, is given by the
next theorem.

Theorem 3. (Existence criteria) A disease-free equilib-
rium point )y is always positive without any criteria,
while the endemic equilibrium point will be positive if and
onlyif Ry > 1.

The next theorem will describe a criterion about of
stability of the disease-free equilibrium point.

Theorem 4. (€2; local stability criteria) A disease-free
equilibrium point Q1 will be locally asymptotically stable
if R < 1and Ry < 1 with Ry given in Eqn. (8) and

56
pp + ur + uz)
X p U
2uzyr + 20+ ur + uz2 + 2§ + 270

Ry =

and unstable otherwise.

Proof. Linearize the system (@) around €; to form the
Jacobian matrix

Jin Ji2 Ji3
Ja, = , 9)
Jo1 Jaz  Jog
with
[ —H—uy Uz
Jii = Uy —p—u2 |,
0 0
[ _ BO (ptus) |
(e +ur + uz)
S 0
12 — 9
BO (1 + uz)
<—*U1*’Yo (1 —us)
(14 ur + u2)
—(70-1-71)”3—#—5)
0 ¢
J13: 0 0 ’
(V%) 0
[0 0
Jo1 = )
00
[ uy,
J22: )
| 70 (1 —u3)+ (o + 1) us
P [ —uz—v0 (1—u3) — (o +7)us —p—¢§
23 =
Yo (1 —wu3) + (vo +71) us
0
- |

The eigenvalues of Jo, are —(6 + u), —p, —(p + w1 +
uz) and the other two will be given from the second order
characteristic polynomial

P(})
= (—p® — puy — prug) N
+ 86 (p+uz) (usy1 + p+uz + & +70)
—(usm +p+&+7%)
X (uzy1 4 p 4 ur +uz + £+ 7) A
+ B0 (1+uz) — p (p+u1 +uz)
X (2uzy1 +2p+ur +uz +2&+2).

The other two roots will be negative if and only if

BO (1 + uz)
o (uz y1+p+§+0) (ptur+us)
uz y1+p+us+£+v <1, (10)
ug y1+p+ur+us+E+70

Ry =

@amcs
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0
Ry—_ B0
po(p+ur +uz)
X pot U <1
2usm +2p+ur +us +26+ 2

Theorem 5. (Basic reproductive ratio) The basic repro-
ductive ratio as the endemic criterion of the system (@) is
given by

B0 (u+uz2)
po(uzyr + e+ &+ v0) (1 + ur + ug)
uz Y1+ p+uz + &+
usy1 +p+ur +us +E+ 50

Ro =

(1)

Proof. The basic reproduction number is defined as the
expected number of secondary infection cases produced
by a typical infected individual during its entire period
of infectiousness in a completely susceptible population
(see Diekmann and Heesterbeek, 2000; Diekmann et al.,
1990). Using the next generation matrix approach
(Diekmann et al., 2010), we will find the basic
reproduction number corresponding to (6). From the
system (6), the transition matrix is given by

—u; — K1 —p—¢§ Ug
A= ,
(1 —ug — Ky —p—¢§
(12)
with K7 = (1 — u3) + (0 + 71)us, while

the transmission matrix evaluated in the disease-free
equilibrium point §2; is given by
B0 (uz + )
B=| #(u1+u2+p) . (13)
0 0

From the work of Diekmann et al. (2010), the basic
reproduction number is taken from the spectral radius of
the next generation matrix. The next generation matrix of
the system (@) is given by —BA~! in the form

Ky(ug+ Ky +p+§&) Koug

NGM = . (14)
0 0

with

B0 (uz + 1)
o (uy +uz + p) K3’

2= (15)
where K3 = u1 K1 +U1M+U1§+K1UQ+K12 +2 Kip+
QK16+ pug + 12 +2u€ + Eug + £2. Therefore, the
spectral radius of NGM as the basic reproduction number
of the system (6)) is now given by

B0 (u+uz)
po(uzyr + e+ &€+ v0) (1 + ur + ug)
uz vy +p+u2s+ &€+
usyr +pt+ur +uz+E+7

Ro =

Furthermore, we find out that R; = Ry. |

As anote, when u; in the basic reproduction number
Ro is 0, we have an initial basic reproduction number
before the intervention applied, which is given by

0
R* /8

- 16
O o +p+€) (16)

This R{ could be represented as the product of the
total infection rate in an entire population 36/u and the
infection period of infected individuals (yo + p + &)~ 1.

The next generation matrix element for the row
and column describes infected humans /; and infected
humans with medical masks I>. Each element of the
NGM matrix describes the number of secondary cases
in the column space caused by one individual infected
human in the row category. For example, one infected
human I; will give a number NGM; > of new cases in the
category of infected humans with medical masks I», since
I; do not use medical masks. Therefore, the infection
process still could happen in this category. In contrast,
category I» could not produce a secondary infection in
category I; and/or I, since category Ip always uses
medical masks and we also assume that medical masks
could definitely reduce the spread of MERS viruses.

In Figs. 2 and 3, we give a sensitivity analysis of each
of the parameters involved in the model (@) with respect
to the basic reproduction number in Eqn. (II)). In Fig. 21
a sensitivity analysis of Rg with respect to u; and ug as
well as u; and ug is given. In Fig. 2(a), it can be seen that
a larger u; will reduce Rg while a larger uy will enlarge
Ro. For example, choosing the medical mask use rate
constant as 0.012 and the drop-out rate as 0.037 and 0.11
will give R values of 0.54799 and 1.092, respectively.
A larger drop-out means that the government campaign
to build awareness of the importance of medical masks
has been far from successful. Figure 2(b) shows that a
larger number of u; and w3 will reduce the number of
NRo. Figure 2Ib) also tells us that medical mask use as a
preventive effort is much more effective than a supportive
care intervention in reducing Ro.

In Fig.[3] level sets of R with respect to us and ug
as well as ; and £ are given. Similarly to the previous
figure interpretation, a larger value of ug will reduce Rg
while enlarging the value of us will increase Rg. It is
also shown that uy is much more sensitive to determining
the value of Ry than us. A smaller value of us is much
better for reducing Ro but, as a consequence, a greater
effort in the government campaign (for example, in mass
media) should be made, even though this would be more
expensive than the effort regarding the supportive care
intervention (this result will be discussed in more detail
in optimal control simulation in Section 5). Figure 3[b)
shows the level set of R for various values of y; and £. It
can be seen that v and & are inversely proportional to Rg.
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4. Optimal control characterization

as

The optimal control characterization of the system (I))
will be discussed in this section. The optimality system,
which includes state equations, adjoint equations and a
cost function, can be used to compute candidates for
the optimal control trajectory from ¢ = to to t = T7.
Before we construct the optimal control characterization,
we will use a dimensionless process with the system ().
Assuming ¢ = 0, we have that a total human population is
constant (N = 6/u). Using the following transformation:

So L . b
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Fig. 3. Level set of Ro depends on us and usz (a) as well

as on 1 and & (b).

For (a), parameter values are

__ 1000 _ 0.1 _ 1 _ -
0 = Gxse5:0 = To000 M = wxaesi s = 0o =
%771 1?0 %7 u; = 0.01, while for (b) the values are

_ 0 _ 0.1 _ 1 _
0 = G5xs05:0 = To00' M = G5xaes V0 =
0.01,u2 = 0.1,u3 = 0.1.

we have that

dSl d(SlN)
dt dt
becomes
dsiN @
dt  dt

+drN — pusiN.

Dividing each side by NV, we get

d81
dt

1 _
300 U1 =

UN — BsiNiyN —u1s1N + usso N

= — Bs191 N — u181 + ugsy + dr — usy.

Repeating this process with the other equations in the
system (), we reduce our five-dimensional system to the
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four-dimensional system given as

ds
d—tl = u—Nﬁsl 11— Ul (t)Sl +’U,2(t)82
+5(17817$277;17i2)7/131, (18&)
ds
d_t2 = uy (t) 51 — uz2 (t) s2 — 1 2, (18b)
diq . . .
E = NfBs1i —uy (t)Zl + U9 (t)lz
=7 (1 —wuz(t)) i1, (18¢c)
ds . )
d—f = wuy ()i — 0 (1 —ug (t)) iz
—ug () i — (Yo + 1) us () iz (184d)

Note that sq, s2,%1,%2 and r represent the proportion of
each compartment with respect to the total of human
population N.

In the next step we define the Lagrangian. Let x; €
T’y fori = 1,2, 3,4, represent sy, s2, 11, 12, respectively,
as state variables and U; = (uj,us,u3z) € ¥ with
I'; € [0,1], and ¥ defined in (3). The Lagrangian for
our problem consists of the integrand of the objective
functional given by

J (i, ui) = / (wa +ngz )dt (19)

and the inner product of the right hand sides of the
state equations (I8) and the adjoint variables A =
(M1, A2,A3,\4). Now, let us define the Lagrangian
L(X;,U;, A) as below:

4 3
L= Z wir? + Z piu? (20)
i=1 =1

+ A (p—NBs1i —up(t)s1+ ua(t) se

+0 (1 —81— 89 —i1 —i2) — ps1)

+ Ao (ug () 81 — ug () s2 — ps2)

+ A3 (NBsyip — (ur(t) + p+ &) + ua (t) in
=0 (1 —us (t)) i1 — (yo +71) us (t) i1)

+ Mg (ug () in —ue () 42

=0 (L —wuz (t))i2 — (vo + 1) us (t) iz

—(u+8§)ia).

Theorem 6. Given an optimal control function
(u1, Ug, Us) and trajectory solutions for s1, s2,11, i2 of the
corresponding system (I8), there exist adjoint variables

A1, ..., Ay satisfying

Xl = AlNﬂll + ()\1 - )\2)U1 + )\LLL
— A3 N Biy, (21a)
/\'2 = ()\2 — /\1) Uz + A10 + Aoy, (21b)

A3 = —2wsip — A1 (=NBsy — )

+ X370 (1 —uz) + Az (y0 +71) us

— A3NBs1 + Asp+ (A3 — Ad) ua, (21c)
Na = —2wain + Aapr + M

+ Aavo (1 —uz) + Aa (o +71) us
+ A8 (Aa — Ag) ug, (21d)

with the terminal condition
Xi(Ty) =0 fori=1,2,34. 22)
Furthermore, 41, uo and us are represented by

@ = max (a1, min (by,

S1 ()\1 — )\2) + il()\g — )\4))) ’ (233)
2¢1
U = max (CLQ, min (bQ,
82()\2 — )\1) + iz()\4 — )\3))) 7 (23b)
2¢2
U3 = max (a3, min (bg,
Y1i1(A3 — As) +y182(Ag — /\5))) (230
2¢3

with a; and b; fori = 1,2, 3 being the lower and the upper
bounds for each control variable, respectively.

Proof.  First, we differentiate the Lagrangian 2Q) with
respect to each state variable and then get the equations
for as the adjoint variables

. oL . oL
)\1778_31’ )\2**8—82»
. oL . oL
)\3**6—1.1, )\4**8—2.27

with the terminal conditions \;(Ty) = 0 fori = 1,2, 3,4.

To obtain the optimality conditions (23), we will also
differentiate the Lagrangian (20) with respect to w1, uz
and us, which gives

0H

- :2501,“1 — )\131 —+ )\231 - )\Sil + )\47;1 = 07
6’11,1
OH
— :2@2U2 + )\182 - A232 + A37;2 - )\4i2 = 07
8u2
0H . .
oo —2esus +As (Yoir + (Yo +71) 1)
us

+ Xi (012 — (Y0 + 1) i2) = 0,
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and set these equations equal to zero. Solving them with
respect to each control variable, we obtain

1 . .
up(t) = G (A1s1 — A2s1 + Agin — Aaiy), (24a)
©1
1
’UTQ(t) = % (7)\152 + AoSo — Azio + )\4i2) , (24b)
2
1 ) .
uz(t) = Yon (A3 (y0i1 — (Yo + 1) i1) (240)
©3
=1 (Y12 — (0 +71) i2)) - (24d)

To determine an acceptable control variables value
based on the needs and ability in field applications (lower
and upper bounds), the optimal control variable now is

11 = max (a1, min (by,
s1(A1 — A2) + i1 (Ag — )\4)>)
2(p1 ’
Uy = max (ag, min (b,
s2(A2 — A1) +i2(Ag — As)))
22 '
U3 = max (a3, min (bs,
Y1i1(A3 = Xs) +y12(A\g — )\5)))
23 '

with a; and b; for ¢ = 1,2, 3 being the lower and upper
bounds for each control variable, respectively. ]

Now, we point out that the optimality system
consists of the state system (I8)) with the initial condition
(51(0), s2(0), i1(0),42(0)), the adjoint system 1) with
the terminal condition \;(Ty) = 0, and the optimality
conditions (23). Any optimal control trajectories must
satisfy this optimality system. A numerical simulation for
this situation will be given in the next section.

5. Numerical simulation results

In this section, numerical simulations of the MERS
disease spread are reported. We discuss results for the
autonomous model (&) and the optimal control problem
for various scenarios.

5.1. Simulation of an autonomous model. In this
section, various scenarios of constant parameters and
initial conditions are presented to show the possible
dynamics of the system (6). The first simulation is
presented for two different cases: before (Rg = 2.996)
and after intervention (Ro = 0.737), as shown in Fig. [
(cf. Table 1 for details about various scenarios for the
value of u;). It can be seen that the intervention of all
control variables (u;) partially succeeds in reducing the
basic reproduction number and makes the trajectory move
from an endemic equilibrium to a disease-free equilibrium

aamcs

T T
——5,(0)=9505,(0)=01,(0)=601,(0)=0 R)=0 | |

~7
i ++-8,(0)=500 8,,(0)=01,(0)=500 ,(0)=0 R(0)=0| |

\
\f\\ —~-8,(0)=200'5,(0)=0 1,(0)=800 1,,(0)=0 R(0)=0| |

Endemic Eq.ﬂmmm Point
(334, 454) ">

Disease Free
Equilibrium Point |
1000, 0

&0
Total Susceptible

Fig. 4. Trajectory solutions for the total of susceptible hu-
mans (S1(t) + S2(t)) and total infected humans
(I1(t) + I2(t)) without control (dotted line) and with
control (dashed line). We use a constant control value
(u1 = 0.3, u2 = 0.5,u3 = 0.65) while the other pa-
rameters remain the same for both scenarios.

Endemic Equilibriuf Point —
ol®~__ (403, 408) |
T Ry=2.103
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. Equilirium Pgint(1000., 0)
) a0

00
Total Susceptile

Fig. 5. Trajectory solutions for total susceptible
(S1(t) + S2(t)) and total infected (I1(t)+ I2(t))
humans with various values of us (1, 0.5, 0.1) and u;
that remain constant in 0.1. All other parameters remain
the same for the three scenarios.

~_R-2
P 5=2.9%] |
Endemic ">~ R,=1.998
4% Equilibrium Point

(334, 454)
aso

—R=1.5781

.
Endemic
Equilibrium Point
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Endemic
Equilibrium Point
ool (634, 194) N Initial Point -|

T2~ (980, 20)
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Fig. 6. Trajectory solutions for the total of susceptible humans
(S1(t) + S2(t)) and total infected (I1(t) + I2(t)) hu-
mans with various values of ugz (0, 0.5, 0.9) as well as
w1 and wuo that remain constant in at zero. All other pa-
rameters remain the same for the three scenarios.

point. We use some different initial conditions to give
a better simulation result. From Theorem 1, it can be
seen that in Fig. [ the trajectories remain positive all
the time and tend to two different equilibrium points as
already stated in Theorem 2. It is clear from Theorem 4,
that disease-free equilibrium points €2; are locally stable
for Ryp < 1. The trajectories tend to a disease-free
equilibrium point for Rp < 1 and to an endemic
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equilibrium point for Ry > 1.

The next simulation is given in Figs. [ and [@ to
represent two different intervention scenarios, i.e., with
the medical mask intervention only (u; > 0,uz >
0,u3 = 0) and with supportive care only (u; = 0,uz =
0,us > 0), respectively. All parameter values are the
same as in the previous simulation in Fig. [l except for
u; fori =1,2,3.

Figure shows the effect of medical mask
intervention to reduce the basic reproduction number and
the number of infected people. We can see that we need
a specific level of uy to reduce the basic reproduction
number to less than 1 so that we can move the dynamic
from the endemic equilibrium point to the disease-free
equilibrium point. This confirm our result for the level
set of the basic reproduction number with respect to u;
and uo in Fig.[2l(a) that increasing u; and reducing uo will
reduce the basic reproduction number to less than one,
which will make the disease free equilibrium point stable.

In contrast to Fig. 3 Fig. [@] shows the effect of the
supportive care intervention only to reduce the magnitude
of the basic reproduction number. As shown in Table 1,
with only the intervention of wug, the basic reproduction
number cannot be reduced to less than 1 since with uz = 1
we can only reach the magnitude of the basic reproduction
number of 1.578 as the minimum possibility. However,
we can reduce the total number of infected people to a
lower level with this scenario, even though not until no
more infected people exist in the environment, as shown
in Fig.[6l

5.2. Simulation of the optimal control problem. The
optimality system is a two-point boundary value one,
since we know the initial condition for the state variable
(2;(0)) in Eqn. (I8) and the final condition for the adjoint
system (\;(Tf)) in Eqn. (2ZI). In this optimal control
problem, we use an iterative method based on the gradient
descent algorithm, given in Algorithm 1.

To simulate the optimal control problem of the
system described in Theorem 6, we will give some
different scenarios.

5.2.1.  Simulation for different initial conditions.
This section will describe how control variables adapt to
different situations for the initial value of each category
(2;(0)), Let us call it an endemic prevention scenario
(when the initial number of infected people is at a low
level), and an endemic reduction scenario (when the initial
number of infected people is at a high level). Table 2
details the initial condition.

Algorithm 1. Gradient descent.

Step 1. Fix a constant initial guess for w1, ug,ug fort €
[0, TY].

Step 2. Solve the state equation (I8)) with respect to the
initial value of the control variable and the initial condition
of the state variable forward in time.

Step 3. Calculate the cost function (19).

Step 4. Solve the adjoint system (2I) with final time
Xi(Ty) = 0fori=1,2,3,4 backward in time.

Step 5. Solve the gradient equation to get the descent
vector u; supplemented with z; and A; from Steps 2 and

4. Use the actual values {u]} at particular times to update
the values of u; in Step 1.

Step 6. Go to Step 2 and iterate until convergence criteria
are achieved.

The first simulation is given for the endemic
prevention scenario. The trajectories of total susceptible
and infected people are given in Fig. [7 as a result
of control intervention that varied in time, shown in
Fig. Table 3 describes the effect of interventions on

Total Susceptible
Total Infected

oos—roo—___ A

80 100 o 20 80 100

0 60
t(days)

1 with on
Total individu without interventio:

Fig. 7. Dynamics of total susceptible (left panel) and infected
(right panel) humans with and without intervention
strategies in the endemic prevention scenario.

' = =

0.16] 00155|

control

(Y B 100 0 20 w0 100 S s 100

o & W0 e
€ (days) t(days)

Fig. 8. Dynamics of control intervention for the endemic pre-
vention scenario.
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Table 1. Equilibrium points of the system (&) for Figs. 46l

Figure Ui Ro Categories

S1 S I P R

Fig. [ uy =0,u2 =0,uz =0 2.996 | 333.75 0 454.34 0 211.91
up = 0.3,u2 = 0.5,u3 = 0.65 | 0.737 | 625.02 374.98 0 0 0

up =01, uz =1,u3 =0 2.484 | 366.05 36.6 37141 3549 189.98

Fig.[Al up = 0.1,u2 =0.5,u3 =0 2.103 | 396.29 79.25 301.15 56.43 166.79
up =0.1,u2 =0.1,u3 =0 0.856 | 500.1 499.9 0 0 0

up = 0,u2 =0,uz3 =0 2.996 | 333.75 0 454.34 0 211.9

Fig.[dl uy = 0,u2 =0,u3 =0.5 1.998 | 500.42 0 293.94 0 205.63

u; = 0,u2 = 0,uz = 0.9 1.578 | 633.75 0 194.17 0 172.07

Table 2. Initial condition of each category for the endemic prevention and reduction scenario.

Scenario Compartments
81(0) S2 (0) 21(0) i2 (0) 7‘(0)
Endemic prevention | 0.95 0 0.05 0 0
Endemic reduction 0.7 0 0.3 0 0

increasing/decreasing the total susceptible and infected
categories.

The second simulation is given for the endemic
reduction scenario, when the initial infected population

Total Susceptible

Total Infected

80 100 o 20 80 100

a0 60
t(days)

——Total individu with intervention
Total individu without interventio:

Fig. 9. Dynamics of total susceptible (left panel) and infected
(right panel) populations with and without intervention
for the endemic reduction scenario.
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Fig. 10. Dynamics of control intervention for the endemic re-
duction scenario.

ot

was higher than in the endemic prevention scenario. The
dynamics of the control variables in Fig. [IQ] will have
the effect of increasing the susceptible population and
decreasing the infected population, as shown in Fig.[9
From both the simulations above, intervention using
all control variables succeeded in increasing the total
susceptible population to more than 90% and suppressing
the infected population to less than 6%. Nonetheless,
different behavior was apparent in the control simulation.
It can be seen that a more intense intervention should be
applied in the endemic reduction scenario, rather than in
the endemic prevention scenario. The magnitude of the
cost function for these scenarios is 0.0288 and 0.2585 for
the endemic prevention and endemic reduction scenarios,
respectively. It is shown that, from ¢ = 0, intervention
using a medical mask (u;) should occur at a high rate
(about 50% of the total population should use medical
masks) in the endemic reduction scenario. Compared with
the endemic prevention scenario, control using medical
masks only needs the compliance of about 16% of the
total population who should use medical masks at the
initial time. To guarantee the success of medical mask
use interventions, the government campaign about the
importance of medical mask use should be intensified.
An extreme result is shown in the endemic reduction
scenario, since us(t) reached zero early in the simulation.
This means that in the endemic reduction scenario, no
individual in S should be allowed to take off their
medical masks for a certain period during the simulation.

5.2.2. Simulation with different R scenarios. In
this subsection, we report two different scenarios for
each simulation. The first simulation is for Rg < 1,
which describes a healthy environment where with or
without the intervention of control variables the dynamics
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Table 3. Numerical result for control intervention in endemic prevention and endemic reduction scenarios.

Compartment | Endemic prevention (¢ = 100) Endemic reduction (¢ = 100)
without control ~ with control | without control  with control

81 + S2 0.3302 0.9425 0.3302 0.9205

i1 + iz 0.4590 0.0397 0.4590 0.0529

of the system will tend to move towards a disease-free
equilibrium point. In this case, intervention is needed to
accelerate the disappearance of MERS in the population.
On the other hand, the second simulation is for 3y >
1, which describes an unhealthy environment, i.e., the
dynamics of the system will tend to move towards an
endemic equilibrium point if interventions are not present
to the population. For this purpose, we set all parameters
for each simulation to remain the same except for 3, i.e.,
B = 0.000028 for Ry = 0.84 and 8 = 0.000081 for
Ro = 2.43.

As already stated in Theorem 4, the disease-free
equilibrium will be locally asymptotically stable if Rg <
1 and unstable otherwise. With the intervention of all
control variables simultaneously, as shown in Fig.[12] we

Total Susceptible
Total Infected
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*;
*,
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40 60 80 100 (] 20 40 60 80 100
t(days) t(days)

—— Without Intervention when R <1
4 Without Intervention when R >1

With Intervention when R <1

- - -With Intervention when R >1

Fig. 11. Dynamics of total susceptible (left panel) and infected
(right panel) populations with and without intervention
for different magnitudes of Ro.
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Fig. 12. Dynamics of control intervention for different magni-
tudes of Ro.

can accelerate the increase in the susceptible population
for the scenario of Ry < 1, and push the dynamics of the
susceptible population into a disease-free equilibrium for
the case of Ry > 1, as shown in Fig.[[1l The dynamics
of the control variables for both the scenarios are almost
the same. However, a greater effort should be applied in
the government campaign when Rg > 1 since it needed
uo almost twice as low as in the case of Rg < 1. As a
result, we have a higher cost function value for the case
of Ry > 1, which reaches 0.2483 and only 0.2117 when
Ro < 1.

5.2.3. Simulation with different budget limitations.
In this section, simulations were based on different
preferences for the control strategy and conducted with
different initial conditions (the endemic prevention and
reduction scenarios). For this scenario, we assume that
the government as a stage holder had limited preferences
with regard to conducting an intervention to control the
MERS disease. They had to choose between making an
intervention using only medical masks (u3 = 0, uy, us >
0) or supportive care only (u; = ug = 0,us > 0). This
situation might arise when the government has a limited
budget to control the spread of MERS.

Table 4. Table of numerical results for 4 different intervention

strategies.
Scenario Endemic prevention
s1+82 i1+ J
u; =0 0.3302  0.4590 1.2465
uy,uz > 0,uz =0 0.9434  0.0392  0.0269
up =uz =0,u3 >0 | 03627 04310 1.1366
u; >0 0.9425 0.0397 0.0288
Scenario Endemic reduction
s1+82 i1+ J
u; =0 0.3329  0.4546 1.9643
uy,uz > 0,uz =0 09211  0.0527  0.265
ur =uz2 =0,u3 >0 | 03658 0.4267 1.7988
u; >0 0.9205  0.0529 0.2585

In both endemic prevention and reduction scenarios,
an interesting finding is that the medical mask intervention
only (uj,us > 0) is the best option for reducing
the number of infected humans as low as possible and
increasing that of susceptible humans as high as possible
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(see Table 4 for details), rather than carrying out both
interventions (medical mask and medical treatment, u; >
0, ¢ = 1,2, 3). From the dynamics of infected individuals
for endemic prevention and the reduction scenario with
respect to time in Figs. [13] and [[4] respectively, it can
be seen that the medical mask intervention only and
intervention using both medical masks and supportive
care had only slightly different results. On the other hand,
pushing intervention only through supportive care is the
most ineffective strategy to be implemented. These results
are a consequence of control trajectories, as shown in
Fig. I3 for the endemic prevention scenario and in Fig.
for the endemic reduction scenario.

If we rely on the magnitude of the functional cost,
from Table 4 also we can see that the medical mask
intervention in endemic prevention is the cheapest strategy
(J = 0.0269) to implement in the field, rather than
including all interventions to be implemented (J =
0.0288). Therefore, we could conclude that, instead
of sharing the medical mask intervention budget with
supportive care to infected people, it would be better to
maximize the budget effort for medical mask intervention

0. T T T
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*
*

Total Infected
T
*
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50
t(days)

#* Without Intervention
- - - Intervention of Medical Mask
Intervention of Supportive Care
—— Intervention of Medical Mask and Supportive Care|

Fig. 13. Dynamics of infected individuals for the endemic pre-
vention scenario with the preference of control strate-
gies.
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Fig. 14. Dynamics of infected individuals for the endemic re-
duction scenario with the preference of control strate-
gies.
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Fig. 16. Dynamics of u;(t) for various control strategies to pro-
duce the dynamics in Fig.[T4]

use and campaign about its importance only in the
endemic prevention scenario.

In contrast to the endemic prevention scenario, in
the endemic reduction case, although the medical mask
intervention only is the best strategy to control MERS,
it entails a higher cost, rather than integrating medical
mask use and supportive care together (see Table 4 for
details). Therefore, with a limited budget available to
control MERS spread in the endemic reduction scenario,
interventions with supportive care should be implemented
to cure infected people and protect the rest of the
population from the possibility of a new infection by using
a medical mask.

6. Conclusions

In this article, we derived and analyzed a mathematical
model for controlling the MERS disease with medical
masks along with a campaign to promote the importance
of this and of supportive care interventions. The problem
is formulated as an optimal control one to minimize the
number of infected people at a smaller cost.

Before the optimal control problem characterization,
the autonomous system is analyzed to find all equilibrium
points. We find the disease-free and endemic equilibrium
points whose existence and local stability depend on the
basic reproduction number (Ry). We learn that the

aamcs
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endemic equilibrium point will always be positive for all
categories if Rg > 1. We also find that the disease-free
equilibrium will be locally asymptotic stable if and only if
Ro < 1.

From the sensitivity analysis of the basic
reproduction number with respect to all control variables,
we find that medical mask intervention (u; and ws)
is much more better for effecting a change in the
basic reproduction number. The implication of this
phenomenon is that, for effective eradication and control
strategy for MERS, the focus should be on the medical
mask intervention rather than the supportive care strategy.

To assess the impact of control variables for different
scenarios, we conducted some simulations of the optimal
control problem. According to the numerical results, an
intervention should be conducted at the beginning of a
MERS epidemic (endemic prevention scenario) to avoid
high cost for interventions and achieve the lowest level of
number of infected people. If there is a limited budget for
interventions, concentrating on medical mask intervention
for the endemic prevention scenario is the cheapest and
best way to control the MERS spread. On the other
hand, if an intervention is implemented in the middle of
a MERS epidemic, medical mask intervention should be
accompanied with the supportive care intervention.

From many studies (Muller et al., 2015), the camel
is suspected to be the vector for spreading MERS
under some circumstances. Therefore, a mathematical
model involving the camel and constructing the model
as a vector-borne disease model are important for the
analysis. For the optimal control problem, intervention
using a control function should be tried as a pulse
control (Abboubakar et al., 2015) to find a more relevant
intervention for practical purposes.

Acknowledgment

The authors thank all reviewers for their comments
and suggestions that improved this article. This
research is funded by the Indonesia Ministry of
Research and Higher Education (Kemenristek DIKTI)
with the PUPT research grant scheme 2016 (project ID:
1125/UN2.R12/HKP.05.00/2016).

References

Abboubakar, M., Kamgang, J. and Tieudjo, D. (2015).
Backward bifurcation and control in transmission
dynamics of arboviral diseases, Mathematical Biosciences
278(1): 100-129.

Al-Tawfiq, J., Smallwood, C., Arbuthnott, K., Malik, M.S.,
Barbeschi, M. and Memish, Z. (2012). Emerging
respiratory and novel coronavirus 2012 infections
and mass gatherings, East Mediterr Health Journal
19(1): 48-54.

Aldila, D., Nuraini, N. and Soewono, E. (2014). Optimal control
problem of preventing of swine flu disease transmission,
Applied Mathematical Science 8(71): 3501-3512.

Aldila, D., Soewono, E. and Nuraini, N. (2012). On the analysis
of effectiveness in mass application of mosquito repellent
for dengue disease prevention, AIP Conference Proceed-
ings 1450(1): 103-109.

Assiri, A., McGeer, A., Perl, T., Price, C., Al Rabeaah, A. and
Cummings, D. (2013). Hospital outbreak of Middle East
respiratory syndrome coronavirus, The New England Jour-
nal of Medicine 369(5): 407-416.

Cauchemez, S., Fraser, C., Van Kerkhove, M., Donnelly, C.,
Riley, S. and Rambaut, A. (2014). Middle East respiratory
syndrome coronavirus: Quantification of the extent of the
epidemic, surveillance biases, and transmissibility, Lancet
Infectious Diseases 14(1): 5056.

Chowell, G., Blumberg, S., Simonsen, L., Miller, M. and
Viboud, C. (2014). Synthesizing data and models for the
spread of MERS-CoV, 2013: Key role of index cases and
hospital transmission, Epidemics 9(1): 40-51.

Diekmann, O. and Heesterbeek, J. (2000). Mathematical Epi-
demiology of Infectious Diseases, Model Building, Analy-
sis and Interpretation, John Wiley & Son, Chichester.

Diekmann, O., Heesterbeek, J. and Metz, J. (1990).
On the definition and the computation of the basic
reproduction ratio of /R in models of infectious disease in
heterogeneous populations, Journal of Mathematical Biol-
ogy 28(4): 365-382.

Diekmann, O., Heesterbeek, J. and Roberts, M. (2010).
The construction of next-generation matrices for
compartmental epidemic models, Journal of The Royal
Society Interface 7(47): 873-885.

Ejima, K., Aihara, K. and Nishiura, H. (2014). Probabilistic
differential diagnosis of Middle East respiratory syndrome
(MERS) using the time from immigration to illness onset
among imported cases, Journal of Theoretical Biology
346(1).

Gautret, P. (2013). Middle East respiratory syndrome (MERS)
coronavirus: What travel health advice should be given
to Hajj pilgrims?, Travel Medicine and Infectious Disease
11(5): 263-265.

Gerberry, D. (2016). Practical aspects of backward bifurcation
in a mathematical model for tuberculosis, Journal of The-
oretical Biology 388(1): 15-36.

Haagmans, B., Al Dhahiry, S., Reusken, C., Raj, V. and Galiano,
M. (2014). Middle East respiratory syndrome coronavirus
in dromedary camels: An outbreak investigation, Lancet
Infectious Diseases 14(2): 140-145.

Malik, T.M., Alsaleh, A.A., Gumel, A.B. and Safi, M.A. (2015).
Optimal strategies for controlling the MERS coronavirus
during a mass gathering, Global Journal of Pure and Ap-
plied Mathematics 11(6): 4831-4865.

Muller, M., Meyer, B., Corman, V., Al-Masri, M., Turkestani, A.
and Ritz, D. (2015). Presence of Middle East respiratory
syndrome coronavirus antibodies in Saudi Arabia: A
nationwide, cross-sectional, serological study, Lancet In-
fectious Diseases 15(5): 559-564.



Analyzing the MERS disease control strategy through an optimal control problem @ amcs

Novkaniza, F., Ivana and Aldila, D. (2016). Controlling Xia, Z.-Q., Zhang, J., Xue, Y.-K., Sun, G.-Q. and Jin, Z.

influenza disease: Comparison between discrete time (2015).  Modeling the transmission of Middle East

Markov chain and deterministic model, AIP Con- respirator syndrome corona virus in the Republic of Korea,

ference Proceedings 1723(1): 030015-10, DOI: PLoS ONE 10(12): e0144778.

10.1063/1.4945073. Xu, Z. and Ai, C. (2016). Traveling waves in a diffusive
Obaid, H.A., Ouifki, R. and Patidar, K.C. (2013).  An influenza epidemic model with vaccination, Applied Math-

unconditionally stable nonstandard finite difference ematical Modelling 40(15-16): 7265-7280.

method applied to a mathematical model of HIV
infection, International Journal of Applied Mathe-
matics and Computer Science 23(2): 357-372, DOLI:
10.2478/amcs-2013-0027.

Okuonghae, D. (2013). A mathematical model of tuberculosis
transmission with heterogeneity in disease susceptibility
and progression under a treatment regime for
infectious cases, Applied Mathematical Modelling
37(10-11): 6786-6808.

Omrani, A., Abdul-Mutin, M., Haddad, Q., Al-Nakhli, D.,
Memish, Z. and Albarrak, A. (2013). A family
cluster of Middle East respiratory syndrome coronavirus
infectious related to a likely unrecognized asymptomatic
or mild case, International Journal of Infectious Disease
17(9): 668-672.

Paez Chavez, J., Gotz, T., Siegmund, S. and Wijaya, K.
(2017). An SIR-Dengue transmission model with seasonal
effects and impulsive control, Mathematical Biosciences
289(2): 29-39.

Pattnaik, S., Bakwad, K., Sohi, B., Ratho, R. and Devi,
S. (2013). Swine influenza models based optimization
(SIMBO), Applied Soft Computing 13(1): 628—653.

Poletto, C., Pelat, C., Levy-Bruhl, D., Yazdanpanah, Y.,
Boelle, P.-Y. and Colizza, V. (2014). Assessment
of the Middle East respiratory syndrome coronavirus
(MERS-COV) epidemic in the Middle East and risk of
international spread using a novel maximum likelihood
analysis approach, Eurosurveillance 19(23): 20824.

Reusken, C.B.E.M., Haagmans, B.L., Muller, M.A., Gutierrez,
C., Godeke, G.J., Meyer, B., Muth, D., Raj, V.S., Smits-De
Vries, L., Corman, V.M., Drexler, J.-F., Smits, S.L.,
El Tahir, Y.E., De Sousa, R., van Beek, J., Nowotny,
N., van Maanen, K., Hidalgo-Hermoso, E., Bosch, B.J.,
Rottier, P., Osterhaus, A., Gortazar-Schmidt, C., Drosten,
C. and Koopmans, M.P.G. (2013). Middle East respiratory
syndrome coronavirus neutralising serum antibodies in
dromedary camels: A comparative serological study,
Lancet Infectious Diseases 13(10): 859-866.

Saha, S. and Roy, P.K. (2017). A comparative study
between two systems with and without awareness in
controlling HIV/AIDS, International Journal of Applied
Mathematics and Computer Science 27(2): 337-350, DOLI:
10.1515/ames-2017-0024.

WHO (2013). Revised interim case definition for reporting to
WHO—Middle East respiratory syndrome coronavirus
(MERS-CoV), www.who.int/csr/disease/coro
navirus_infections/case_definition_03_|
07_2014/en/.

WHO (2016). Middle East respiratory syndrome coronavirus
(MERS-CoV), www.who.int/mediacentre/fact
sheets/mers-cov/en.

Zaki, A., van Boheemen, S., Bestebroer, T., Osterhaus, A. and
Fouchier, R. (2012). Isolation of a novel coronavirus from
a man with pneumonia in Saudi Arabia, The New England
Journal of Medicine 367(19): 1814-1820.

Dipo Aldila graduated from Tadulako Univer-
sity in 2009. He received his Master’s and PhD
degrees from Institut Teknologi Bandung in 2011
and 2014, respectively. He is currently a lecturer
in the Department of Mathematics, Universitas
Indonesia. His present research interests are in
mathematical modeling and optimal control, es-
pecially the disease spread model.

Herningtyas Padma received her BSc in 2015
from the Department of Mathematics, Univer-
sitas Indonesia, under the supervision of Dipo
Aldila and Hengki Tasman. Her research inter-
ests are in disease spread modeling with ordinary
differential equations.

Khusnul Khotimah received her BSc in 2015
from the Department of Mathematics, Univer-
sitas Indonesia, under the supervision of Dipo
Aldila and Bevina D. Handari. Her research in-
terests are in application of optimal control to dis-
ease modeling.

Bevina Desjwiandra obtained her PhD in math-
ematics from the University of Queensland in
2003. In her early academic years she was at
Universitas Indonesia (1986) and Michigan State
University (1992). She has been a lecturer at the
Department of Mathematics, Faculty of Mathe-
matics and Natural Sciences, Universitas Indone-
sia, since 1987. Her current research interests are
in computational finance, heuristic optimization
and biomathematics.



www.who.int/csr/disease/coronavirus_infections/case_definition_03_07_2014/en/
www.who.int/csr/disease/coronavirus_infections/case_definition_03_07_2014/en/
www.who.int/csr/disease/coronavirus_infections/case_definition_03_07_2014/en/
www.who.int/mediacentre/factsheets/mers-cov/en
www.who.int/mediacentre/factsheets/mers-cov/en

D. Aldila et al.

Hengki Tasman received his PhD from Insti-
tut Teknologi Bandung in 2010. Since 2002, he
has been a lecturer in the Department of Math-
ematics, Universitas Indonesia. His current re-
search interests are in biomathematics and popu-
lation dynamics.

Received: 7 November 2016
Revised: 18 April 2017
Re-revised: 7 September 2017
Accepted: 10 October 2017



	Introduction
	Mathematical model for optimal control of the MERS disease
	Mathematical model analysis for an autonomous system
	Optimal control characterization
	Numerical simulation results
	Simulation of an autonomous model
	Simulation of the optimal control problem
	Simulation for different initial conditions
	Simulation with different R∗0 scenarios 
	Simulation with different budget limitations


	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice


