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IDENTIFICATION OF LOW-ORDER CONTINUOS-TIME
MODELS VIA DISCRETE-TIME TRENDS
OF MEASUREMENTS

KRrzyszTor B. JANISZOWSKI*

The paper deals with the problem of continuous-time (CT) identification of pa-
rameters in transfer functions for low-order linear systems, based on recorded
discrete-time (DT) data. Algorithms for direct estimation of CT parameters are
developed from rules for transformation of a CT transfer function controlled via
a zero-order sampling-and-hold unit into a DT representation. Two schemes are
derived and tested: the first is based on the Goodwin transformation and the
other is derived from the modified Tustin transformation. Both the approaches
result in relations which can be used for direct estimation of CT parameters in a
model of the investigated system. The numerical schemes contain some expres-
sions that are reminiscent of DT differences and consequently they may magnify
disturbances. Therefore the results of extensively testing both the schemes in-
cluding different types of disturbances, measurement noise, slow varying drifts,
measurement resolution errors together with changes in the sampling time are
presented. A model of a pneumatic servomechanism system was used as a test
plant.
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1. Introduction

An interest in identification of CT models via discrete-time data can be observed
in recent trends in science and engineering practice (Bai, 1995; Kowalczuk, 1995;
Kowalczuk and Koztowski, 1998; Sagara and Zhao, 1990; Unbehauen and Rao, 1990).
The reason behind this lies in the fact that modern measuring equipment records data
in a discrete way. Various DCS or SCADA systems provide huge sets of data and
raise a possibility of investigating dynamic models for supervision, control or fault
detection and diagnosis. For all these applications CT models are usually suitable,
since they easily account for basic dynamic properties of the identified plants and
allow for a simple prediction of their behaviours. It is possible to extract a CT model
from a properly estimated DT model via the frequency domain or inverse Z-transform,
but these approaches are neither easy nor simple.
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The problem of parameter identification of CT models has been considered e.g.
in (Bai, 1995; Ninness and Goodwin, 1991; Unbehauen and Rao, 1990; Young 1981).
Different methods are used ranging from the frequency domain approach (Unbehauen
and Rao, 1990), through fitting CT models, to some presentation of discrete-time
models (Unbehauen and Rao, 1990), direct estimation of the terms corresponding to
polynomial parameters of the transfer function (Bai, 1995) or the recent approach
based on application of integrals (Kowalczuk, 1995; Kowalczuk and Koztowski, 1998).
Those methods are generally too complex for on-line applications. The methods
presented in (Kowalczuk, 1995; Kowalczuk and Kozlowski, 1998) are adapted to an
on-line procedure, but they sometimes involve problems when initial conditions are
non-zero or unknown.

The momentum method (Isermann, 1977) which can be rated among most simple
and direct approaches is based on estimation of time derivatives of input and output
signals and their usage in a regression scheme. This method has not been used for CT
data because of obvious problems which appear in time derivation of signals, especially
in processing discontinuous input signals. This approach possesses, however, one
important advantage: a vector of the inputs to the model consists of the values
of different time derivatives which express consecutive phase states and are usually
much less cross-correlated than the vectors of the models corresponding to difference
or DT state equations. All the above-mentioned approaches have one common aspect:
they measure the quality of the estimated model in terms of the error defined as the
difference between the model output and the measured system output.

The approach presented in this paper is based on the following observation: a
CT transfer function and the corresponding differential equation express properties
of a linear dynamic system as a linear combination of the time derivatives of input
and output signals. The time derivatives express trends of variations in the input
or output. In DT domain we do not need time derivatives to express these trends
but only differences calculated at subsequent DT instants to evaluate them, hence
the problem with e.g. time derivation of a step signal will not appear. This approach
may magnify the influence of noise or instant changes in signals e.g. due to finite-
resolution measurements or a number representation, etc. These disturbances pose a
problem for estimation schemes, because they usually exert an influence on the auto-
regressive part of each model. Hence all estimation schemes reduce the auto-regressive
coefficients in the case of a strong noise impact. This well-known effect will not be so
vital in the case of a model without the auto-regressive part.

Section 2 presents models for a linear continuous-time system derived from Good-
win’s representation of linear CT transfer functions (Ninness and Goodwin, 1991) and
for a modified Tustin approximation derived in (Janiszowski, 1993). These models
will express relations between the parameters of the CT transfer functions and trends
expressed by linear combinations of DT values of input and output signals. In Sec-
tion 3 some results of direct parameter estimation for a model of a third-order, linear
system with oscillatory and integral actions will be presented.
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2. DT Representations of CT Linear Dynamic Systems and
Derivation of Trend Structures

Consider a linear CT system represented by the following transfer function:

B(s bo+bis+ o+ by_1s™t _ s

G(S) — ( ) - 0 1 m 1_1 e sT — y( )’ (1)
A(s)  as+ais+- - tam-18m +s™ u(s)

where u is an input signal, y is an output signal, bg,b1,...,bm-1,00,a1,...,Gm—1

are the parameters of a SISO CT transfer function, m denotes the order of system (1)
and T is a delay in the input action. The operator § = (¢ — 1)/A (where ¢ is a
shift operator and A denotes the sampling interval) introduced by Goodwin (Ninness
and Goodwin, 1991) to express the dynamics of a linear CT system, controlled by a
zero-order sample-and-hold unit, results in the following relation between the sampled
values of input y(k) and output u(k):
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recorded at time instants ¢ = kA, where d is a discrete value of delay T = dA.
Introducing the back-shift operator ¢=! and multiplying (2) by A™, we get
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The left-hand side presents a trend in the output signal of the highest-order m.
The terms on the right-hand side will be called the trends of y(k) (or u(k)) of order
p determined for the model of order m. These trends are defined as time operators
R(g™') and P(g™') by the following definitions:
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Hence we introduce a model of the higest-order trend for y(k) as a linear combination
of trends y?,(k), u®,(k), and parameters a;, b;, i.e.

m— m~—1

ym(k) = — Z aiYpn (k) + Z biug, (k) = Ry(q~ ")y (k)
:—ZaRl 1)y +Zb (k), (5)

i=0

where the trends yZ, (k) and uf (k) are the inputs of the model structure and a;, b;
are unknown parameters that have to be estimated.

Another DT representation for (1), which is more accurate especially for small
sampling time intervals, was derived in (Janiszowski, 1993) as a modification of the
well-known Tustin approximation. This way of transformation of a CT system with
a zero-order sample-and-hold unit is defined by the rule

B(s)
A() o=

2¢71
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(@) P & e
A(l4q—1)

(6)

where G*(g~') denotes a DT transfer function. The above transformation yields the
following relation between the sampled data of the input and output:

2m(1 _ q~1)m Z a; TAT— z _ q—l)i(l +q—1)m-iy(k)
+ Z bi21+lAm—zqflfd(1 _ q-1)1(1 + q—l)m—z‘lu(k). (7)
i=0

The operators of the trends for the input and output signals are defined as follows:
Ri(g7") £ 22A™ (1 - g7 1)i(1 + g1y

=T g T,
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With the above definitions, model (5) describes the highest-order trend of the
output y,;(k). Representation (5) determined for (4) or (8) can now be used for
identification, where the coefficients of the model vector are equal to the corresponding
parameters of the CT transfer function. After determination of trends (4) or (8) many
schemes can be used to estimate parameters a;, b;.

Let us notice that the output to model (5) is not a measurable signal, hence there
is no possibility of comparison with any reference and hence there is no direct way
to evaluate the quality of the estimated model. The only measurable signal is the
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output of the investigated process and the determined estimates have to be coherent
with values of y(k). The estimates a;, b; can now be used to evaluate the values
7(k) of the measured output y(k). This will be determined by the truncated trend
operators for the output signal that contain only past values of the output signal

Ri(g ) 2rig 4 4ol g™ (9)

The evaluation (k) of the output, based on the estimated parameters a;, 5,-, can be
determined by

(k) =™t | = &Rl (q yk) + Y biPr (g uk) |,
1=0 =0

(10)
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A measure of the distance between the recorded values of y(k) and its evaluation
§(k)

Q= Z(y(k) g(k)? or TV.=")"|y(k) — k)], (11)

k=0 k=0

where N is the number of investigated measurements, can be an indicator of proper
determination of parameters in the assumed model structure, e.g. the delay 7', the
model order, or the number of parameters in polynomials A(s) or B(s).

The numerical task of the estimation of CT transfer-function parameters amounts
to estimating the coefficients of the linear model

m (k) = v(k)f,
v(k) = [ym k), . ym k), up T (K), - up, (B)] (12)
6:[‘-sz_l,...,—*(L(),bm_l,...,b()ll, |

where v(k) is the vector of model inputs and 6 is the vector of unknown model
coefficients. This form of the model will be used if all parameters a;, b;, 1 =0,...,m—
1 are investigated. When some of the coefficients a; or b; are not expected in the
CT transfer function, the corresponding trends y?, or u!, will not appear in the
vector v(k).

Vector v(k) contains variables of different physical meanings, different units
and, consequently, of a different magnitude. To improve the numerical conditioning
of calculations, all the variables in v(k) have to be of the same level of magnitude.
The normalised highest-order trend expressed by normalised model inputs is the final
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Table 1. Errors in estimation of model parameters in different simulation conditions, Part I.

Variable Simulation N/S Error in | Error in | Error in CONl/ Tss
factor | Method | parameter |factor %] | oC (%] | owo [%] | o€ [%] | x10 [ms]
drift A =1ms
w = n=1pm
€=2pum
100 pm 0.63
Goodwin 5.9 0.42 0.75 0.166 | 93
Tustin 0.23 0.17 0.49 0.100 | 89
1mm 4.46
Goodwin 6.1 0.42 0.77 0.216 | 97
Tustin 0.24 0.19 0.51 0.179 | 97
2 mm 8.79
Goodwin 8.1 0.34 0.35 1.47 | 132
Tustin 0.1 0.59 0.69 1.53 | 133
5 mm 21.75
Goodwin 59.2 2.49 11.1 6.17 | 324
Tustin 6.6 10.4 3.5 8.16 | 308
10 mm 43.48
Goodwin 184.5 2.55 39.4 9.10 | 356
Tustin 22.9 40.3 10.7 18.2 | 409
noise A = 1ms
n= d =100 pm
E=2pum
10 pm 1.04
Goodwin 6.3 0.39 0.70 0.48 | 101
Tustin 0.19 0.23 0.54 0.47 | 106
100 pm 8.35
Goodwin 40.1 4.22 7.53 3.95 | 228
Tustin 2.01 3.27 1.53 4.62 | 171
200 pm 16.72
Goodwin 138.1 16.3 30.8 6.29 | 317
Tustin 8.1 12.2 4.11 9.56 | 299
500 pm 41.78
Goodwin 591.2 55.3 137.7 12.56 | 422
Tustin 37.6 72.2 17.6 28.46 | 466

Magneto-strictive measurement systems, usually used in the servomechanisms
under consideration, gained the resolution of appr. 10-50 um with additive noise of
the level of 10 um. For this noise level the estimation of the system parameters was
robust and fast enough.

Very poor, low-cost, potentiometer measurement systems of accuracy 0.1-0.5 mm
with noise corresponding to n of the 100-200 um range, could be used too, but the
estimation time T,s; was long. Fortunately, the low values of convergence for CONV
indicate fast convergence to final estimates. The comparison of effects of the different
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types of noise suggests that fast noise n had more impact (at the same N/S ratio)
than drifts w.

In an adaptive control system the estimated parameters have to be stationary.
In the case of estimation algorithms of fast convergence but with significant fluctu-
ations an effective design of a control algorithm will be a hazardous task. In Fig. 1
transients of normalised model coefficients are presented for the following simulation
conditions: w = 200 um, n = 20 pum, ¢ = 10 um and sampling interval A = 1ms.
After appr. 90 ms the estimated parameters were very close to the nominal values and
after 150 ms they were practically constant and equal to the final values.
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Fig. 1. Transients of model coefficients for: w = 200 um, n = 20 pm,
€ =10pm and A = lms.

Part II of Table 1 presents the effect of the resolution of the measurement system
on the estimation quality. The results were very optimistic, since the resolution errors
within the range of (2 um, 200 pm) had little influence, even less than the drift signal
of a comparable N/S ratio.

The lower part of this table shows the influence of the sampling interval A. This
comparison was performed for other parameters corresponding to the good quality
magneto-strictive measurement system. The optimum value of the sampling interval
at 1 ms can be observed. Lower values of A, however, increased the size of the
data set (and a numerical effort) but did not improve the quality and convergence of
estimates. Very low sampling interval values for the trends defined by the Goodwin
scheme were completely not advisable, but the trends defined by the Tustin scheme
could cope with this case, too. For our system, an optimal sampling interval can be
found and clearly established.

The previous results have revealed the quality of the estimates based on the
assumption of the known model structure. The efficiency of the presented method in
determination of the parameters of the CT transfer function in the case of an unknown
or ill-defined structure has been examined. The tests were performed in the same
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Table 1. Errors in estimation of model parameters in different simulation conditions,

Part II.
Variable Simulation N/S  |Error in | Error in | Error in | CONV | T,
factor Method parameter | factor [%]| C[%] | wo [%] | £[%] |x107°|[ms]
Imeasurem. A=1ms
resolution w = 100 pm
€= 7 =10 pm ‘J
5 pm 1.22
Goodwin 6.3 0.39 0.70 0.58 | 105
Tustin 0.19 0.24 0.54 0.52 | 109
10 ym 1.97
Goodwin 6.6 0.34 0.61 0.64 | 107
Tustin 0.18 0.25 0.53 0.64 | 113
20 pm 3.49
Goodwin 7.73 0.21 0.34 1.03 125
Tustin 0.12 0.36 0.56 1.06 | 127
50 pm 8.73
Goodwin 15.55 0.88 1.63 2.04 |144
Tustin 0.43 1.16 0.81 2.28 | 144
100 yum 17.03
Goodwin 42.2 4.11 7.71 4.02 | 234
Tustin 2.33 3.83 1.88 490 | 183
sampling w = 100 ym
interval 7 =10 um
A= e=10pm J
0.25 ms 2.06
Goodwin 110.6 25.3 221 15.8 | 164
Tustin 1.88 3.63 0.62 189 | 172
0.5 ms 2.05
Goodwin 31.1 11.3 7.61 6.64 | 133
Tustin 0.2 1.63 0.25 6.95 | 134
1lms 1.97
Goodwin 6.62 0.34 0.61 0.64 107
Tustin 0.18 0.25 0.53 0.64 |113
2ms 1.98
Goodwin 10.2 1.0 2.53 1.07 | 147
Tustin 0.36 0.80 1.98 0.67 | 144
5 ms 1.97
Goodwin 38.6 2.90 12.46 0.14 {280
Tustin 15.25 1.73 8.65 0.15 | 179
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way as above with the following parameters: w = 100 um, n = 10 pm, € = 10 ym and
sampling interval A = 1 ms. The system was investigated as a linear dynamic plant
with integration action of order m = 1,2,3 and a different number of parameters
M =2,...,6 (excluding integral action). The parameters of the CT transfer function,
corresponding to (16), were presented in Table 2 as values related to bo = 108 in the
numerator and to as = 1.0 in the denominator for an easy comparison of the results

bo+ -+ by_1s™ !
s(s™ + am—18™"1 + -+ a15 + ao)

bD(]- +t bm—l/bOSm_l)
$(am/ags™ + 82+ -+ a1/azs + ag/az)

Geu(s) =

As a measure of fitting of the determined parameters to the task of estimating the
DT value of the velocity (10), the performance index IQ (11) was used.

Table 2. Estimated parameters of CT transfer functions for different structures of Gus(s).

Model
structure az= las=|a1=| ao= by = by = bo = 1Q
parameters 0.0 1.0 | 20.0 | 400.0 |0.0 x 10° [ 0.0 x 10% | 1.0 x 10°
m=1 M =2
Goodwin — — | 1.0 |-3.888 — — 0.125 | 324.8
Tustin — — | 1.0 |—4.011 — — 0.116 | 340.5
m=2 M=3
Goodwin — 1.0 |21.24| 400.6 _ — 0.9937 |0.1042
Tustin — 1.0 19.95| 400.4 — — 0.9941 |0.1033
m=2 M=4
Goodwin — 1.0 |20.29| 395.7 — 0.00051 | 0.9861 |0.1033
Tustin — 1.0 [19.95| 400.1 — 0.000035 | 0.9935 |0.1033
m=3 M=5
Goodwin | 0.00133 | 1.0 ]22.25| 392.9 — 0.00087 | 0.9761 [0.0995
Tustin 0.00102 | 1.0 |19.61| 396.7 — 0.000072 | 0.9821 |0.1045
m=3, M=6
CGoodwin | 0.00136 | 1.0 |20.92| 385.8 |0.65x10°{ 0.00171 | 0.9639 |0.0995
Tustin 0.00105 | 1.0 |19.58 | 396.2 |0.13x10% | 0.00031 | 0.9822 |0.1054

The presented results are not surprising: the terms absent in the original struc-
ture were determined with very low values, however this effect was not obvious. In
the case of an order of the system model greater than m = 2 the estimates of all
parameters were normalised with respect to a,, = 0.0 and therefore some numerical
problems could appear. Nevertheless, the estimates were stable and convergent and
did not reveal any particular behaviour.
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4. Conclusions

The estimation scheme is simple and directly delivers the demanded CT transfer
function of the investigated system. The determination of trends increases the cal-
culation effort only moderately. This approach does not involve complicated inverse
calculations.

The results of testing were based on some special case (parameter estimation in a
pneumatic servomechanism) and do not cover a wide range of dynamic systems. The
example describes a real problem where the time efficiency was critical for successful
application of adaptive control. The approach was successfully applied to adaptive
position control.

The results have been compared with those obtained by the integration approach
based on methods presented in (Kowalczuk, 1995; Kowalczuk and Kozlowski, 1998;
Sagara and Zhao, 1990). This approach does not produce problems with bias due to
non-zero mean values of the input and output signals and difficult-to-evaluate initial
conditions for the integrals creating inputs to the model structure. The paper deals
with a problem of identification of a SISO-plant, however the introduced approach
can be directly used for MISO-plants.
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