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This paper proposes an H−/H∞ fault detection observer method by using generalized output for a class of polytopic linear
parameter-varying (LPV) systems. As the main contribution, with the aid of the relative degree of output, a new output
vector is generated by gathering the original output and its time derivative, and it is feasible to consider H− actuator fault
sensitivity in the entire frequency for the new system. In order to improve actuator and sensor fault sensitivity as well as
guarantee robustness against disturbances, simultaneously, an H−/H∞ fault detection observer is designed for the new
LPV polytopic system. Besides, the design conditions of the proposed observer are transformed into an optimization prob-
lem by solving a set of linear matrix inequalities (LMIs). Numerical simulations are provided to illustrate the effectiveness
of the proposed method.
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1. Introduction

In recent decades, with the increasing demands of safety
and reliability for modern complex control systems, fault
detection has become an important issue and received
abundant results; see the works of Frank (1990), Chen
and Patton (1999) or Ding (2008), and the references
therein. In practice, most dynamic systems are nonlinear,
as linear parameter varying (LPV) theory can offer an
efficient paradigm to model nonlinear systems with online
measurable parameters. Besides, it is convenient to
extend the method and theory of linear systems into LPV
systems, and fault detection for nonlinear systems based
on the LPV method has gained a great deal of interest
(Henry et al., 2015a; Tanaka and Wang, 2001).

Among fault detection methods, the observer-based

∗Corresponding author

one has been investigated most deeply (Wang et al.,
2015a; Varga and Ossmann, 2014; Rodrigues et al., 2015;
Yin et al., 2017). The basic idea of this method is
to generate a residual between the real system and the
observer, then compare the generated residual with a
predefined threshold to determine whether a fault occurs.
Balas et al. (2002), Bokor and Balas (2004), Bokor (2007)
and Vanek et al. (2014) investigated the problem of fault
detection for LPV systems based on a geometric approach,
in which the directional LPV observer is designed by
using parameter-varying (C,A)-invariant subspaces and
a parameter-varying unobservable subspace. A nullspace
approach is proposed by Varga (2008), which is a variant
of the geometric method. Besides, a parameter-dependent
state observer design method is studied by Bara et al.
(2001), Millerioux et al. (2004) and Casavola et al.
(2007).
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Due to the effect of an unknown disturbance on the
residual, robustness against the disturbance has been one
of the most important issues related to the observer-based
fault detection method. One strategy is to decouple
the disturbance from the residual, which comprises the
eigenvalue assignment method and the unknown input
observer method. However, the decoupled conditions are
generally restrictive and hard to be satisfied for some
cases. Another method is to attenuate the disturbance
effect through H∞ techniques. Furthermore, in order to
distinguish the fault effect from the unknown disturbance,
a robust fault detection observer needs to make the
generated residual robust to the unknown disturbance and
sensitive to faults simultaneously.

In order to achieve a proper trade-off between fault
sensitivity and disturbance attenuation performance, a
mixed H−/H∞ fault detection observer method was first
proposed by Hou and Patton (1996), with the H− index
defined as the smallest nonzero singular value of the
transfer function matrix at the particular frequency ω =
0, which is also called the DC-gain. In the work of
Armeni et al. (2009), a robust observer is designed for
LPV systems with the highestH∞ disturbance robustness
performance and a predefined lower bounded on the
DC-gain from fault to the residual. Liu et al. (2005)
extended the definition of the H− index extended as the
minimum singular value of the transfer function matrix.
In the work of Wei and Verhaegen (2008), theH− index is
defined on an infinite frequency domain for LPV systems.

In recent years, many researchers have paid attention
to H−/H∞ fault detection observer design methods for
nonlinear systems in infinite frequency domain (see,
e.g., Cai and Wu, 2010; Wei and Verhaegen, 2011;
Chadli et al., 2013; Estrada et al., 2015). Grenaille
et al. (2008), Henry (2012) or Henry et al. (2015a)
designed a robust fault detection filter with enhanced fault
transmission H− gain and large H∞ nuisance attenuation
for LPV systems in a finite frequency domain by using
the weighting matrix method. Besides, Henry (2008)
and Henry et al. (2014, 2015b) demonstrated that it
is possible to cover a very large range of uncertainties
while maintaining high fault sensitivity. Recently, the
generalized Kalman–Yakubovich–Popov (KYP) lemma
was proposed by Iwasaki et al. (2005), which gives
an exact linear matrix inequality characterization of the
H− index in a finite frequency domain. Furthermore,
H−/H∞ fault detection observer design method for
nonlinear systems based on GKYP lemma was proposed
by Chen et al. (2015) as well as Li and Yang (2014).

Note that the H− index in an infinite frequency
domain has to satisfy the full-rank column condition of
the D-matrix between the faults and the measurement
outputs. For strictly proper systems, the H− index over
[0,∞) is always zero (Wang and Yang, 2008). Besides, in

most existing results on observer design in full frequency
domain, the fault vector in the measurement equation is
assumed to be the same with the actuator fault vector.
However, in real systems, actuator faults are different
from the sensor fault. Thus, it is infeasible for an actuator
fault to consider the H− index in infinite frequency,
because it does not satisfy the full-rank column condition.
In the work of Ichalal et al. (2016), an actuator fault
diagnosis approach for linear systems is proposed based
on the relative degree of output with respect to the fault.
However, in theH− index as well as the effect of unknown
disturbance are not taken into consideration. Motivated by
Ichalal et al. (2016), the use of the relative degree notion
aims to generate new auxiliary outputs depending on the
actuator faults. It is proved that with the aid of the relative
degree, the actuator fault vector can be introduced into the
output equation, such that it is feasible for the new system
to consider fault sensitivity by using the H− index. In
this paper, disturbance robustness as well as actuator and
sensor H− fault sensitivity are considered in an infinite
frequency domain.

The main contribution of this paper covers the
following aspects. First, the fault diagnosis method
based on the relative degree of output is extended into
a polytopic LPV system. A new polytopic LPV system
is generated by using the relative degree of output with
respect to the actuator fault, such that it is feasible
for the new system to consider actuator fault sensitivity
with the H− index in full-frequency domain. Then an
H−/H∞ fault detection observer is designed to make the
generated residual robust against disturbance, sensitive
to actuator faults and sensor faults simultaneously. The
proposed observer design conditions are transformed into
an optimization problem by solving a set of LMIs.
Besides, in order to reduce some conservatism, the
observer is designed based on a parameter-dependent
Lyapunov matrix method.

The rest of this paper is organized as follows.
The preliminaries are given in Section 2. The problem
statement is described in Section 3. In Section 4, a
new system is first constructed with generalized output,
then a mixed H−/H∞ observer is designed for the new
polytopic LPV system. Simulation results are given in
Section 5 to demonstrate the proposed approach. Finally,
conclusions are given in Section 4.

Notation. Throughout the paper, P > 0 signifies that P
is a positive-definite matrix and Q < 0 means that Q is a
negative-definite matrix. The symbol � in a symmetric
matrix denotes the transposed block in the symmetric
position. For a matrix A, He(A) is used to denote
He(A) := A + AT . The L2 norm of x(t) is defined as
‖x(t)‖2 = (

∫∞
0
xT (t)x(t) dt)1/2.
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2. Preliminaries

Motivated by Li and Yang (2014), the following definition
is given.

Definition 1. Consider an LPV system of the following
form:

{
ẋ(t) = A(ρ(t))x(t) +B(ρ(t))u(t),

y(t) = C(ρ(t))x(t) +D(ρ(t))u(t).
(1)

The system (1) is said to have an H∞ performance index
less than γ if under the zero initial condition the following
inequality is satisfied:

∫ ∞

0

yT (t)y(t) dt ≤ γ2
∫ ∞

0

uT (t)u(t) dt. (2)

Assume that D(ρ(t)) in (1) has no column rank
deficiency ∀ρ(t), so that theH− index is null. The system
(1) is said to have an H− performance index higher than
β �= 0 if under the zero initial condition the following
inequality holds:

∫ ∞

0

yT (t)y(t) dt ≥ β2

∫ ∞

0

uT (t)u(t) dt. (3)

Definition 2. (Relative degree) (Isidori, 1995). Consider
a linear system where matrix B is omitted to simplify the
definition as

{
ẋ(t) = Ax(t) + Ef(t),

y(t) = Cx(t),
(4)

where x ∈ R
nx , f∈ R and y ∈ R are the state

vector, actuator fault signal and measurement output,
respectively. The relative degree of output y(t) with
respect to fault f(t) is λf satisfying

{
CAi−1E = 0, ∀i = 1, . . . , λf − 1

CAλf−1E �= 0.
(5)

The relative degree λf of output y(t) with respect to
fault f(t) means that the λf -th time-derivative of output
yλf (t) depends on the fault explicitly, while all lower
order time-derivatives of output do not depend on the fault
explicitly, i.e.,

yλf (t) = CAλf x(t) + CA(λf−1)E︸ ︷︷ ︸
�=0

f(t). (6)

Lemma 1. (Garcia and Bernusson, 1995) The eigenval-
ues of a given matrix A ∈ R

n×n belong to the closed
circular region D(a, τ) with the center a+ j0 and radius
τ if and only if there exists a symmetric positive definite
matrix P ∈ R

n×n such that
[−P P (A− aI)
� −τ2P

]

≤ 0. (7)

Lemma 2. (Wei and Verhaegen, 2011) The LPV system
in (1) is asymptotically stable and has a quadratic H∞
performance index less than γ if there exists a matrix
P = PT > 0 such that

[
F1 PB(ρ(t)) + CT (ρ(t))D(ρ(t))
� DT (ρ(t))D(ρ(t)) − γ2I

]

≤ 0, (8)

where

F1 = He{AT (ρ(t))P }+ CT (ρ(t))C(ρ(t)).

Lemma 3. The system in (1) is said to have a quadratic
H− performance index higher than β if there exists a ma-
trix Q = QT > 0 such that the following LMI holds:

[
F2 QB(ρ)− CT (ρ)D(ρ)
� −DT (ρ)D(ρ) + β2I

]

≤ 0, (9)

where

F2 = He{AT (ρ(t))Q} − CT (ρ(t))C(ρ(t)).

3. Problem formulation

Consider an LPV system such as
⎧
⎪⎨

⎪⎩

ẋ(t) = A(ρ(t))x(t) +B(ρ(t))(u(t) + fa(t))

+Dw(ρ(t))w(t),

y(t) = Cx(t) + Esfs(t) +Dvv(t),

(10)

where x(t) ∈ R
nx , u(t) ∈ R

nu , y(t) ∈ R
ny are the state,

input and measurement output vectors, respectively. Here
fa(t) ∈ R

na is the actuator fault vector, fs(t) ∈ R
ns

denotes the sensor fault vector, w(t) ∈ R
nw represents

the unknown disturbance and v(t) ∈ R
nv represents the

measurement noise. A(ρ(t)) ∈ R
nx×nx , B(ρ(t)) ∈

R
nx×nu , Dw(ρ(t)) ∈ R

nx×nw , C ∈ R
ny×nx , Es ∈

R
ny×ns , Dv ∈ R

ny×nv are system matrices. ρ(t) =
[ρ1(t), . . . , ρs(t)]

T is the scheduling vector assumed to be
measurable online and not affected by the faults, s is the
number of the scheduling variables.

In this paper, as in the works of Gahinet et al. (1996)
and Rodrigues et al. (2014), each element ρi(t) in ρ(t)
ranges between known extreme values ρi and ρi, i.e.,

ρ(t) ∈ Γ =
{
ρi | ρi ≤ ρi(t) ≤ ρi, i = 1, 2, . . . , s

}
.

(11)
The system matrices A(ρ(t)), B(ρ(t)) and Dx(ρ(t))

are functions which depend affinely on the time-varying
parameter vector ρ(t), i.e.,

M(ρ(t)) = M̃0 +

s∑

i=1

ρi(t)M̃i, (12)

where M(ρ(t)) stands for matrices A(ρ(t)), B(ρ(t)) and
Dx(ρ(t)).
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In this paper, the polytope is as a hyper-rectangle.
The system (10) can be transformed into a convex
interpolation of the vertices of Ω, with the vertices M =[
Ai Bi Dwi C Es Dv

]
, ∀i ∈ [1, . . . , N ], where

N = 2s. Then, the polytopic coordinates are denoted by
hi(ρ(t)) and vary in the convex set Ω,

Ω =
{
h(ρ(t)) = [h1(ρ(t)), . . . , hN (ρ(t))]T |

N∑

i=1

hi(ρ(t)) = 1, 0 ≤ hi(ρ(t)) ≤ 1
}
.

(13)

Hence, the system (10) can be re-expressed by a
polytopic representation as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ(t) =
N∑

i=1

hi(ρ(t))[Aix(t) +Bi(u(t) + fa(t))

+Dwiw(t)],

y(t) = Cx(t) + Esfs(t) +Dvv(t),
(14)

where Ai, Bi, Dwi are system matrices of the i-th model.
The disturbance and measurement noise vectors can

be treated as one vector, i.e.,

d(t) =

[
w(t)
v(t)

]

. (15)

Then, the system (14) is written as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ(t) =

N∑

i=1

hi(ρ(t))[Aix(t) +Bi(u(t) + fa(t))

+Dxid(t)],

y(t) = Cx(t) + Esfs(t) +Dyd(t),
(16)

where

Dx(ρ) =
[
Dw(ρ) 0

]
, Dy =

[
0 Dv

]
.

In the following, M(ρ(t)) is written as M(ρ) for the sake
of brevity.

In the sequel, the following assumptions are used.

Assumption 1. The system (A(ρ), C) is observable.

Assumption 2. The generalized disturbance vector d(t)
and its derivative ḋ(t) as well as the sensor fault derivative
ḟs(t) are assumed to be energy bounded, i.e., ‖d(t)‖2 ≤
δ1, ‖ḋ(t)‖2 ≤ δ2, ‖ḟs(t)‖2 ≤ δ3, where 0 ≤ δ1, δ2, δ3 <
∞.

Assumption 3. The relative degree of output y(t) with
respect to actuator fault fa(t) is assumed to guarantee that

rank(CB(ρ)) = rank(B(ρ)) = nu. (17)

Remark 1. According to Rodrigues et al. (2014), the
structure of actuator fault vector fa(t) can be used to

represent an additive or a multiplicative fault signal.
Considering the faulty control input uf(t) = (I − η)u(t),
it can be written as an external additive signal uf (t) =
u(t) + fa(t), where fa(t) = −ηu(t) with

η = diag[η2, η2, . . . , ηnu ], 0 ≤ ηi ≤ 1, (18)

where ηi = 1 represents a total failure to the i-th actuator,
ηi = 0 means i-th actuator is fault free and 0 < ηi < 1
denotes that the loss of control effectiveness of the i-th
actuator.

In order to detect actuator and sensor faults, an
observer is designed with the following structure:

⎧
⎪⎨

⎪⎩

˙̂x(t) =A(ρ)x̂(t) +B(ρ)u(t)

+ L(ρ)[y(t)− Cx̂(t)],

r(t) =M [y(t)− Cx̂(t)],

(19)

where x̂(t) ∈ R
nx is the state vector of the observer (19)

to estimate the state vector x(t) and r(t) ∈ R
ny is the

residual vector. The matrices L(ρ) ∈ R
nx×ny and M ∈

R
ny×ny are the gain matrices of a residual generator based

on the observer (19) that have to be designed. MatrixL(ρ)
has the following form:

L(ρ) =

N∑

i=1

hi(ρ(t))Li. (20)

Define the state estimation error vector as

e(t) = x(t)− x̂(t). (21)

Subtracting (19) from (14), the dynamic system for the
estimation error is obtained as

⎧
⎪⎨

⎪⎩

ė(t) =[A(ρ)− L(ρ)C]e(t) +B(ρ)fa(t)

− L(ρ)Esfs(t) + [Dx(ρ)− L(ρ)Dy]d(t),

r(t) =MCe(t) +MEsfs(t) +MDyd(t).
(22)

The state estimation error system (22) can be divided
into the following subsystems, cf. Wang et al. (2015b):

⎧
⎪⎨

⎪⎩

ėd(t) = [A(ρ)− L(ρ)C]ed(t)

+ [Dx(ρ)− L(ρ)Dy]d(t),

rd(t) =MCed(t) +MDyd(t),

(23)

{
ėfa(t) = [A(ρ)− L(ρ)C]efa(t) +B(ρ)fa(t),

rfa (t) =MCefa(t)
(24)

and
{
ėfs(t) = [A(ρ) − L(ρ)C]efs(t)− L(ρ)Esfs(t),

rfs(t) =MCefs(t) +MEsfs(t),

(25)
where {

e(t) = ed(t) + efa(t) + efs(t),

r(t) = rd(t) + rfa (t) + rfs(t).
(26)
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The observer (19) is called an H−/H∞ fault
detection observer if the state estimation error system (22)
is asymptotically stable and the following inequalities are
satisfied:

∫ ∞

0

rTd (t)rd(t) dt ≤ γ2
∫ ∞

0

dT (t)d(t) dt (27)

∫ ∞

0

rTfa(t)rfa (t) dt ≥ β2
1

∫ ∞

0

fT
a (t)fa(t) dt (28)

∫ ∞

0

rTfs(t)rfs (t) dt ≥ β2
2

∫ ∞

0

fT
s (t)fs(t) dt. (29)

For the system (22), the sufficient conditions of the
H∞ disturbance attenuation performance (27) and theH−
index fault sensitivity performance (28) and (29) can be
obtained easily based on Lemmas 2 and 3 separately.

For the system (24), note that the matrixD(ρ) is zero,
and it is infeasible for the system (22) to consider H−
actuator fault sensitive performance in a full frequency
domain. If we consider the actuator fault fa(t) and sensor
fault fs(t) as one fault vector,

f̄(t) =

[
fa(t)
fs(t)

]

, (30)

then letting d(t) = 0, we can rewrite the system (22) as
{
ė(t) = [A(ρ)− L(ρ)C]e(t) + B̄(ρ)f̄(t),

r(t) =MCe(t) +MĒsf̄(t),
(31)

where

B̄(ρ) =
[
B(ρ) −L(ρ)Es

]
, Ēs =

[
0 Es

]
.

Note that the matrix of Ēs is not full-column rank
either, so that H− actuator fault sensitivity and H−
sensor fault sensitivity cannot be considered by using the
augmented technique. In order to overcome the problem,
in this paper H− actuator fault sensitivity and H− sensor
fault sensitivity are analyzed separately.

According to Ichalal et al. (2016), actuator fault
also influences the output. The use of the notation of
the relative degree aims to define new auxiliary outputs
depending on actuator faults, and the actuator fault is
transformed into the measurement output equation, so
that the H−/H∞ fault detection observer is theoretically
feasible. Based on the idea, in this paper we will design
an H−/H∞ fault detection observer based on the relative
degree of the output method for polytopic LPV systems.

4. Main results

In this section, an H−/H∞ fault detection observer is
designed for polytopic LPV systems based on the relative
degree of output. The scheme of the proposed fault
detection method is depicted in Fig. 1.

sf vwaf
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y�y�

y

Fig. 1. Scheme of the proposed strategy.

4.1. New system generated by using the relative de-
gree. Consider first a single-input single-output system.
Under Assumption 3 that the relative degree of the output
with respect to the actuator fault is 1, the time derivative
of the output vector ẏ(t) is obtained as

ẏ(t) = CA(ρ)x(t) + CB(ρ)[u(t) + fa(t)]

+ CDx(ρ)d(t) + Esḟs(t) +Dyḋ(t).
(32)

Consider the disturbance and its derivative and the
derivative of the sensor fault ḟs(t) as a new generalized
disturbance, i.e.,

d̄(t) =
[
dT (t) ḋT (t) ḟT

s (t).
]T

(33)

By gathering the original output y(t) and its time
derivative ẏ(t), a new generalized output ỹ(t) is generated
as

ỹ(t) = C̃(ρ)x(t) +R(ρ)fa(t) + Sfs(t) + D̄y(ρ)d̄(t),
(34)

where

ỹ(t) =

[
y(t)

ẏ(t)− CB(ρ)u(t)

]

, C̃(ρ) =

[
C

CA(ρ)

]

,

S =

[
Es

0

]

, R(ρ) =

[
0

CB(ρ)

]

,

D̄y(ρ) =

[
Dy 0 0

CDx(ρ) Dy Es

]

. (35)

Setting

D̄x(ρ) =
[
Dx(ρ) 0 0

]
, (36)

a new polytopic LPV system is obtained as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ(t) = A(ρ)x(t) +B(ρ)(u(t) + fa(t))

+ D̄x(ρ)d̄(t),

ỹ(t) = C̃(ρ)x(t) +R(ρ)fa(t) + Sfs(t)

+ D̄y(ρ)d̄(t).

(37)
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Now consider multiple-input and multiple-output
systems. When there are more than one actuators, the
system (10) can be written as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ(t) = A(ρ)x(t) +

nf∑

j=1

Bj(ρ)(uj(t) + faj(t))

+Dw(ρ(t))w(t),

y(t) = Cx(t) + Esfs(t) +Dvv(t),

(38)

where Bj(ρ) is the j-th column of the matrix B(ρ).
Ichalal et al. (2016) proposed an analysis method

for the MIMO situation. If the output has different
relative degrees with respect to each actuator, each should
be analyzed as the SISO case, and then all the new
components ỹi(t) should be gathered as a whole to
form the new output ỹ(t). However, in this paper
it is assumed that the relative degree of each output
with respect to each actuator fault fa(t) is 1, i.e.,
rank(CB(ρ)) = rank(B(ρ)) = nu, the matrix CB(ρ)
satisfies the full-column condition. In this situation, the
new generalized output can be obtained as in (34).

Then, for the system (37), an observer is designed as
⎧
⎪⎪⎨

⎪⎪⎩

˙̂x(t) = A(ρ)x̂(t) +B(ρ)u(t) + L(ρ)[ỹ(t)− ˆ̃y(t)],

ˆ̃y(t) = C̃(ρ)x̂(t),

r(t) =M [ỹ(t)− ˆ̃y(t)].
(39)

With the definition of the state estimation error as
(21), the estimation error system is obtained as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ė(t) = [A(ρ)− L(ρ)C̃(ρ)]e(t)

+ [B(ρ)− L(ρ)R(ρ)]fa(t)− L(ρ)Sfs(t)

+ [D̄x(ρ)− L(ρ)D̄y(ρ)]d̄(t),

r(t) =MC̃(ρ)e(t) +MR(ρ)fa(t) +MSfs(t)

+MD̄y(ρ)d̄(t).
(40)

Remark 2. In this paper, the three assumptions are
necessary. Assumption 1 is a normal condition for the
observer design problem. Assumption 2 guarantees that
the new generalized disturbance vector is energy bounded
for the H∞ performance condition. Besides, when the
relative degree of output with respect to the actuator fault
is 1, the new augmented system matrices (35) need the
time-varying parameters ρ(t), while if the relative degree
is more than 1, the augmented system will contain high
order terms of ρ(t) and the derivatives of ρ(t), which make
the design conditions too complicated to solve. Moreover,
Assumption 3 is required because H− design requires the
fault distribution matrix to be of full column rank.

4.2. Fault detection observer design. In this
subsection, the design conditions are provided to
synthesize the observer matrices Li and M in (39).

Theorem 1. Given a positive scalar γ > 0 and
freedom scalar parameters θ1, θ2 and θ3, the observer
(39) is called an H−/H∞ observer if there exist sym-
metrical positive definite matrices Pi ∈ R

nx×nx , ma-
trix Wi ∈ R

nx×ny and symmetrical non-negative matrix
U ∈ R

ny×ny , such that the following LMIs hold:

Ψii ≤ 0, i = 1, . . . , N,

Ψij +Ψji ≤ 0, 1 ≤ i < j ≤ N,
(41)

Πii ≤ 0, i = 1, . . . , N,

Πij +Πji ≤ 0, 1 ≤ i < j ≤ N,
(42)

Ωii ≤ 0, i = 1, . . . , N,

Ωij +Ωji ≤ 0, 1 ≤ i < j ≤ N,
(43)

Δii ≤ 0, i = 1, . . . , N,

Δij +Δji ≤ 0, 1 ≤ i < j ≤ N,
(44)

where

Ψij =

[
ψ11 θ1(PD̄xj −WiD̄yj) + C̃T

i UD̄yj

� D̄T
yiUD̄yj − γ2I

]

,

ψ11 = He{θ1(PAj −WiC̃j)}+ C̃T
i UC̃j ,

Πij =

[
π11 θ2(PBj −WiRj)− C̃T

i URj

� −RT
i URj + β2

1I,

]

π11 = He{θ2(PAj −WiC̃j)} − C̃T
i UC̃j ,

Ωij =

[
ω11 −θ3WiSj − C̃T

i USj

� −ST
i USj + β2

2I

]

,

ω11 = He{θ3(PAj −WiC̃j)} − C̃T
i UC̃j ,

Δij =

[−P PAj −WiCj − aP
� −τ2P

]

,

Wi = PLi, U =MTM.

Given scalar κ, the proposed observer gain matrixLi

can be optimized through solving the optimization prob-
lem

max κβ2
1 + (1− κ)β2

2 (45)

subject to (41)–(44).

Proof.
(i) Disturbance attenuation condition. The robustness of
the residual signal r(t) against disturbance d(t) is first
considered. Making fa(t) = 0 and fs(t) = 0 in (40),
we have

⎧
⎪⎨

⎪⎩

ė(t) = [A(ρ)− L(ρ)C̃(ρ)]e(t)

+ [D̄x(ρ)− L(ρ)D̄y(ρ)]d̄(t), (46)

r(t) =MC̃(ρ)e(t) +MD̄y(ρ)d̄(t). (47)
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According to Lemma 1, there exists a
parameter-dependent Lyapunov matrix P1(ρ) such
that

Ψ =

[
Υ1 Υ2

� D̄y(ρ)
TMTMD̄y(ρ)− γ2I

]

≤ 0, (48)

where P1 = PT
1 > 0 and

Υ1 = He{P1[A(ρ)− L(ρ)C̃(ρ)]}
+ C̃T (ρ)MTMC̃(ρ),

Υ2 = P1[D̄x(ρ)− L(ρ)D̄y(ρ)]

+ CTMTMD̄y(ρ).

Setting U = MTM and W1(ρ) = P1L(ρ),
according to Apkarian and Tuan (2000) as well as Tanaka
and Wang (2001), it is not difficult to write (48) as

Ψ =

N∑

j=1

N∑

i=1

hi(ρ(t))hj(ρ(t))Ψ̃ij

=
N∑

i=1

hi(ρ(t))
2Ψ̃ii

+

N∑

i=1

N∑

i<j

hi(ρ(t))hj(ρ(t))(Ψ̃ij + Ψ̃ji) ≤ 0,

(49)

where

Ψ̃ij =

[
ψ̃11 (P1D̄xj −W1iD̄yj) + C̃T

i UD̄yj

� D̄T
yiUD̄yj − γ2I

]

,

ψ̃11 = He{P1Aj −W1iC̃j}+ C̃T
i UC̃j .

Thus, the following condition is obtained:
{
Ψ̃ii ≤ 0, i = 1, . . . , N,

Ψ̃ij + Ψ̃ji ≤ 0, 1 ≤ i < j ≤ N.
(50)

(ii) Actuator fault sensitivity condition. In order to
consider the actuator fault sensitivity of residual r(t),
letting d̄(t) = 0 and fs(t) = 0 in (40), we have

⎧
⎪⎨

⎪⎩

ė(t) = [A(ρ)− L(ρ)C̃(ρ)]e(t)

+ [B(ρ)− L(ρ)R(ρ)]fa(t), (51)

r(t) =MC̃(ρ)e(t) +MR(ρ)fa(t). (52)

Based on Lemma 3, if there exists P2(ρ) =
P2(ρ)

T > 0 such that

Π =

[
Υ3 Υ4

� −RT (ρ)MTMR(ρ) + β2
1I

]

≤ 0, (53)

where

Υ3 = He{P2[A(ρ)− L(ρ)C̃(ρ)]}
− C̃T (ρ)MTMC̃(ρ),

Υ4 = P2[B(ρ))− L(ρ)R(ρ)]

− C̃T (ρ)MTMR(ρ),

then H− actuator fault sensitivity performance of the
residual is assured.

Setting U =MTM and W2(ρ) = P2L(ρ), we have

Π =
N∑

i=1

hi(ρ(t))
2Π̃ii

+

N∑

i=1

N∑

i<j

hi(ρ(t))hj(ρ(t))(Π̃ij + Π̃ji) ≤ 0,

(54)

where

Π̃ij =

[
π̃11 P2Ei −W2iRj − C̃T

i URj

� −RT
i URj + β2

1I

]

,

π̃11 =He{P2Aj −W2iC̃j} − C̃T
i UC̃j .

Then we obtain
{
Π̃ii ≤ 0, i = 1, . . . , N,

Π̃ij + Π̃ji ≤ 0, 1 ≤ i < j ≤ N.
(55)

(iii) Sensor fault sensitivity condition. The analysis of the
sensor fault sensitivity condition is similar to that of the
actuator fault sensitivity condition as mentioned above.
Making d̄(t) = 0 and fa(t) = 0, (40) becomes

⎧
⎪⎨

⎪⎩

ė(t) = [A(ρ) − L(ρ)C̃(ρ)]e(t)

− L(ρ)Sfs(t), (56)

r(t) =MC̃(ρ)e(t) +MSfs(t). (57)

Similarly, we can prove that there exists a positive
definite symmetric matrix P3(ρ) such that the following
LMI holds:

Ω =

[
Υ5 Υ6

� −STMTMS + β2
2I

]

≤ 0, (58)

where

Υ5 = He{P3[A(ρ)− L(ρ)C̃(ρ)]}
− C̃T (ρ)MTMC̃(ρ),

Υ6 = −P3L(ρ)S − C̃T (ρ)MTMS.

With U =MTM and W3(ρ) = P3L(ρ), we obtain

Ω =

N∑

i=1

hi(ρ(t))
2Ω̃ii

+

N∑

i=1

N∑

i<j

hi(ρ(t))hj(ρ(t))(Ω̃ij + Ω̃ji) ≤ 0,

(59)

where

Ω̃ij =

[
ω̃11 −W3iS − C̃T

i US
� −STUS + β2

2I

]

,

π̃11 =He{P3Aj −W3iC̃j} − C̃T
i UC̃j .
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Then we have

{
Ω̃ii ≤ 0, i = 1, . . . , N,

Ω̃ij + Ω̃ji ≤ 0, 1 ≤ i < j ≤ N.
(60)

Note that due to the existence of P1(ρ)L(ρ),
P2(ρ)L(ρ), P3(ρ)L(ρ), there is a coupling between (50),
(55) and (60). As P1(ρ), P2(ρ), P3(ρ) can be chosen
different, in order to decrease some conservatism, setting

P1 = θ1P , P2 = θ2P ,

P3 = θ3P , W (ρ) = PL(ρ) (61)

and substituting (61) into (50), (55) and (60), we can
obtain (41), (42) and (43).

Moreover, in this paper, the performances of state
error dynamics are specified via a regional pole constraint;
based on Lemma 2, we have

Δ =

[−P P [A(ρ) − L(ρ)C̃(ρ)− aI]
� −τ2P

]

< 0. (62)

Then, with a similar process, (62) is equivalent to (44).
This completes the proof. �

The gain matrices Li of the proposed observer are
obtained based on Li = P−1Wi and the fact that U is
a non-negative symmetric matrix; the matrix M can be
obtained as the square root of U .

Remark 3. The parameters θ1, θ2, θ3 are determined
beforehand, which can provide more degrees of design
freedom. In the implementation, they can be chosen by
a trial-and-error method.

5. Simulation results

In this section, numerical simulations are reported to
demonstrate the effectiveness of the proposed H−/H∞
fault detection observer design method.

Consider a vertical takeoff and landing (VTOL)
aircraft model in the vertical plane from the work of
Jia et al. (2015), described in LPV form as in (10),
where the state vector x(t) = [Vh Vv q θ]

T consists of
horizontal velocity, vertical velocity, pitch rate and pitch
angle, respectively, and the control input u(t) = [uc ul]

T

covers collective pitch control and longitudinal cyclic
pitch control, respectively. Here w(t) represents model
uncertainties and unknown disturbances and v(t) denotes
the measurement noise.

The system matrices of the VTOL model are

expressed as

A(ρ) =

⎡

⎢
⎢
⎣

−9.9477 −0.7476
52.1659 2.7452
26.0922 2.6361 + ρ1

0 0

0.2632 5.0337
0.2632 5.0337
−4.1975 −19.2774+ ρ2

1 0

⎤

⎥
⎥
⎦ ,

B(ρ) =

⎡

⎢
⎢
⎣

0.4422 0.1761
3.5446 + ρ2 −7.5922
−5.5200 4.4900

0 0

⎤

⎥
⎥
⎦ ,

C =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 1 1 1

⎤

⎥
⎥
⎦ ,

Es = I4.

The disturbance distribution matrices are given as

Dw =

⎡

⎢
⎢
⎣

0.01 0 0 0
0 0.01 0 0
0 0 0.01 0
0 0 0 0.01

⎤

⎥
⎥
⎦ ,

Dy =

⎡

⎢
⎢
⎣

0.001 0
0 0.001
0 0

0.001 0

⎤

⎥
⎥
⎦ .

As the relative degree of each output with respect to the
actuator fault is 1, the new output and its corresponding
matrices can be obtained based on (35). In this paper, it
is assumed that ρ(t) = [ρ1(t) ρ2(t)]

T are the scheduling
vectors with ρ1(t) ∈ [−0.5, 0.5] and ρ2(t) ∈ [−2, 2].
The scheduling variables ρ1(t) and ρ2(t) are shown in
Figs. 2 and 3. Based on the vertex of ρ1(t) and ρ2(t),
four local models are derived, and the weighting functions
hi(ρ(t)), i = 1, . . . , N , i = 1, . . . , N = 4, are described
as

h11(ρ(t)) =
ρ1 − ρ1(t)

ρ1 − ρ
1

· ρ2 − ρ2(t)

ρ2 − ρ
2

,

h12(ρ(t)) =
ρ1 − ρ1(t)

ρ1 − ρ
1

· ρ2(t)− ρ
2

ρ2 − ρ
2

,

h21(ρ(t)) =
ρ1(t)− ρ

1

ρ1 − ρ
1

· ρ2 − ρ2(t)

ρ2 − ρ
2

,

h22(ρ(t)) =
ρ1(t)− ρ

1

ρ1 − ρ
1

· ρ2(t)− ρ
2

ρ2 − ρ
2

,

(63)

where h11(ρ(t)), h12(ρ(t)), h21(ρ(t)) and h22(ρ(t))
correspond to the vertex defined by (ρ1 = −0.5, ρ2 =
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Fig. 2. First time-varying parameter ρ1(t).
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Fig. 3. Second time-varying parameter ρ2(t).
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Fig. 4. Local weighting functions hi(ρ).

−2), (ρ1 = −0.5, ρ2 = 2), (ρ1 = 0.5, ρ2 = −2) and
(ρ1 = 0.5, ρ2 = 2), respectively.

The local weighting function hi(ρ(t)) of each local
model is depicted in Fig. 4. In accordance with the

separation principle of the controller and observer design,
a controller has been synthesized with a state feedback
structure so as to maintain the closed-loop system stable.

In this paper, the parameters in (45) are chosen as
κ = 0.4, and other parameters are chosen as θ1 = 2, θ2 =
1, θ3 = 0.5. The disturbance attenuation performance
is given by γ = 0.05, Besides, in the calculation, the
matrix V is restricted as ‖V ‖ ≤ 10; then, by solving
the optimization problem in (45) of Theorem 1 with the
regional pole constraint D(−5, 4.9), H− fault sensitivity
performance is obtained as β1 = 0.5419 and β2 =
0.1023, and the gain matrices of the proposed observer
are calculated as

L11 =
[
L11a L11b

]
, L12 =

[
L12a L12b

]
,

L21 =
[
L21a L21b

]
, L22 =

[
L22a L22b

]
.

L11a =

⎡

⎢
⎢
⎣

0.7752 0.2769 0.2485 −0.3109
−0.1075 −4.8348 −6.3840 5.9192
−6.3197 2.7280 8.6263 −2.2893
−1.2230 −4.0938 −2.3330 3.9177

⎤

⎥
⎥
⎦,

L11b =

⎡

⎢
⎢
⎣

−0.0825 −0.0765 −0.1019 −0.0279
1.1443 −0.4009 0.1428 0.4592
0.2670 −0.0512 0.3010 0.3912
0.3627 −0.2607 0.0728 0.0752

⎤

⎥
⎥
⎦ ,

L12a =

⎡

⎢
⎢
⎣

14.4268 5.9601 6.7832 −5.6820
−35.0021 −21.3571 −22.3228 20.7755
−19.1608 −0.4000 −0.8557 0.7620
−14.4270 −9.5913 −8.4461 8.7807

⎤

⎥
⎥
⎦ ,

L12b =

⎡

⎢
⎢
⎣

−0.1330 −0.1667 −0.1026 −0.0802
1.1057 0.0079 0.1885 0.7890
0.2103 0.5517 −0.4382 0.3675
0.3251 −0.0297 −0.0533 0.1739

⎤

⎥
⎥
⎦ ,

L21a =

⎡

⎢
⎢
⎣

1.1953 −0.1082 −0.0024 0.0684
5.4471 −1.1997 −5.2597 2.0864
−8.2455 −0.0901 2.7796 0.2992
0.5972 −3.5113 −3.1147 3.0946

⎤

⎥
⎥
⎦ ,

L21b =

⎡

⎢
⎢
⎣

−0.0876 −0.0812 −0.0955 −0.0264
0.8548 0.0909 −0.3803 0.4339
0.2769 −0.0703 0.2884 0.3832
0.2823 −0.0806 −0.1268 0.0426

⎤

⎥
⎥
⎦ ,

L22a =

⎡

⎢
⎢
⎣

14.6124 6.3756 6.8226 −5.8846
−41.2032 −24.7593 −24.9648 22.4426
−19.0451 −3.2254 −6.4556 4.0874
−15.7429 −10.8376 −10.3446 9.5609

⎤

⎥
⎥
⎦ ,

L22b =

⎡

⎢
⎢
⎣

−0.1400 −0.1637 −0.1125 −0.0809
0.8614 0.1511 0.0484 0.7945
0.2389 0.3499 −0.2381 0.3825
0.2750 −0.0392 −0.0548 0.1771

⎤

⎥
⎥
⎦ ,

M =
[
Ma Mb

]
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Ma =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

9.2197 0.6554 −0.2725 −0.8181
0.6554 4.9316 1.7524 −3.5017
−0.2725 1.7524 5.5968 −1.5790
−0.8181 −3.5017 −1.5790 3.1788
0.3395 0.2601 0.1404 −0.0993
−0.0708 0.0102 −0.0709 −0.1859
−0.0164 −0.1853 0.0951 −0.1521
−0.1273 0.0149 −0.0016 0.2762

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Mb =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.3395 −0.0708 −0.0164 −0.1273
0.2601 0.0102 −0.1853 0.0149
0.1404 −0.0709 0.0951 −0.0016
−0.0993 −0.1859 −0.1521 0.2762
0.0406 −0.0320 −0.0497 0.0400
−0.0320 0.0554 0.0748 −0.0791
−0.0497 0.0748 0.1254 −0.1180
0.0400 −0.0791 −0.1180 0.1226

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Besides, in order to demonstrate the effectiveness of
the proposed method, it is compared with the classical
H∞ observer. For the system (10), design the observer
(19) by solving the following LMIs:

[
ς PDxi −WiDy + CTUDy

� DT
y UDy − γ2I

]

< 0,

[−P PAj −WiC − aP
� −τ2P

]

< 0, (64)

where
ς = He{PAj −WiC}+ CTUC.

The matrices of the H∞ observer are obtained as

L̃11 =

⎡

⎢
⎢
⎣

−4.4597 −5.7813 −4.7705 5.0337
52.1658 32.6016 29.9215 −24.1270
26.0922 23.3596 22.5140 −20.9823
0.0000 −5.0850 −4.0850 5.3800

⎤

⎥
⎥
⎦ ,

L̃12 =

⎡

⎢
⎢
⎣

−4.4597 −5.7813 −4.7705 5.0337
52.1658 32.6016 29.9215 −24.1270
26.0922 19.3596 18.5140 −16.9823
0.0000 −5.0850 −4.0850 5.3800

⎤

⎥
⎥
⎦ ,

L̃21 =

⎡

⎢
⎢
⎣

−4.4597 −5.7813 −4.7705 5.0337
52.1658 32.6016 29.9215 −24.1270
26.0922 24.3596 22.5140 −20.9823
0.0000 −5.0850 −4.0850 5.3800

⎤

⎥
⎥
⎦ ,

L̃22 =

⎡

⎢
⎢
⎣

−4.4597 −5.7813 −4.7705 5.0337
52.1658 32.6016 29.9215 −24.1270
26.0922 20.3596 18.5140 −16.9823
0.0000 −5.0850 −4.0850 5.3800

⎤

⎥
⎥
⎦ ,

M̃ =

⎡

⎢
⎢
⎣

0.3780 0.0000 0.0000 0.0000
0.0000 0.4201 0.0421 −0.0841
0.0000 0.0421 0.4201 −0.0841
0.0000 −0.0841 −0.0841 0.2941

⎤

⎥
⎥
⎦ .

Figure 5 displays the pole location of the estimation
error system (22). It can be seen that the poles of the error
system locate the given circle (−5, 4.9).

In the simulations, the initial state is chosen as
[0 0 0 0]T , the input vector is given as u(t) =
[sin(0.01t) cos(0.05t + π/2)]T , the system uncertainty
w(t) and measurement noise v(t) are set as random
signals bounded by [−1, 1]. In this paper, residual
evaluation is considered to be the root mean square (RMS)
value of the generated residual as in the work of Huang
et al. (2017). In this paper, two fault scenarios are
assumed to be detected. First, an abrupt fault is assumed
to occur in the first actuator with the 50 % loss of
effectiveness at t = 40 s, i.e.,

fa(t) = −ηu(t),

η =

{
[0 0]T , 0 s < t ≤ 40 s,

[0.5 0]T , 40 s < t ≤ 100 s,

fs(t) = [0 0 0 0]T . (65)

In the second fault scenario, we consider the sensor
fault; it is assumed that a time-varying fault occurs in the
first sensor with the formulation as

fa(t) = [0 0]T ,

fs(t) =

⎧
⎪⎨

⎪⎩

[0 0 0 0]T , 0 s < t ≤ 20 s,

[f1(t) 0 0 0]T , 20 s < t ≤ 65 s,

[0 0 0 0]T , 65 s < t ≤ 100 s,

f1(t) = 0.03 + 0.01 sin(0.1π(t− 20)).

(66)

The simulation results are depicted in Figs. 6 and
7. The former shows residual evaluation generated by the
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Fig. 5. Location of the poles for the system determining the es-
timation error.
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proposed method and the H∞ observer for the actuator
fault (65). Therein, the dash-dotted line represents the
residual evaluation generated by the proposed H−/H∞
observer and the dashed line is the residual evaluation
generated by the H∞ observer. The latter figure shows
the residual evaluation for the sensor fault (66). It can be
seen that the proposed method has more fault sensitivity
than the H∞ observer one.

6. Conclusions

In this paper, an H−/H∞ fault detection observer was
designed for a class of polytopic LPV systems by using
the relative degree of output. First, by considering the
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Fig. 6. Residual evaluation function of the first fault scenario
(65).
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Fig. 7. Residual evaluation function of the second fault scenario
(66).

original output and its time derivative as a new output,
a new augmented system was generated, such that the
H− index was feasible for the new system. Then the
observer was designed to consider the H∞ disturbance
attenuation performance, H− index of actuator fault
sensitivity and sensor fault sensitivity simultaneously.
Simulations results demonstrated the effectiveness of the
proposed method.
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