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We analyze the evolution of an infectious disease by combining different groups of a population when the route of trans-
mission is via encounters with free-living virulent organisms that can survive for a long time outside the individual. This
study involves matrix analysis of lower triangular block matrices and some of their spectral properties. We propose an
N -periodic control strategy in order to stabilize the disease around the disease-free equilibrium point.
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1. Introduction

In practice, the use of structured mathematical systems
is common to model the propagation of an infectious
disease through a population. To apply a model to real
situations, we need to know several characteristics of the
disease in question. In particular, this is the case when the
dynamics of an infectious disease depend on the structure
of a population, e.g., when the contagion of a susceptible
individual occurs at a local level. The disease can be
controlled using a variety of control strategies such as
vaccination (Cantó et al., 2014; Ding et al., 2014; Liao
and Yang, 2013).

In a typical herd the individuals of a species are
organized in multiple groups (van den Driessche and
Watmough, 2002; Xiao et al., 2006). For example, in a
dairy herd, we have weanling calves, heifers and mature
cows. Another example is a henhouse of laying hens;
the birds are usually distributed into three areas: newly
hatched chickens from 0 to 3 weeks, laying hens from 4
to 21 weeks, and sexually mature hens from 22 weeks.
This distribution is necessary because suitable conditions
of a ventilation system or an ambient temperature
corresponding to the hen age must be guaranteed in the
henhouse area. After a period of time, for instance, a
week in the henhouse case, the individuals are changed
to the next age-range cage. When a virulent organism
is introduced in the farm, its population is subject to
infection through contact with the pathogen that lives
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freely in the environment (Joh et al., 2009). This occurs,
e.g., when an outbreak of Salmonella appears in a farm
or in a henhouse (Prevost et al., 2006; Xiao et al., 2006)
or when an outbreak of ovine brucellosis occurs in a herd
(Ainseba et al., 2010).

In this paper, we study the behavior of a structured
mathematical model incorporating the contamination by
the environment as an indirect mode of transmission
of the disease. We focus on the analysis of an
outbreak of Salmonella at a henhouse, since this disease
causes serious disorders in the population, as reported
in the Annual Epidemiological Report 2014 on the
evolution of Salmonella. In particular, in 2012, 92438
confirmed salmonellosis cases were reported by 29
EU/EEA countries. Through the analysis of how this
disease has evolved, a decrease in reported cases can be
observed. This is largely due to the implementation of
policies for the control and prevention of salmonellosis
in the poultry industry, particularly in laying hens and
broilers (EFSA/ECLC, 2014).

In some cases, it is interesting to represent the
epidemic process using a discrete-time model, since it
allows us to take into account arbitrary time-step units
and it is well linked to the real data collection discrete
process (Cantó et al., 2013; 2014; Enatsu et al., 2012;
Li and Wang, 2005). In the study of these discrete
processes, matrix theory plays an important role, in
particular the spectral properties of nonnegative matrices.
This is because the variables involved in the process
take nonnegative values. The concepts of reducible and
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irreducible matrices, a stable matrix, the Perron root, etc.
(Berman and Plemmons, 1994) are needed to increase our
knowledge of the evolution of the disease considered.

This paper is organized as follows. The next section
contains mathematical and control preliminaries. In
Section 3, we obtain theoretical results on the spectral
radius of the structured matrices involved in the process.
In Section 4, we present our compartmental epidemic
model. In Section 5, we make the analysis of our
model, the evolution of disease around the disease-free
equilibrium point and the distribution of the population
in multiple groups. We obtain some conditions which
determine whether or not the disease is eradicated.
Finally, in Section 6, we discuss the extinction of the
disease by means of a seasonal strategy in the process,
and the results are illustrated by an example.

2. Preliminaries

A matrix A = (aij) is nonnegative (positive) if aij ≥ 0
(aij > 0) for all i, j, and it is denoted by A ≥ O (A > O).
The spectrum of A and its spectral radius are denoted by
σ(A) and ρ(A), respectively. It is known (Berman and
Plemmons, 1994) that a matrix A is stable if ρ(A) < 1,
and two matrices A and B are similar if there exists a
nonsingular matrix T such that B = T−1AT . Moreover,
A is a reducible matrix if, for some permutation T , A is
similar to

T TAT =

(
X O
Y Z

)
,

where X and Z are square matrices.
The following definitions and results constitute

the foundations of stability theory of control systems
(see, e.g., Meyer and Burrus, 1975). An autonomous
discrete-time linear system x(t + 1) = Ax(t) is
asymptotically stable to zero if and only if A is a stable
matrix, that is, ρ(A) < 1. In the N -periodic case, N ∈ Z,
the system is x(t + 1) = A(t)x(t), with A(t + N) =
A(t), t ∈ Z. In this case stability can be assessed by
analyzing the monodromy matrix defined as the transition
matrix over one period, i.e.,

ΦA(k, k0) =

⎧⎪⎨
⎪⎩

k−1∏
i=k0

A(k0 + k − 1− i), k > k0,

Jn, k = k0,

where Jn denotes the identity matrix of size n. Thus, the
periodic system is asymptotically stable to zero if and only
if the N matrices As = ΦA(N+s, s), s = 0, 1, . . . , N−1
are stable. Moreover, Bittanti (1986) proved that these
matrices have the same spectrum.

The problem presented in this paper refers to
the evolution of a disease in an epidemic SIC model
described by a discrete system involving matrices with
a fixed structure. The behavior of the disease will be

analyzed through the evolution of the infected individual
and contaminant populations. We are interested in
establishing procedures or strategies that modify these
variables and in setting up some actions to ensure that
the disease tends to disappear. The particular structure
of the matrices associated with the infected individuals
and the contaminant populations in the linear model leads
us to deepening the study of the spectral properties of
such matrices. In the next section we are concerned
with the properties of a nonnegative matrix with lower
triangular blocks. Therefore, before approaching the
study of this epidemiological model, we develop some of
these properties.

3. Nonnegative matrices with lower
triangular blocks

Consider a reducible nonnegative matrix E = (eij) ∈
R

m×m
+ . This statement is not restrictive since the

existence of a reducible infection matrix is common
in epidemic models (Rass and Radcliffe, 2000). It is
known (Berman and Plemmons, 1994) that there exists a
permutation matrix such that E is similar to its Frobenius
normal form which is a lower triangular block matrix
whose square blocks of the diagonal are either irreducible
or a 1 × 1 null matrix. In this work we focus our
attention on reducible matrices E ∈ R

2n×2n
+ such that

their Frobenius normal form is given by

Ẽ =

⎛
⎜⎜⎜⎝

Ẽ1 O O O

� Ẽ2 O O
...

...
. . .

...
� � · · · Ẽn

⎞
⎟⎟⎟⎠ , (1)

where Ẽi ∈ R
2×2
+ are irreducible matrices, i ∈ Υ, with

Υ = {1, 2, . . . , n}, and where the stars represent suitable
block matrices obtained to construct E.

We denote by E the following set:

E =
{
E =

(
E1 E2

E3 E4

)
| Ei ∈ R

n×n
+ lower

triangular with positive diagonal entries
}
.

In the following result we establish that the
nonnegative matrices E ∈ R

2n×2n
+ ∈ E have the

Frobenius normal form given in (1).

Proposition 1. The nonnegative matrix E ∈ E is re-
ducible and its Frobenius normal form is given by (1).

Proof. If we construct the permutation matrix

U = (u1 u3 . . . u2n−1 u2 u4 . . . u2n),

ui being the i-th unit vector, it is easy to check that Ẽ =
UEUT is a lower triangular block matrix. The matrix U
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leads to the following reordering of the entries of matrix
E = (eij):

ejj = ẽ2j−1,2j−1, en+j,n+j = ẽ2j,2j ,

en+j,j = ẽ2j,2j−1, ej,n+j = ẽ2j−1,2j , j ∈ Υ.

Then, under the assumption that matrices Ei have
positive diagonal entries, all blocks Ẽi are positive
matrices, and thus irreducible ones. Hence, the matrix E
is a reducible matrix and the matrix Ẽ given in (1) is its
Frobenius normal form. �

We denote by X the set of matrices with a real and
nonnegative spectrum defined by

X =
{
X = (xij > 0) ∈ R

2×2
+ ,

with σ(X) = {λ1, λ2}, 0 ≤ λ2 < λ1

}
.

Proposition 2.

1. Consider X ∈ X . If x11 + x22 < 1, then ρ(X) < 1.

2. Consider a nonnegative matrix E = (eij) ∈ E
such that eii + en+i,n+i < 1 and ei,n+ien+i,i ≤
eiien+i,n+i, for all i ∈ Υ; then ρ(E) < 1.

Proof.
Part 1. If the spectral radius of X , λ1 = ρ(X), is greater
than 1, using algebraic calculations we have

λ1 = ρ(X) =
1

2
(x11 + x22

+
√
(x11 − x22)2 + 4x12x21) ≥ 1,

(x11 − x22)
2 + 4x12x21 ≥ (2− x11 − x22)

2,

1− (x11 + x22) + det(X) ≤ 0.

However, this contradicts the hypothesis, since
det(X) = λ1λ2 ≥ 0 because X ∈ X and, by the
hypothesis, x11 + x22 < 1.

Part 2. By Proposition 1 each diagonal block Ẽi = (ẽikl)

of Ẽ = UEUT has a nonnegative spectrum, that is, Ẽi ∈
X , and satisfies ẽi11 + ẽi22 < 1; then ρ(Ẽi) < 1, for all
i ∈ Υ. Hence, ρ(E) < 1. �

Now, we consider the matrix

Qn =

(
Jn O
O O

)
∈ R

2n×2n

for all n ≥ 1. We want to analyze spectral properties of
the product of matrices ENQn, N ∈ N. Specifically, we
look for the greatest value of N such that ρ(ENQ) < 1
and ρ(EN+1Qn) > 1, as ENQn = UT ẼNdiag(Q1)U ,
and

ẼNdiag(Q1) =

⎛
⎜⎜⎜⎝

ẼN
1 Q1 O O O

� ẼN
2 Q1 O O

...
...

. . .
...

� � · · · ẼN
n Q1

⎞
⎟⎟⎟⎠ ,

where the stars represent suitable block matrices obtained
to construct ẼNdiag(Q1). We focus our attention on the
blocks ẼN

i Q1.

Proposition 3. Consider X ∈ X with ρ(X) ≥ 1. If
x11 < 1, then there exists N0 ∈ N such that ρ(XNQ1) <
1 for all N ≤ N0 and ρ(XNQ1) > 1 when N > N0.

Proof. It is straightforward that the nonzero eigenvalue
of XNQ1 is given by

σN =
λN
1 (λ1 − x22) + (x22 − λ2)λ

N
2

λ1 − λ2
(2)

and ρ(XNQ1) = σN , for all N ∈ N. This is obtained
using the eigenvectors

vi =

(
λi − x22

x21
, 1

)
, i = 1, 2

associated with λ1 and λ2, respectively. Since 0 < λ2 <
λ1, we have σN = ρ(XNQ1) > 0.

Consider ρ(X) = λ1 = 1. As λ2 < λ1 = 1, we have
λN
2 < 1. Hence

(1− x22) + (x22 − λ2)λ
N
2 < 1− λ2.

Using (2), we obtain σN < 1.
Now, we consider ρ(X) = λ1 > 1 and construct the

following continuous function:

f(z) = 1− a

(
1− 1

λz
1

)
−
(λ2

λ1

)z
,

with

a =
λ1 − λ2

x22 − λ2
, (3)

z ∈ R+, whose f ′(z) has a unique root. From the
definition of the set X we have λ1 − λ2 > 0. By
performing a simple calculation it is verified that

x22 − λ2

= x22 − 1

2
(x11 + x22 −

√
(x11 − x22)2 + 4x12x21)

=
1

2
(
√

(x11 − x22)2 + 4x12x21 − (x11 − x22)) > 0,

since x12, x21 > 0. Moreover, by the hypothesis, 1 +
x22 − λ1 − λ2 = 1 − x11 > 0. Then the function (3) is
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positive at z = 1, that is,

f(1) = 1− a

(
1− 1

λ1

)
− λ2

λ1

=
(λ1 − λ2)(1 + x22 − λ1 − λ2)

(x22 − λ2)λ1
> 0.

On the other hand, this fact, along with with the
assumption λ2 ≥ 0, guarantees that

1− a

(
1− 1

λ1

)
> 0.

Hence
λ1 <

a

a− 1
.

Consequently, there exists z1 > 1, z1 ∈ R+ such that

λz
1 >

a

a− 1

for all z > z1. In this case, from the construction of f(z),
we also have f(z) < 0 if z > z1. Thus, there exists a
unique z0 ∈ R+, 1 < z0 < z1 such that f(z0) = 0.

Taking N0 = int(z0), where ‘int’ denotes the integer
part of z0, we have f(N) > 0 if N ≤ N0, and otherwise
f(N) < 0.

From (3), if N ≤ N0, we get

a > λN
1

((λ2

λ1

)N
+ a− 1

)
,

λ1 − λ2 > λN
2 (x22 − λ2) + λN

1 (λ1 − x22),

1 > σN .

Thus, ρ(XNQ1) < 1 for all N ≤ N0. Likewise, if N >
N0, we obtain ρ(XNQ1) > 1. �

Theorem 1. Let E ∈ R
2n×2n
+ be a reducible matrix

with its Frobenius normal form given in (1) and Ẽi =
(ẽikl) ∈ X with ẽi11 < 1. If ρ(E) ≥ 1, then there exists
N0 ∈ N such that ρ(ENQn) < 1 for all N ≤ N0 and
ρ(ENQn) > 1 when N > N0.

Proof. Since ρ(E) ≥ 1, there exists some i ∈ Υ such
that ρ(Ẽi) = λi

1 ≥ 1. Let Υ1 = {i ∈ Υ | λi
1 ≥ 1}.

For each i ∈ Υ1, applying Proposition 3 to the matrix Ẽi,
there exists N i

0 such that ρ(ẼN
i Q1) < 1 for all N ≤ N i

0

and ρ(ẼN
i Q1) > 1 when N > N i

0. Thus, it is sufficient
to take N0 = min{N i

0, i ∈ Υ1}. �

Note that in the previous results we obtained the
existence and uniqueness of N0. In practice, we need
to apply numerical methods to estimate the values N i

0,
i ∈ Υ1. In what follows we give a procedure to determine
the minimum power N0 that is recommended to be carried
out from an initial unstable matrix E into a stable EN

0 Qn

matrix.

Algorithm 1. Minimum period to maintain stability.
Step 1. Input data: E (reducible matrix, E ∈
E), n (size of E) and U (permutation matrix, U =
(u1 u3 . . . u2n−1 u2 u4 . . . u2n)).

Step 2. Compute ρ(E) (spectral radius of E).

Step 2.1. If ρ(E) < 1 then go to Step 8.

Step 2.2. Otherwise, go to Step 3.

Step 3. Construct Ẽ = UEUT .

Step 4. Extract the blocks Ẽi = (ẽikl) of Ẽ, i ∈ Υ.

Step 5. Set i = 1:

Step 5.1. Compute λi
1 = ρ(Ẽi), λi

2 as the eigenvalues

of Ẽi.

Step 5.2. If λi
1 ≤ 1, then N i

0 = 1 and go to Step 6,
otherwise, go to Step 5.3.

Step 5.3. Compute ẽi22 and set

a =
λi
1 − λi

2

ẽi22 − λi
2

.

Step 5.4. Construct

fi(z) = 1− a

(
1− 1

(λi
1)

z

)
−
(
λi
2

λi
1

)z

.

Step 5.5. Solve fi(z) = 0 and take the integer part of
the solution. Store it in N i

0 and go to Step 6.

Step 6. Set i = i+ 1. If i ≤ n go to Step 5.1. Otherwise,
go to Step 7.

Step 7. Construct N0 = min{N i
0, i ∈ Υ}.

4. Problem statement

We consider an epidemiological process where the
individuals are organized in n compartments depending
on their age. In this model the individuals are infected
only from the contact with the contaminant of its
compartment. We denote by P the population, by Si

susceptible individuals, by Ii infected individuals and by
Ci the contaminant population in the i-th compartment,
for i ∈ Υ.

We take into account transfer of individuals from the
i-th compartment to the (i + 1)-th compartment when
they change the age range in the dynamic process and,
moreover, we consider the entry of new individuals in S1

proportional to the size of the population ν(t)P , for a
fixed size of the populationP . This assumption is realistic
since we are considering the poultry industry. To optimize
resources and facilities, such as the automatic drinking or
dispensing grain system and light management, the farmer
is interested in having the maximum number of hens in the
henhouse fit.
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A common mathematical representation for a
nonlinear discrete-time system is

x(t+ 1) = f(x(t)), t ≥ 0,

where x(t) ∈ R
n is the state vector and f : Rn → R

n is a
continuously differentiable function.

In our system, x(t) = (S(t) I(t)C(t))T with S(t) =
(Si(t))

n
i=1, I(t) = (Ii(t))

n
i=1, C(t) = (Ci(t))

n
i=1. The

parameters involved in the model are the following:

• pi, qi, si: survival rates of Si, Ii, Ci, respectively;

• αi: exposition rate of susceptible individuals Si by
contact with Ci;

• σi (μi): rate at which individuals Si (Ii) change
the age-compartment without changing the state, i.e.,
those who remain susceptible individuals (infected
individuals);

• εi: rate at which the individuals change the
age-compartment, with a change from susceptible to
infected;

• βi: rate at which of the contaminant is produced by
infected individuals Ii.

Having described the parameters involved in the
model, we proceed to discuss in detail its construction.
In the model, susceptible individuals Si of the i-th
compartment have three options when their situation
changes: they can advance to the next Si+1 of susceptible
individuals (if they have not become infected but have
changed their age), they can move to infected individuals
Ii (if they have not changed age but they have become
infected) or they can advance to the infected individuals
Ii+1 of the (i + 1)-th compartment (they just change
their age when they become infected). The number of
the individuals of each option is given by σiSi(t), (1 −
εi)αiCi(t)Si(t) and εiαiCi(t)Si(t), respectively. This
reasoning is summarized in the scheme given in Fig. 1.

Fig. 1. Distribution scheme.

Specifically, the nonlinear discrete-time system is

given by

⎧⎪⎪⎨
⎪⎪⎩

S1(t+ 1) = (p1 − σ1 − α1C1(t))S1(t) + ν(t)P,
Sj(t+ 1) = σj−1Sj−1(t)

+(pj − σj − αjCj(t))Sj(t),
Sn(t+ 1) = σn−1Sn−1(t) + (pn − αnCn(t))Sn(t),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I1(t+ 1) = (q1 − μ1)I1(k)
+(1− ε1)α1C1(t)S1(t),

Ij(t+ 1) = μj−1Ij−1(t) + (qj − μj)Ij(t)
+εj−1αj−1Cj−1(t)Sj−1(t)
+(1− εj)αjCj(t)Sj(t),

In(t+ 1) = μn−1In−1(t) + qnIn(t)
εn−1αn−1Cn−1(t)Sn−1(t)
+αnCn(t)Sn(t),⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C1(t+ 1) = s1C1(t) + β1(1− μ1)I1(t),
Cj(t+ 1) = sjCj(t) + μj−1βj−1Ij−1(t)

+(1− μj)βjIj(t),
Cn(t+ 1) = snCn(t) + μn−1βn−1In−1(t)

+βnIn(t),

for j = 2, . . . , n− 1.
(4)

This system will be called the SIC model. Since the
population is constant at any time, we have

n∑
i=1

Si(t) +

n∑
i=1

Ii(t)

=
n∑

i=1

Si(t+ 1) +
n∑

i=1

Ii(t+ 1) = P.

From (4), adding the corresponding equations, we
have that the function ν(t) must meet

ν(t)P = P −
n∑

i=1

piSi(t)−
n∑

i=1

qiIi(t).

Note that this equation determines the number of hens
dying at each stage, i.e., the number of hens that the farmer
must replace in every step.

This model seeks to analyze the behavior of infection
through the evolution of infected individuals and the
amount of the contaminant in the compartments. Our goal
is to find and apply strategies via an N -periodic approach
to ensure that the disease tends to disappear.

5. Evolution of the disease in the SIC model

Consider the model given in (4) and abbreviated as x(t +
1) = f(x(t)), where x(t) = (S(t) I(t) C(t))T with
S(t) = (Si(t))

n
i=1, I(t) = (Ii(t))

n
i=1 and C(t) =

(Ci(t))
n
i=1. The equilibrium points x� = (S∗, I∗, C∗) are

the solutions of x� = f(x�) and, specifically, when I� =
0, we have the disease-free equilibrium point obtained in
the following proposition.
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Proposition 4. The disease-free equilibrium point of the
model (4), (Sf , O,O) with Sf = (Sf

1 , Sf
2 , . . . , Sf

n),
provides the following distribution of the population:

Sf
i =

Hi+1,nΣiP

H
, (5)

where

Σi =

i−1∏
j=1

σj , i ∈ Υ,

H = (1− pn) ((1 + σ1)H2,n−1

+

n−1∑
j=2

pjΣj−1Hj+1,n−1

⎞
⎠+ pnσn−1,

and

Hk,l =

l∏
j=k

(1− pj + σj)

if k < l, and Hk,l is the identity matrix if k > l.

Proof. Now, we give a sketch of the proof. The system (4)
at the disease-free equilibrium point (Sf , O,O) is given
by

S

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Sf
1 = (p1 − σ1)S

f
1 + P −

n∑
i=1

piS
f
i ,

Sf
j = σj−1S

f
j−1 + (pj − σj)S

f
j ,

j = 2, . . . , n− 1,

Sf
n = σn−1S

f
n−1 + pnS

f
n .

Solving this system algebraically, we have

Sf
1 = (1− pn)(1− pn−1 + σn−1)

· · · (1 − p2 + σ2)
P
L ,

Sf
j = (1− pn)(1− pn−1 + σn−1)

· · · (1− pi−1 + σi−1)
P
Lσ1σ2 · · ·σi−1,

Sf
n = P

Lσ1σ2 · · ·σn−1,

with

L = (1 + σ1)(1− pn)(1 − pn−1 + σn−1)

· · · (1− p1 + σ1) + p2σ1

(1 − pn)(1− pn−2 + σn−2) · · · (1− p1 + σ1)

+ · · ·+ pn

n−l∏
i=1

σi

n∏
i=1

(1 − pi + σi).

Rearranging the terms, we get the solution (5). �

Linearizing around the disease-free equilibrium
point x� = f(x�), with Pf = (Sf , O,O) ∈ R

3n,
Sf = (Sf

1 , . . . , Sf
n), we obtain the following linear

discrete-time system:

x̂(t+ 1) = Ax̂(t) + b, (6)

with x̂(t) = x(t) − x�, b = (P O3n−1)
T ∈ R

3n and

A =

( ∗ ∗
O E

)
,

where the asterisks represent suitable block matrices
obtained to construct A and

E = T + F =

(
T1 O
O T2

)
+

(
O F1

F2 O

)
, (7)

with

T1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

q1 − µ1 0 · · · 0

µ1 q2 − µ2 · · · 0 0

...
...

. . .
...

...

0 0 · · · µn−1 qn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (8)

T2 = diag(si)
n
i=1,

Fj =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

f j
11 0 · · · 0 0

f j
21 f j

22 · · · 0 0

...
...

. . .
...

...

0 0 · · · f j
n,n−1 f j

nn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (9)

where f1
ii = (1 − εi)αiS

f
i , f2

ii = βi(1 − μi), i ∈ Υ

(εn = μn = 0) and f1
i+1,i = εiαiS

f
i , f2

i+1,i = βiμi,
i = 1, . . . , n− 1.

To establish conditions on the population in order
to ensure that the disease disappears, we consider the
subsystem corresponding to the infected individuals and
contaminant variables, y(t+1) = Ey(t). In what follows,
we set μn = εn = σn = 0.

Proposition 5. Consider the initial epidemic model de-
scribed by the equations given in (6). If the popula-
tion P is distributed in compartments such that the DFE
Pf = (Sf , O,O) ∈ R

3n, Sf = (Sf
1 , . . . , S

f
n), satisfies

Sf
i < Ki,

where

Ki =
(1− qi + μi)(1 − si)

βi(1− μi)(1 − εi)αi
, i ∈ Υ, (10)

then x(t) is asymptotically stable to the DFE point
(Sf , O,O). Moreover, if Ki ≤ Sf

i for some i, i ∈ Υ,
then x(t) is not asymptotically stable to this point.

Proof. Note that matrix E is a nonnegative block one
given as in (1). From the structure of E we can apply the
result given in Proposition 1 and obtain a similar system
z(t+ 1) = Ẽz(t), where Ẽ is the Frobenius normal form
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of E and has the structure given in (1). In this case the
blocks Ẽi = T̃i + F̃i are given by

T̃i =

(
qi − μi 0

0 si

)
,

F̃i =

⎛
⎝ 0 (1− εi)αiS

f
i

βi(1− μi) 0

⎞
⎠ , i ∈ Υ.

(11)
If the system y(t + 1) = Ey(t) is asymptotically

stable to zero, then the initial system is asymptotically
stable to the disease-free equilibrium point (Sf , O,O) and
the infection disappears. For this reason, we analyze the
matrix E given in (7).

The matrix E = T + F is stable if and only if so are
matrices Ẽi = T̃i + F̃i for all i ∈ Υ, or, equivalently, the
spectral radius of matrix F̃i(I − T̃i)

−1 is less than 1, for
all i ∈ Υ (see, e.g., Berman and Plemmons, 1994; Li and
Schneider, 2002). Finally, we can check that ρ(F̃i(I −
T̃i)

−1) < 1 if and only if the condition on Sf
i given in

(10) holds, i ∈ Υ. �

Remark 1. It is known that the basic reproductive
number of the epidemiologic process, R0, is a measure
or an indicator of whether the disease will disappear (Li
and Schneider, 2002; Wijaya et al., 2017). If R0 < 1,
the disease tends to disappear around the disease-free
equilibrium point and otherwise it remains. Note that the
basic reproductive number of the epidemiologic process
represented by the model (4) and defined by R0 =
ρ(F (I−T )−1) is less than 1 if and only if R0

i = ρ(F̃i(I−
T̃i)

−1) < 1 for all i ∈ Υ, with T̃i, F̃i defined in (8) and
(9). Thus, from Proposition 5, the condition R0 < 1 is
satisfied if and only if the population in each compartment
Sf
i meets the condition (10).

Remark 2. Applying Proposition 5 to the components
of (Sf , O,O), with Sf = (Sf

1 , Sf
2 , . . . , Sf

n) given in
Proposition 4, we obtain an upper bound over the total
population P in accordance with the expressions given in
(5) and the conditions given in (10). In order to ensure
that the contaminant population disappears, we need the
population Sf

i in each compartment to be lower than Ki,
given in (10). In this case, the total population P is less
than

min
{ KiH

Hi−1,nΣi
, i ∈ Υ

}
. (12)

6. Seasonal actions to achieve the
disappearance of the disease

If R0 ≥ 1, some actions must be planned so that the
basic reproduction number of the new model be less than
1. In many cases, the disease does not have an effective
vaccine or there are other actions that are more profitable.

Typically, when there is an outbreak of Salmonella in
a henhouse, it is not usual to vaccinate the hens for
economic reasons. However, since the spread of infected
individuals is caused by accumulation of the contaminant
found in the environment, specifically in the floor of
the henhouse, we can clean periodically. This leads
to the mathematical representation of the process as an
N -periodic system.

Firstly, we remark the following fact. The condition
R0 ≥ 1, that is, ρ(E) ≥ 1, implies that the population
P is greater than the bound given in (12). Hence, there
exists some i, i ∈ Υ, such that ρ(Ẽi) ≥ 1, that is, using
Proposition 5, at the disease-free equilibrium point the
population of the i-th compartment satisfies Ki ≤ Sf

i .
On the other hand, each block Ẽi given in (11) of

the Frobenius normal form of matrix E has the spectrum
σ(Ẽi = {λi

1,2}. We write ρ(Ẽi) = λi
1 and observe that

the positive assumption of λi
2 is equivalent to

Sf
i < Li =

(qi − μi)si
βi(1 − μi)(1 − εi)αi

.

Thus, if, for some i ∈ Υ, we have the conditions ρ(Ẽi) ≥
1 and λi

2 > 0, then the parameters could satisfy the
condition Ki < Sf

i < Li.

Remark 3. Note that this condition is not too restrictive
in the area of epidemiology since Ki < Li if and only if
qi−μi+si > 1, which means that the sum of the survival
rates of infected individuals and the survival rate of the
contaminant exceeds one. It is a realistic condition for
many infectious diseases when an outbreak occurs, such
as, e.g., Salmonella in a henhouse (see, e.g., Prevost et al.,
2006).

To eliminate the infection, periodic cleaning of the
environment is planned for each time N . From the
initial condition (S(0), I(0), 0), S(0) = (Si(0))

n
i=1 and

I(0) = (Ii(0))
n
i=1, we clean the environment each N

steps leaving it without the contaminant. The new model
is represented by (4), where αi and si are replaced by
αi(t) and si(t), respectively, two N -periodic functions
defined as

αi(t) =

{
0, t = 0,
αi, t = 1, 2, . . . , N − 1,

(13)

si(t) =

{
0, t = 0,
si, t = 1, 2, . . . , N − 1,

(14)

αi(t+N) = αi(t) and si(t+N) = si(t), i ∈ Υ.
Linearizing around the disease-free equilibrium

point, we have that the subsystem corresponding to
the infected individuals and contaminant variables is an
N -periodic system

y(t+ 1) = E(t)y(t),

E(t+N) = E(t), t ≥ 0,
(15)
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with E(0) = EQn and E(t) = E, t = 1, . . . , N − 1,
where

Qn =

(
Jn O
O O

)
∈ R

2n×2n.

The solution of this system is given by means of the
monodromy matrix defined as

ΦE(k, k0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k−1∏
i=k0

E(k0 + k − 1− i), k > k0

Jn, k = k0.

In this case, from an initial condition, y0 =
(I(0), C(0)) ∈ R

2n×2n, the solution of the N -periodic
system at time t = kN + j, k ≥ 0, j = 1, . . . , N − 1, is

y(t) = ΦE(t, 0)y0 = EjQn(ΦE(N, 0))ky0.

Using control theory tools developed for this kind of
systems (see Bittanti, 1986), we know that the new
N -periodic model will be asymptotically stable to zero
if the monodromy matrix ΦE(N, 0) is stable, that is, if
ρ(ΦE(N, 0)) < 1.

Note that if N = 1, we have Ci(t) = 0, i ∈ Υ,
for all t, and the system is asymptotically stable since
ρ(ΦE(1, 0)) = ρ(EQn) = max{qi − μi, i ∈ Υ} < 1
and 0 < μi < qi < 1. But we need to delay this
cleaning action as much as possible. For this reason, we
want to find the maximum number of steps at which the
henhouse can remain without being cleaned, keeping the
system asymptotically stable. That is, we want to obtain
a threshold from which the system is not asymptotically
stable and the disease does not tend to the disease-free
equilibrium point. Then we look for the maximum period
N such that the N -periodic system (15) is asymptotically
stable. Or, equivalently, we obtain the value of N such
that ρ(ΦE(N, 0)) < 1 and ρ(ΦE(N + 1, 0)) > 1, given
ΦE(N, 0). In this way, we establish the following result.

Theorem 2. Consider the N -periodic epidemiologic
model given by (15), where matrix E(t) = T (t) + F (t) is
defined as in (7)–(9) with αi and si replaced by αi(t) and
si(t) given in (13)–(14), i ∈ Υ. Suppose that Sf

i < Li

for all i ∈ Υ, and for some i, i ∈ Υ, Ki ≤ Sf
i . Then

there exists N0 ∈ N such that the N -period system (15)
is asymptotically stable when the period N < N0 and
unstable when N > N0.

Proof. Note that ΦE(N, 0) = ENQn, with E given
by Eqns. (7)–(9). By constructing matrix E = T + F
from the parameters of the epidemiological process, each
submatrix Ẽi = T̃i + F̃i , i ∈ Υ, given by (11), is a
positive matrix with the entry ẽi11 = qi − μi < 1.

As there exists i, i ∈ Υ, such that Ki ≤ Sf
i , by

Proposition 5, ρ(E) ≥ 1. In addition, according to the

comment at the beginning of this section, the condition
Sf
i < Li yields λi

2 > 0, for all i ∈ Υ. Thus, it is sufficient
to apply Theorem 1 to assert that there exists N0 such that
ρ(ΦE(N, 0)) < 1 if N ≤ N0 and ρ(ΦE(N, 0)) > 1 when
N > N0. �

7. Illustrative example

We analyze the evolution of an outbreak of Salmonella
by the combination of three individual groups such that
the transmission is via a free-living contaminant. This
example is an academic one, but the values of the
parameters considered are quite realistic and they are
consistent with others used in studies that have analyzed
this disease in a henhouse (see, e.g., Beaumont et al.,
2012; Zongo et al., 2010). Consider a population P =
208, where the parameters involved in the model are

pi = 0.99, qi = 0.8,

si = 0.5, i = 1, 2, 3,

α1 = 0.00002, α2 = 0.00001, α3 = 0.00001,

σ1 = 0.01, σ2 = 0.01,

μ1 = 0.001, μ2 = 0.001

ε1 = 0.0001, ε2 = 0.0001,

in Step−1 dimension, and the amount of excretion is

β1 = 102 cfu, β2 = 2.102 cfu, β3 = 3.102 cfu,

with ‘cfu’ standing for a colony forming unit.
The evolutions of the susceptible and infectious

individuals and the contaminant are each compartment is
given in Figs. 2 and 3, respectively.

The values of the disease-free equilibrium point Pe

are S1 = 104 and S2 = S3 = 52, and the coefficient
matrixE given in (7) of the linear system around this point
has a spectral radius ρ(E) = 1.12921. Then, the invariant
system is unstable, but the conditions of Theorem 2, Ki <
Si < Li hold since K1 = K2 = 50.3053, K3 = 33.33,
L1 = L2 = 199.97, L3 = 133.33. Here, we can ensure
that there exists N0 ∈ N such that the N -periodic system
(15) is asymptotically stable when the period N < N0

and is not asymptotically stable when N > N0.
In order to obtain the value of N0, we need to

construct the N -periodic matrix E(t) as in (15) and
analyze the spectral radius of the monodromy matrix.

As the conditions of the theorem are satisfied, we
apply the algorithm constructed in Section 3 to the matrix
E. Obtain that the submatrices

Ẽ1 =

(
0.799 0.002
99.9 0.5

)
, Ẽ2 =

(
0.799 0519
199.8 0.5

)
,

Ẽ3 =

(
0.8 0.00052
300 0.5

)
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have λ1
1 = ρ(Ẽ1) = 1.129, λ2

1 = ρ(Ẽ2) = 1.0048 and
λ3
1 = ρ(Ẽ3) = 1.0724. Constructing the functions fi(z)

of Step 5.2 of Algorithm 1 and solving fi(z) = 0, i =
1, 2, 3, we have

N1
0 = 3, N2

0 = 3, N3
0 = 5.

Then, N0 = min{N i
0, i = 1, 2, 3} = 3.

Indeed, checking the spectral radius of the
monodromy matrix ΦE(N, 0) of the N -periodic
system according with its period, we have what
follows: If N = 2, ρ(ΦE(2, 0)) = 0.8461, if
N = 3, ρ(ΦE(3, 0)) = 0.9459 and if N = 4,
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Fig. 2. Evolution of populations of susceptible and infected in-
dividuals: in compartment 1 (a), in compartment 2 (b),
in compartment 3 (c).

ρ(ΦE(4, 0)) = 1.066.

Taking N0 = 3, we have that the N0-periodic
system is asymptotically stable but the (N0 + 1)-periodic
system is not. In this way, the maximum number of
steps the henhouse can be unclean, keeping the system
asymptotically stable, is N0 = 3. In Fig. 4 we can observe
that the infected individuals in the first compartment
tend to disappear when the enclosure is cleaned every
three stages, eliminating the population of contaminant
in the environment. However, if this seasonal cleaning is
made every four steps, the disease cannot be completely
eliminated.
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Fig. 3. Evolution of the contaminant in each compartment.
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Fig. 4. Evolution of the population infected in compartment 1
when a seasonal cleanup strategy is set: periodic clean-
ing with N = 3 (a), periodic cleaning with N = 4 (b).
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8. Conclusions

In this paper, we presented a mathematical model
to analyze the spread of Salmonella in an industrial
henhouse. In this model, the individuals are in
n compartments and there is transference among the
compartments. We studied the behavior of the model
incorporating the contamination by the environment as
an indirect mode of transmission. For that purpose,
we used a linear approach which accurately reflects the
behavior of the nonlinear model. Some properties of the
matrices involved in the linear system were studied. These
properties allowed us to obtain some conditions which
determine whether or not the disease becomes extinct.
Finally, we proposed a strategy to eliminate the possibility
of infection. One of the main contributions of this work is
the calculation of the maximal period of time such that this
periodic cleaning of the environment allows us to prevent
the spreading of the disease.
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