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In this study, proximity based optimization algorithms are used for lossy compression of hyperspectral images that are
inherently large scale. This is the first time that such proximity based optimization algorithms are implemented with an
online dictionary learning method. Compression performances are compared with the one obtained by various sparse
representation algorithms. As a result, proximity based optimization algorithms are listed among the three best ones in
terms of compression performance values for all hyperspectral images. Additionally, the applicability of anomaly detection
is tested on the reconstructed images.
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1. Introduction

Hyperspectral images are data cubes that are composed
of hundreds of narrow spectral bands generally in the
visible and near-infrared spectrum. Data cubes have huge
image sizes. Compression is crucial to remain within
the transmission bandwidth limits during the downlink
operation from satellite to ground (Penna et al., 2007).

Hyperspectral image compression can be divided
into two basic types: lossy and lossless. Even though
lossless compression techniques maintain a full image
quality, high compression ratios cannot be achieved with
such methods.

One of the most popular methods that uses spectral
correlation characteristics is principal component analysis
(PCA) (Nowicki et al., 2012; Panek et al., 2015).
An improved version of the PCA method is called
compressive-projection principal component analysis
(CPPCA) (Fowler, 2009).

Dictionary learning has recently become very
popular for hyperspectral image compression (Wang et
al., 2014; Ülkü and Töreyin, 2015a; 2015b). Instead
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of using a pre-defined version, the dictionary is learned
directly from the hyperspectral image. If the dictionary
is fixed, then the process is called sparse coding. Data
are represented by few sparse coefficients after dictionary
learning and sparse coding is applied on hyperspectral
images iteratively (Charles et al., 2011). This is called
sparse representation of data (Wright et al., 2009; Zhang
et al., 2015).

This study analyzes sparse representation algorithms
in three categories (Yang et al., 2009; Zhang et al.,
2015). These include greedy pursuit algorithms, �p-norm
regularization based algorithms and Bayesian algorithms.
Greedy pursuit algorithms seek to obtain the sparsest
solution by minimizing the �0-norm regularization. This
category includes the matching pursuit (MP) algorithm
(Mallat and Zhang, 1993). The orthogonal matching
pursuit (OMP) algorithm is an improved version of the
MP algorithm (Tropp and Gilbert, 2007). Besides, the
OMP algorithm is also improved as the generalized
OMP (gOMP) algorithm (Wang et al., 2012). Other
algorithms that belong to the greedy pursuit category
are as follows: stagewise orthogonal matching pursuit
(StOMP), regularized OMP (ROMP) and compressive
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sampling matching pursuit (CoSaMP) (Donoho et al.,
2012; Needell and Vershynin, 2009). The �p-norm
regularization algorithms can be divided into two groups:
those for p ≥ 1 and those for 0 < p < 1.
Only �1-norm minimization is accepted to be sufficiently
sparse (Zhang et al., 2015), and such algorithms can be
categorized as follows: constrained based optimization
algorithms, proximity based optimization algorithms and
homotopy based optimization algorithms. Constrained
optimization algorithms include the gradient projection
sparse reconstruction (GPSR) algorithm (Nowak and
Wright, 2007), the interior-point method algorithm (Boyd
and Vandenberghe, 2004) and truncated Newton based
interior-point method (TNIPM) algorithm (Kim et al.,
2007). The alternating direction method of multipliers
(ADMM) algorithm (Boyd et al., 2011) is used to
solve the least absolute shrinkage and selection operator
(LASSO). The last example is the active-set algorithm
(Friedlander and Saunders, 2012). A dual active-set
algorithm is employed to solve a basis pursuit (BP)
problem (Chen et al., 2001).

Proximity based optimization algorithms are suitable
for solutions of non-smooth, constrained and large scale
problems (Parikh and Boyd, 2014). Some proximity
algorithms are the iterative shrinkage thresholding
algorithm (ISTA), the fast iterative shrinkage thresholding
algorithm (FISTA), sparse reconstruction by separable
approximation (SpaRSA), two-step IST (TwIST)
algorithms (Bioucas-Dias and Figueiredo, 2007). Others
are the general iterative shrinkage and thresholding
(GIST) algorithm (Beck and Teboulle, 2009; Gong
et al., 2013), the primal augmented Lagrangian method
(PALM) and the dual augmented Lagrangian method
(DALM) (Yang et al., 2013).

Non-convex �p-norm (0 < p < 1) minimization
problems are solved by using the generalized iterated
shrinkage algorithm (GISA) (Zuo et al., 2013), and it
is employed to compress hyperspectral data cubes with
values of p = 0.3, 0.4 and 0.5. Homotopy based
algorithms include the LASSO homotopy algorithm,
which is proposed to solve LASSO problems (Donoho
et al., 2012), and the basis pursuit denoising (BPDN)
homotopy algorithm. Some algorithms that are
classified as Bayesian compressive sensing algorithms
(Ji et al., 2008) are as follows: smoothed projected
Landweber (BCS-SPL), projected Landweber based on
three-dimensional bivariate shrinkage (BCS PL-3DBS),
and the wavelet packet transform (BCS PL-3DBS +
3DWPT 3D) (Hou and Zhang, 2014).

In this paper, the following contributions are
achieved:

(a) Various sparse representation algorithms based on
online dictionary learning are utilized for lossy
compression of large-scale hyperspectral images.

Compression performances of these algorithms are
compared with those of state-of-the-art hyperspectral
compression algorithms.

(b) This is the first time that proximity based
optimization algorithms are implemented with the
online dictionary learning method in hyperspectral
image compression.

(c) Information preservation performances of different
sparse representation algorithms based on online
dictionary learning are tested by applying anomaly
detection on the original and reconstructed
hyperspectral images.

Hyperspectral image compression using sparse
representation algorithms based on online dictionary
learning is introduced in Section 2. Results are given in
Section 3. In Section 4, conclusions are discussed.

2. Hyperspectral image compression using
sparse representation algorithms based
on online dictionary learning

In this section, hyperspectral image compression using
online dictionary learning based sparse coding is
discussed.

In the literature, an online learning approach is
suggested to effectively solve large-scale optimization
problems (Mairal et al., 2010). The online approach
processes one element from the training set at a time. It
performs techniques based on stochastic approximations.
An iterative online learning algorithm is used in this paper
that minimizes the quadratic surrogate function of the
empirical cost.

2.1. Problem statement. The following parameters
are used in the analyses. The number of bands in the
hyperspectral data cube is defined as nb, the number
of lines in the hyperspectral data cube is described as
nl, the number of samples in the hyperspectral data
cube is expressed as ns and the number of columns in
the dictionary is represented as k. D0 ∈ R

nb×k is
the initial dictionary, A0 ∈ R

k×k and B0 ∈ R
nb×k

are auxiliary matrices to update the dictionary, T is
the number of iterations, λ ∈ R is the regularization
parameter and α ∈ R

k are the sparse coefficients. In the
literature (Olshausen and Field, 1997), dictionary learning
is regarded as optimizing the empirical cost according to
a finite training set X = [x1, . . . , xT ] in R

nb×T . The
empirical cost is defined as follows:

fT (D) � 1

T

T∑

i=1

l(xi,D), (1)
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where D ∈ R
nb×k is the dictionary and l is the loss

function. The latter is defined as the optimal value of an
�1-sparse coding problem (Mairal et al., 2010),

l(xt,D) � min
α∈Rk

1

2
‖xt −D,αt‖22 + λ‖αt‖1, (2)

where λ is the regularization parameter, xt is the
training sample at iteration t and αt is the corresponding
coefficient set at iteration t. The regularization �1 yields
a sparse solution in (2). In order to avoid having
arbitrarily large values in D = [d1 . . . dk], which brings
about having arbitrarily small αt values, a convex set of
matrices C is given by

C � {D ∈ R
nb×k : ‖dj‖ ≤ 1, ∀j = 1, . . . k}. (3)

Minimizing the empirical cost fT (D) with respect
to D is not convex. Therefore, the original optimization
problem is reformulated as a joint optimization one.
In this way, the problem can be considered convex
with respect to D when the sparse coefficients Γ =
[α1, . . . ,αT ] ∈ R

k×T are fixed and with respect to
the sparse coefficients Γ when D is fixed. This joint
optimization problem is given by

min
D∈C,Γ∈Rk×T

T∑

i=1

(
1

2
‖xi −Dαi‖22 + λ‖αi‖1

)
. (4)

In order to solve Eqn. (4), alternately one variable is
fixed and the other is minimized as a convex optimization
problem. As stated in the literature, the expected
cost f(D) can be minimized instead of minimizing the
empirical cost. The expected cost is defined as

f(D) � Ex[l(x,D)] = lim
T→∞

fT (D), (5)

where the expectation is obtained by taking into account
the unknown probability distribution of the data. The
equality in (5) is proved to almost certainly converge.
Stochastic gradient algorithms are shown to be better for
large-scale data sets in terms of the rate of convergence.
The projected first order stochastic gradient descent
algorithm is used in dictionary learning. This algorithm
implies sequence updates of the dictionary D,

Dt =
∏

C

[Dt−1 − ρt∇Dl(xt,Dt−1)] , (6)

where Dt is the optimal dictionary at iteration t, ρ is the
gradient step and

∏
C is the orthogonal projector on C.

The training set X is composed of i.i.d. samples of the
unknown distribution of the data (Mairal et al., 2010).

2.2. Algorithm. The algorithm is composed of the
consecutive parts of dictionary learning and dictionary

update. First, sparse coding is carried out to acquire
αt by using xt and Dt−1 from the previous iteration.
Afterwards, a new dictionary Dt is obtained by
minimizing the function f̂ over C:

f̂t(D) � 1

t

t∑

i=1

1

2
‖xi −Dαi‖22 + λ‖αi‖1, (7)

where αi values are found from the previous iterations.
The quadratic function f̂t(Dt) and ft(Dt) converges to
the same limit with probability one. Hence, function
f̂t can be considered a surrogate for function ft since
function f̂t is close to function f̂t−1Dt that can be
acquired by using Dt−1 as a warm restart.

2.2.1. Algorithm 1: Dictionary learning. Solving (2)
with a fixed dictionary is called sparse coding, and it is
defined as the sparse coding equation as shown in Table 1.

Algorithm 1. Dictionary learning.
1: Construct random initial dictionary D0

2: Set initial values A0 and B0 matrices to zero
3: for t = 1 to T do
4: Choose xt ∈ R

nb randomly from the image.
5: Solve “sparse coding equation”.
6: Update At = At−1+αtα

T
t , Bt = Bt−1+xtαT

t .

7: Find Dt using Dictionary Update Algorithm.
8: end for
9: Obtain learned dictionary Dt.

2.2.2. Algorithm 2: Dictionary update. Equation (7)
is defined as a dictionary update equation as shown in
Table 1. Dt−1 is used as a warm restart to update Dt.

Algorithm 2. Dictionary update.
1: Calculate Dt in “dictionary update equation”
2: repeat
3: for j = 1 to k do
4: Find jth column of Dt, where

D = [d1 . . . dk] ∈ R
nb×k,

A = [a1 . . . ak] ∈ R
k×k,

B = [b1 . . . bk] ∈ R
nb×k

5: uj =
1

A(j,j) (bj −Daj) + dj

6: dj =
1

max(‖uj‖2, 1)uj

7: Ej =
√∑

nb
|dt

j − dt−1
j |2

8: end for
9: E = 1

k

∑k
j=1 Ej

10: until E < Threshold
11: Use D in Dictionary Learning Algorithm.
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3. Results

Lossy compression of large scale hyperspectral images
by using different sparse representation algorithms based
on online dictionary learning is tested with the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) and
Hyperion datasets. Compression performance results are
compared with those of the state-of-the-art BCS PL-3DBS
+ 3DWPT and CPPCA compression algorithms.

In this paper, compression performance is measured
by the peak signal-to-noise ratio (PSNR). Let us define r
as the bit rate that is calculated in bits per sample (bps).
This calculation is given as

r =
z

nb
(bd), z < k, (8)

where z is defined as the number of sparse coefficients,
k represents the size of the dictionary, nb represents the
number of bands and bd is defined as the bit depth.

3.1. Datasets. Detailed information about the datasets
utilized in this paper is presented in Table 3.

3.2. Compression performance results with the
AVIRIS datasets. The low Altitude, Lunar Lake
and Jasper Ridge AVIRIS datasets are used (cf.
Table 3). Compression performance comparison between
sparse representation algorithms and state-of-the-art
compression ones is presented in Table 2. Compression
performance is expressed as PSNR values in dBs
corresponding to different compression ratios in bps. The
state-of-the-art algorithms used for the lossy compression
of hyperspectral images are BCS PL-3DBS + 3DWPT
and CPPCA. The three highest PSNR values are printed
in boldface for each row. Among sparse representation
algorithms, proximity based optimization ones are
SpaRSA, FISTA, TwIST and GIST. In Table 2, they are
written in boldface as well.

In Table 2, the best compression performance for the
Low Altitude image at 0.1 bps bit rate belongs to the GISA
with p = 0.5 algorithm.

The BCS PL-3DBS + 3DWPT algorithm has the
highest PSNR value for the Lunar Lake image at the 0.1
bps bit rate. At the same rate, the SpaRSA algorithm
shows the best performance in terms of the PSNR value
for the Jasper Ridge dataset. Compression performances
at 0.3 bps bit rate in Table 2 indicate that the gOMP
algorithm is superior for the Low Altitude dataset. The
SpaRSA algorithm has the highest PSNR value for the
Lunar Lake image and the CPPCA algorithm outperforms
for the Jasper Ridge image. At the 0.5 bps bit rate,
the LASSO (ADMM) algorithm is superior for the Low
Altitude image as seen in Table 2. The CPPCA algorithm
has the highest PSNR value for both the Lunar Lake and
Jasper Ridge datasets. For large scale datasets, PSNR

values of the BP (Dual active set), GIST, CPPCA and
LASSO (ADMM) algorithms are among the three best
values for more than one dataset at 0.5 bps. The same
pattern is followed by the SpaRSA, GISA and BP (Dual
active set) algorithms at 0.1 bps together with the gOMP,
BP (Dual active set) and SpaRSA algorithms at moderate
compression ratio of 0.3 bps.

3.3. Compression performance results with the Hy-
perion datasets. The Erta Ale, Mt. St. Helens and
Lake Monona images are used as the Hyperion datasets
(cf. Table 3). Rate-distortion comparisons are illustrated
in Figs. 1–3. PSNR values in dBs are plotted against
three different compression ratios in bps as bar graphs.
The highest three PSNR values for each bit rate are
marked with small black circles below the corresponding
algorithms. The proximity based optimization algorithms
used in this case are SpaRSA, GIST and PALM. The
TNIPM and SpaRSA algorithms are among the three
best algorithms at the 0.1 bps bit rate for Erta Ale and
Lake Monona images as seen in Figs. 1 and 3. At 0.3
bps bit rate, BP (Dual active set), SpaRSA and GIST
algorithms are always the three best algorithms for all
Hyperion images. According to 0.5 bps bit rate results,
SpaRSA algorithm is among the top three algorithms for
all datasets. This algorithm is followed by the GIST
algorithm, which is among the best three algorithms for
Mt. St. Helens and Lake Monona datasets as seen in
Figs. 2 and 3.

For the performances for large scale datasets, the
SpaRSA and GIST algorithms have PSNR values among
the top three at the 0.1 bps bit rate for at least two datasets.
At the 0.3 bps rate, the BP (Dual active set), SpaRSA and
GIST algorithms show better performance than the others.
SpaRSA and GIST are located among the highest three
PSNR valued algorithms at the 0.5 bps bit rate for at least
two Hyperion images as seen Figs. 1–3.
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Fig. 1. Compression performance comparison between sparse
representation algorithms for the Erta Ale image (cf. Ta-
ble 3).

3.4. Evaluation of the results of proximity based
optimization algorithms. The results of the AVIRIS
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Table 1. Sparse coding and dictionary update equations of different sparse representation algorithms.
Algorithm Sparse coding equation Dictionary update equation

gOMP αt = arg min
α∈Rk

1

2
‖xt −Dt−1α‖2 Dt = arg min

D∈C

1

t

t∑

i=1

(‖xi −Dαi‖2), t = 1, . . . T

LASSO
(ADMM)

αt = arg min
α∈Rk

1

2
‖Dt−1α− xt‖22 + λ‖α‖1 Dt = arg min

D∈C

1

t

t∑

i=1

(
1

2
‖Dαi − xi‖22 + λ‖αi‖1

)
,

t = 1, . . . T

BP (Dual
active set)

αt = arg min
α∈Rk

‖αi‖ s.t. Dt−1α = xt Dt = argmin
D∈C

1

t

t∑

i=1

‖αi‖1 s.t.
1

t

t∑

i=1

(Dαi) = xi,

t = 1, . . . T

SpaRSA αt = arg min
α∈Rk

1

2
‖xt −Dt−1α‖22 + λ‖α‖1 Dt = arg min

D∈C

1

t

t∑

i=1

(
1

2
‖xi −Dαi‖22 + λ‖αi‖1

)
,

t = 1, . . . T

FISTA αt = arg min
α∈Rk

1

2
‖Dt−1α− xt‖22 + λ‖α‖1 Dt = arg min

D∈C

1

t

t∑

i=1

(
1

2
‖Dαi − xi‖22 + λ‖αi‖1

)
,

t = 1, . . . T

TwIST αt = arg min
α∈Rk

1

2
‖xt −Dt−1α‖22 + λ‖α‖1 Dt = arg min

D∈C

1

t

t∑

i=1

(
1

2
‖xi −Dαi‖22 + λ‖αi‖1

)
,

t = 1, . . . T

GIST

αt = arg min
α∈Rk

1

2nb
‖Dt−1α− xt‖22

+ λ
k∑

j=1

min(|aj |, θ), θ > 0

Dt = arg min
D∈C

1

t

t∑

i=1

(
1

2nb
‖Dαi − xi‖22

+ λ
k∑

j=1

min(|aij |, θ)
⎞

⎠ , t = 1, . . . T

PALM αt = arg min
α∈Rk

‖αi‖ s.t. Dt−1α = xt Dt = argmin
D∈C

1

t

t∑

i=1

‖αi‖1 s.t.
1

t

t∑

i=1

(Dαi) = xi,

t = 1, . . . T

TNIPM αt = arg min
α∈Rk

1

2
‖xt −Dt−1α‖22 + λ‖α‖1 Dt = arg min

D∈C

1

t

t∑

i=1

(
1

2
‖xi −Dαi‖22 + λ‖αi‖1), t = 1, . . . T

BPDN
(Homotopy)

αt = arg min
α∈Rk

1

2
‖xt −Dt−1α‖22 + λ‖α‖1 Dt = arg min

D∈C

1

t

t∑

i=1

(
1

2
‖xi −Dαi‖22 + λ‖αi‖1), t = 1, . . . T

GISA
αt = arg min

α∈Rk

1

2
‖xt −Dt−1α‖22 + λ‖α‖pp,

0 ≤ p < 1

Dt = arg min
D∈C

1

t

t∑

i=1

(
1

2
‖xi −Dαi‖22 + λ‖αi‖pp

)
,

0 ≤ p < 1, t = 1, . . . T
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Table 3. Detailed information of the AVIRIS, Hyperion, and Salinas-A hyperspectral datasets.
Aviris hyperspectral data

Name No. samples No. lines No. bands Bit depth Year

Jasper Ridge 614 2587 224 16 1997
Lunar Lake 614 1432 224 16 1997

Low Altitude 614 3689 224 16 1996

Hyperion hyperspectral data
Name No. samples No. lines No. bands Bit depth Year

Lake Monona 256 3176 242 12 2009
Mt. St. Helens 256 3242 242 12 2009

Erta Ale 256 3187 242 12 2010

Salinas-A hyperspectral data
No. samples No. lines No. bands Bit depth Year

83 86 204 12 1998

Pavia university hyperspectral data
No. samples No. lines No. bands Bit depth Year

200 200 103 12 2002
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Fig. 2. Compression performance comparison between sparse
representation algorithms for the Mt. St. Helens image
(cf. Table 3).

datasets indicate that algorithms corresponding to the
highest three PSNR values for the Low Altitude, Lunar
Lake and Jasper Ridge images at all bit rates include
at least one proximity based optimization algorithm.
Furthermore, test results of the Hyperion datasets point
out that algorithms with the top three PSNR values at all
bit rates for the Erta Ale, Mt. St. Helens and Lake Monona
datasets span at least one proximity based optimization
algorithm as well. The proximity based optimization
algorithms used in this study are SpaRSA, FISTA, TwIST,
GIST and PALM. As seen in Table 2 and Figs. 1–3,
the SparRSA and GIST algorithms are included among
the best algorithms at the 0.1, 0.3 and 0.5 bps bit rates
for all images. On the other hand, according to the
same results, the FISTA, TwIST and PALM algorithms
cannot be drawn into the top three algorithms for any of
the images. Consequently, among the proximity based
optimization algorithms used in this study, the ones that
should be preferred for large scale datasets are SpaRSA
and GIST.
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Fig. 3. Compression performance comparison between sparse
representation algorithms for the Lake Monona image
(cf. Table 3).

3.5. Application of anomaly detection on com-
pressed and uncompressed hyperspectral images.
The performances of different sparse representation
algorithms based on online dictionary learning are further
analyzed by doing anomaly detection on the original and
the reconstructed hyperspectral images. For this purpose,
the Reed–Xiaoli (RX) anomaly detection algorithm is
used (Reed and Yu, 1990).

The spectral signature of the input signal is compared
with the mean of each spectral band by using the
Mahalanobis distance,

δRX(xi) = (xi − M)TCov−1(xi − M), (9)

where xi ∈ R
nb , M is the mean of each spectral

band and Cov is the spectral covariance matrix. If
δRX(xi) ≥ η, then it is assumed that an anomalous region
is present, where η is a threshold value that is obtained
by considering the desired false positive probability. The
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Table 4. Compression performance comparison between sparse
representation algorithms in terms of PSNR values.

Salinas-A image
Sparse representation algorithms

BPS
LASSO

(ADMM)

BP
(Dual

active set)
SpaRSA GIST

0.1 36.65 36.62 36.78 36.76
0.3 41.16 41.54 42.61 42.57
0.5 43.74 43.93 43.96 43.94

Pavia University image
Sparse representation algorithms

BPS
LASSO

(ADMM)

BP
(Dual

active set)
SpaRSA GIST

0.1 30.96 30.91 30.94 30.93
0.3 34.94 35.01 35.07 35.05
0.5 36.17 36.14 36.22 36.20

approximated covariance matrix, Cov, is given by

Cov =
1

N

N∑

i=1

(xi − M)(xi − M)T , (10)

where N = nl×ns and i = 1, . . . , N . Anomaly detection
is performed by using the Salinas-A hyperspectral dataset
(cf. Table 3). In lossy compression, the information
preservation performance measurement is significantly
important. Fortunately, anomaly detection is accepted to
be a valuable test of this performance (Du and Fowler,
2007). Anomaly detection results for the Salinas-A
dataset are shown in Fig. 4. Figure 4(a) represents the
anomaly detection result of the original hyperspectral
image. According to Figs. 4(b)–(j), the anomaly which
is detected in the original image can also be detected
for 0.5 and 0.3 bps bit rates for SpaRSA and BP by
using dual active set algorithm, and LASSO by using the
ADMM algorithm. When the GIST algorithm is applied,
an anomaly can only be detected for the 0.5 bps bit rate.
In order to assess the robustness of the anomaly detection
results given in Fig. 4, they should be based on numerical
PSNR values. Therefore, the corresponding PSNR values
of each sparse representation at 0.1, 0.3 and 0.5 bps levels
are given in Table 4 for Salinas-A and Pavia University
datasets. The highest two PSNR values are marked in
boldface.

The anomaly detection performances of different
sparse representation algorithms at various bit rates are
evaluated by comparing their corresponding semilog ROC
curves. Figure 5 presents the semilog ROC curves
when SpaRSA is performed. Here, PD represents
the probability of detection and PFA represents the
probability of false positives. At the 0.5 bps bit rate the
detection result is slightly better than those for the 0.3
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Fig. 4. RX anomaly detection results of the Salinas-A hyper-
spectral image: original image (a), SpaRSA with 0.5 bps
(b), SpaRSA with 0.3 bps (c), SpaRSA with 0.1 bps (d),
BP with 0.5 bps (e), BP with 0.3 bps (f), BP with 0.1
bps (g), GIST with 0.5 bps (h), GIST with 0.3 bps (i),
GIST with 0.1 bps (j), LASSO with 0.5 bps (k), LASSO
with 0.5 bps (k), LASSO with 0.3 bps (l), LASSO with
0.1 bps (m).

bps and 0.1 bps rates. In Fig. 6, the semilog ROC curve
performances belonging to 0.5 bps and 0.3 bps bit rates are
similar to when BP with the active set algorithm is used.

The ROC performance scheme in Fig. 8 is very
similar to the one observed in Fig. 6, where curves at
the 0.5 bps and 0.3 bps bit rates show similar behavior.
In Fig. 8, LASSO by using ADMM algorithm is used.
When the GIST algorithm is applied, the resulting
ROC performances are depicted in Fig. 7. The ROC
performances are compatible with the anomaly detection
results in Figs. 4(h), (i) and (j). Anomaly detection
results for the Salinas-A hyperspectral dataset suggest that
SpaRSA performs better than other algorithms at 0.5 bps
bit rate in terms of information preservation as seen in
Fig. 5. In additionally, according to Table 4, SpaRSA has
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Fig. 5. Semilog ROC curves for the Salinas-A dataset at 0.1, 0.3
and 0.5 bps by using SpaRSA.
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Fig. 6. Semilog ROC curves for the Salinas-A dataset at 0.1,
0.3 and 0.5 bps by using BP with the dual active set al-
gorithm.
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Fig. 7. Semilog ROC curves for the Salinas-A dataset at 0.1, 0.3
and 0.5 bps by using the GIST algorithm.

the highest PSNR value, which is 68.1968 at the 0.5 bps
rate. SpaRSA is also among the best two algorithms in
terms of the PSNR values at each bit rate for the Salinas-A
dataset, as presented in Table 4. Due to the learning ability

P
FA10-3 10-2 10-1 100

P
D

0

0.2

0.4

0.6

0.8

1

0.1 bps
0.3 bps
0.5 bps

Fig. 8. Semilog ROC curves for the Salinas-A dataset at 0.1, 0.3
and 0.5 bps by using the LASSO algorithm.

of the online dictionary learning method, the anomaly part
in the original dataset can be detected even at the 0.3

bps bit rate for SpaRSA and BP by using dual active set
algorithm and for LASSO by using the ADMM algorithm,
as seen in Fig. 4. Figure 4 also points out that at 0.1 bps
bit rate none of these algorithms can detect the desired
anomaly.

4. Conclusion

An analysis of the most effective sparse representation
algorithms that are to be used for large scale hyperspectral
image compression was carried out. For this purpose,
sparse representation algorithms regarding various
categories were tested by an online dictionary learning
based method. The results were compared with the
state-of-the-art lossy compression methods.

By giving weight to proximity based optimization
algorithms, many algorithms that belong to this category
were tested. This is the first time that proximity
based optimization algorithms are used in conjunction
with online dictionary learning method for compressing
hyperspectral datasets. These algorithms are among the
three best algorithms according to the PSNR values for all
hyperspectral datasets at all bit rates.

According to the tests applied to large scale
hyperspectral datasets, the SpaRSA and GIST algorithms
from the proximity based optimization algorithms
category and the BP (Dual active set) algorithm yield the
best PSNR values at all compression ratio values. Other
algorithms give the best compression performances only
for particular compression ratio values.

Obviously, the anomaly detection results indicate
that the compressed image roughly at the 0.5 bps bit rate
can be a good approximation of the original hyperspectral
image. Indeed, real-world applications such as anomaly
detection can directly be applied to the reconstructed
image of a smaller size.

By adding up-to-date sparse representation
algorithms from each category, the analysis and
comparison can be improved. In the future, by
considering recent developments, more effective
compression algorithms can possibly be obtained
for large scale datasets.
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