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An output-feedback decentralised formation control strategy is pursued under pole-region constraints, assuming that the
agents have access to relative position measurements with respect to a set of neighbors in a graph describing the sensing
topology. No communication between the agents is assumed; however, a shared one-way communication channel with a
pilot is needed for steering tasks. Each agent has a separate copy of the same controller. A virtual structure approach is pre-
sented for the formation steering as a whole; actual formation control is established via cone-complementarity linearization
algorithms for the appropriate matrix inequalities. In contrast to other research where only stable consensus is pursued, the
proposed method allows us to specify settling-time, damping and bandwidth limitations via pole regions. In addition, a full
methodology for the decoupled handling of steering and formation control is provided. Simulation results in the example
section illustrate the approach.
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1. Introduction

The task of keeping a multi-agent system in the desired
formation is known as formation control (Ren and Beard,
2008), which has played a crucial role in a great variety
of applications over the last decades: UAV formation
flight (Dong et al., 2014; Zou et al., 2018), underwater
sensing networks (Bechlioulis et al., 2019), cooperative
transport (Bai and Wen, 2010), etc. The objective of
formation control synthesis is to design a distributed
control strategy based on local information exchange to
achieve a geometrical formation shape in a coordinated
fashion (Oh et al., 2015). Formation control needs to
operate jointly with steering tasks to set the translational
and rotational degrees of freedom in complete multi-agent
trajectory control problems.

∗Corresponding author

A first approach to deal with these problems is to
assume a virtual structure (Ren and Beard, 2004), where
there exists a virtual reference frame that can be used
to define each agent’s position and velocity. A second
approach is the leader–follower one (see He et al., 2018;
Kamel and Zhang, 2015; Farrera et al., 2020), in which
all agents try to reach given relative positions with respect
to that of a ‘leader.’ The leader–follower approach
is a particular case of more general consensus setups
where a virtual center arises from properties of a graph
which encodes the interaction’s topology. When agents’
manipulated variable is a speed command, they can be
considered single integrators, so that the related problems
are named first-order consensus (Ren and Sorensen,
2008); in the case where the agents’ manipulated variable
is acceleration, the problem under discussion is called
second-order consensus (Ren and Atkins, 2005; Li et al.,
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2015; Tian et al., 2018). Heterogeneous combinations
of first- and second-order agents may also be considered
(Rahimi et al., 2014; González-Sierra et al., 2022).
There may exist a communication network supporting the
formation control tasks so that agents can interchange
states or reference values (Ren and Sorensen, 2008), or
there may be communication-free structures where agents
only have access to their own set of measurements (see,
e.g., Dehghani and Menhaj, 2016). Obstacle-avoidance
issues may also need to be considered (a behavior-based
approach can be found in the work of Lee and Chwa
(2018)), but that makes stability proofs more difficult;
there are other neural/adaptive approaches for nonlinear
agents (Peng et al., 2021), as well as developments
including delay or fault tolerance (González et al., 2019).
This work will discuss the communication-free case.
Nonlinear setups, delay, faults, heterogeneous agents and
obstacle avoidance issues will be intentionally left out of
the scope of the present manuscript.

Control strategies for agents may be state-feedback
ones (Ren and Beard, 2004; Ren and Atkins, 2005; Zhai
et al., 2009), observer-based (Wen et al., 2016; Zhang and
Chen, 2017), static output feedback (Zhai et al., 2009),
or full output-feedback (Li et al., 2015; Tian et al.,
2018). Stability proofs for the above formation-control
tasks usually propose a fixed structure of each agent’s
control law and prove stability of an augmented canonical
realization involving all agents in the linear case (Ren and
Atkins, 2005; Wen et al., 2016), or a decrease in some
Lyapunov function (Li et al., 2015; Tian et al., 2018).
Zhai et al. (2009) use some matrix transformations to
obtain stabilizing static output feedback controllers for a
consensus problem via linear matrix inequalities (LMIs),
actually, bilinear ones (BMIs) once decision variable
products are acknowledged.

The last of the above works motivates the
generalization we are addressing here; the goals of
this paper are as follows: (a) stating the formation control
problem as a three-task (consensus, translation, rotation)
one where each of the tasks is decoupled from the other
two ones; (b) allowing an arbitrary output-feedback
consensus control with internal dynamics; (c)
incorporating a two-degree-of-freedom setup, with
feedforward terms from a virtual-structure setup for
the steering tasks, in addition to the consensus-related
feedback; (d) incorporating pole-region performance
constraints apart from mere stability (other options are,
of course, possible); (e) using a cone-complementarity
linearization algorithm (El Ghaoui et al., 1997) to solve
the resulting bilinear matrix inequalities.

In summary, the contribution of this paper is
presenting a full methodology to address decentralized
formation control (consensus) with only relative position
feedback. Translation and rotational steering are also
incorporated, decoupled from the consensus achievement.

Our proposal allows specifying settling-time, and
damping and maximum bandwidth constraints, contrarily
to other research where only stability is pursued.
Decoupling allows independent design of controllers
for consensus, translation and rotation tasks. In-depth
consideration of controller design for the steering tasks
will not be considered in the scope of this work as,
actually, they are double-integrator dynamics that, in
principle, can be easily controlled.

The structure of the paper is as follows. The
next section contains preliminaries about an agent’s
dynamics and sensor network as well as the problem
statement, Section 3 discusses the steering component
of the formation as a whole, whereas Section 4
details the formation-shape control error definition.
Section 5 discusses the closed-loop dynamics under
output-feedback plus steering feedforward control laws,
and the decoupled representation of it. Section 6
details LMIs and the controller synthesis methodology.
The paper ends with some examples in Section 7 and
conclusions.

2. Preliminaries and problem statement

Consider a multiagent system, formed from N identical
agents, described by their acceleration dynamics as

ṗi = vi,

v̇i = ui + fi, (1)

where pi ∈ R
n and vi ∈ R

n are respectively the position
and velocity of each agent, ui ∈ R

n is the control action,
fi ∈ R

n is an external disturbance, and n represents the
number of position variables (degrees of freedom). In the
transfer-function notation, each agent would be described
by 1

s2 In, s being the Laplace operator and In the n ×
n, identity matrix. Note that each component pi,k, k =
1, . . . , n, of pi is thus decoupled from the others, and can
include any degree of freedom of the actual physical agent
(spatial position coordinates, orientation ones, etc.).

The relative positions will be denoted as δij := pi −
pj . We will assume that agents can only measure relative
position data from a certain number of neighboring agents,
i.e., only certain combinations of i and j will be available
as measurements. The sensing capabilities of agents in the
formation will be encoded in the sensing matrix:

Ã =

⎡
⎢⎢⎣
α̃11 α̃12 · · · α̃1N

α̃21 α̃22 · · · α̃2N

. . . . . . . . . . . . . . . . . . . . . .
α̃N1 α̃N2 · · · α̃NN

⎤
⎥⎥⎦ , (2)

where α̃ij = 1, [i, j] ∈ [1, . . . , N ] × [1, . . . , N ] if agent
i can measure the relative position with respect to agent
j, and α̃ij = 0 otherwise; diagonal elements will be
assumed to be equal to 1. Obviously, the above matrix
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has a graphical interpretation as the adjacency matrix
of a directed sensing graph (Zhai et al., 2009; Ren and
Beard, 2008; Farrera et al., 2020); hence Ã will be named
the adjacency matrix in the sequel.

For notational simplicity, we will assume the
adjacency matrix to be identical for all degrees
of freedom, although minor modifications in the
developments would allow for different adjacency
matrices; this common graph will entail identical
dynamics in all degrees of freedom, so block-diagonal
matrices will appear, using the Kronecker product
notation; in particular, given a row vector g =
(g1, . . . , gn), we set g⊗Im = (g1Im g2Im . . . gnIm), and
Im⊗ g will be a block-diagonal matrix with m repetitions
of g at the diagonal block elements; these expressions,
among others, will be used in further developments. The
mixed-product property of the Kronecker product (A ⊗
B) · (C ⊗D) = (AC)⊗ (BD) will also be used later on.

It will be assumed that relative positions δij can be
acquired with respect to an ‘absolute’ inertial orientation
reference frame, for instance, the one provided by an
orientation-capable IMU in actual applications.

The formation pattern is defined through a set of
desired (reference) relative position vectors δ∗ij , assumed
to be known; actually, δ∗ij may be non-constant functions
of time to allow for rotation, scaling or other formation
maneuvers in the so-called steering tasks.

Of course, the formation pattern’s reference relative
positions need not be “explicitly” set by the user for all
pairs of agents, neither for those in the sensing graph with
adjacency Ã: indeed, as long as there is a directed graph
T ∗ (nodes indicate agents, and edges between nodes i
and j indicate the availability of the reference distance
δ∗ij) with at least one spanning tree, then there is a path
between any two arbitrary agents in T ∗; thus their relative
distances can be computed (understanding δ∗ij = −δ∗ji
if a reverse path is taken on T ∗). Details are left to the
reader. Actually, the need for such a spanning tree to be
able to describe a formation leads to the assumption below
(widespread in the literature cited in Introduction).

Assumption 1. There exists at least a spanning tree in
the directed graphs described by the adjacency matrix Ã.

2.1. Problem statement. The first objective of
this paper is designing a dynamic feedback law which
computes ui from available measurements (i.e., only δij
such that α̃ij �= 0), in such a way that all agents
can exponentially converge to a given formation pattern,
defined through the set of desired relative position vectors
between all agents, i.e., limt→∞(pi − pj)− δ∗ij = 0 with
some guaranteed exponential decay rate performance.

Additionally, our proposal will allow decoupling the
whole problem of controlling an ensemble of multiple
agents into (a) a “formation control” (also known as

consensus) task (reaching prescribed relative trajectories
with respect to the other agents with some pole-region
performance objectives) and (b) a “steering” task in which
a “virtual structure” (Ren and Beard, 2004) will be used
to compute (as feedforward terms to the above formation
control) the reference accelerations that each of the agents
would have if the perfect formation had been attained.
Subsequently, a second decoupling into translational vs.
rotational steering will also be made at this level.

As the control structure to be proposed is
decentralized, each agent’s control algorithm will be
intentionally made identical, only receiving shared linear
and rotational acceleration commands from a ‘pilot’
(manual/automatic controller in charge of steering). Each
agent’s control will only be parameterized with some
weights associated with the measurement graph and its
relative position to a ‘virtual center’ of the formation’s
structure. We will propose matrix inequality conditions
such that pole-region placement specifications can be
proven for the consensus task, and an iterative algorithm
based on cone-complementarity linearization (CCL)
will be the choice for finding a feasible solution to
these inequalities. The CCL algorithm will enable us to
consider a generic quadratic Lyapunov function, instead
of the diagonal-only case in other literature references,
with, say, an agent-specific Lyapunov function (Rahimi
et al., 2014).

3. Formation steering tasks

The movement of the formation as a whole will be denoted
as steering, so an external controller (human/automatic
‘pilot’) will need to control the position and orientation
of a virtual reference frame whose origin will be at a
given steering point. Exploring which measurements and
control strategy should be used for the steering tasks will
not be discussed in this work, as they will have standard
double-integrator dynamics which can be controlled with
ease in most cases.

3.1. Translational steering. The ‘pilot’ will be
assumed to provide linear acceleration fF commands
based on his observations of the position and velocity
of the steering point; indeed, the strategy to be
developed in later sections, based in relative positions,
will intentionally leave out double-integrator dynamics,
uncontrollable from the proposed formation control
strategy, but controllable by providing a common steering
acceleration command fF to all agents.

3.2. Rotational steering: A virtual structure.
Regarding the formation’s orientation, we will assume
the pilot to provide angular acceleration commands τF ,
usually coming from observations of the orientation and
angular velocity of the formation as a whole.
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In particular, in a 3D setting (simpler formulas arise
in planar motion, of course), the steering of the rotational
degrees of freedom of the formation can be considered via
integrating this rotational dynamics of a virtual rigid body,
the so-called “virtual structure”, in (Ren and Beard, 2004)

q̇F =
1

2
Ωq(ωF ) · qF (3)

ω̇F = τF , (4)

where qF is a quaternion defining the formation’s
orientation, and Ωq(ωF ) is a 4 × 4 matrix translating the
concept of angular speed, ωF = (ω1, ω2, ω3)

T , to the
quaternion framework:

Ω(ωF ) =

⎛
⎝

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞
⎠ , (5)

Ωq(ωF ) =

(
Ω(ωF ) ωF

−ωF T
0

)
. (6)

We have assumed that of inertia matrix the virtual
structure is the identity matrix, in the same way, we
assumed that each agent’s mass was unity: we provide
acceleration commands instead of ‘virtual torques.’1

Now, the reference acceleration for each agent
will be the sum of the translational acceleration and
rotation-related components, in “absolute” coordinates in
an inertial frame of reference.

Let us denote by δ̄∗i the constant relative position for
agent i, in a reference inertial frame, with respect to a
pre-defined “virtual center of rotation” (steering point).

Let us denote by R(qF ) the rotation matrix
associated with quaternion qF defining orientation at a
particular time instant. Then, the rotation of the formation
would prescribe a reference position (relative to the center
of rotation), speed and acceleration, for each agent, given
by

δ∗i = R(qF ) · δ̄∗i (7)

δ̇∗i = Ω(ωF )R(qF ) · δ̄∗i (8)

δ̈∗i =
(
Ω(τF )R(qF )

+Ω(ωF )Ω(ωF )R(qF )
)
· δ̄∗i , (9)

Ω(·) being a 3× 3 skew-symmetric matrix (5).
Note that acceleration in (9) contains only

rotational-related elements, so the total desired
acceleration for agent i needs to add the translational
component, yielding

uF
i = δ̈∗i + fF . (10)

1Adding a virtual inertia matrix (different from a multiple of the iden-
tity matrix) is considered by Ren and Beard (2004) but, from an appli-
cation point of view, it is perhaps detrimental, as the unstability of the
“intermediate axis” rotation would entail steering problems in certain
maneuvers that can be naively avoided with identity virtual inertia.

Virtual 
center

Rotational
steering
accel.

(measured)

Translating steering
acceleration

Virtual structure

Fig. 1. Scheme of the different elements of the steer-
ing/formation control strategy. The left (not to scale)
square represents the virtual structure in a fixed refer-
ence frame. The right square represents such a structure
once translated and rotated.

The term uF
i represents a rigid virtual structure

feedforward component, but an additional feedback
component is needed to reach a given formation pattern.
Figure 1 schematically depicts the above-discussed
steering task elements.

4. Formation control error

Once the steering computations have been carried out,
reference values for relative positions and velocities
between agents (needed in formation control) trivially
arise from defining

δ∗ij = δ∗i − δ∗j . (11)

We will now discuss how the error with respect to the
desired reference formation shape is understood so that
each agent has a sort of reference point which depends on
a weighted sum of the other agent’s references (denoted
as consensus in the literature).

Let us define the (weighted) formation control error
for each agent’s position as

ηp,i =

N∑
j=1

αij

(
δij − δ∗ij

)
, (12)

where δij = pi − pj is the error between actual
agents positions, and αij are some weighting coefficients
described by the following weighting matrix:

A =

⎡
⎢⎢⎣
α11 α12 · · · α1N

α21 α22 · · · α2N

. . . . . . . . . . . . . . . . . . . . . .
αN1 αN2 · · · αNN

⎤
⎥⎥⎦ , (13)
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with αij = 0 iff α̃ij = 0 for off-diagonal elements, and
diagonal elements being arbitrary. In consequence, matrix
A is a weighted version of the incidence matrix Ã in
(2), with user-defined non-negative weights to encode the
“importance” of some corrections, associated with, say,
a “weighted sensing graph.” Actually, weights αij will
be useful to set a desired position of a “steering point”
whose dynamics will be a double integrator, decoupled
from formation control (Theorem 1 in Section 5, and the
simulation example in Section 7).

Let us now denote by L the Laplacian matrix

L = D −A, (14)

with D = diagNi=1

(∑N
j=1 αij

)
being a matrix with

incidence row sums as diagonal elements. From (14), it
can be deduced that L is singular, and 1N×1 is always in
its (right) null space. Also, Assumption 1 implies that the
algebraic multiplicity of the null eigenvalue is actually 1,
i.e., left and right null spaces of L are one-dimensional
(Olfati-Saber and Murray, 2004).

The definition in (12) amounts to ηp = Lp, and that
ηp are invariant to translations (adding the column vector
τ ∈ R

n to all elements of p would verify that (L ⊗ In) ·
p = (L⊗ In) · (p+ 1N×1 ⊗ τ), as L · 1N×1 = 0).

Conversely, from ηp, positions can be recovered
up to a translation. This is why driving ηp to zero is
understood as “formation control” because, when ηp = 0,
relative distances δij are equal to their reference values
δ∗ij , and positions are determined up to a translation of
the whole formation. The said translation of the whole
formation will be accomplished via the control of the
“steering point” mentioned in Section 3, yet in order to
be decoupled from formation control, the steering point
cannot be arbitrary but depending on the eigenvectors of
L, as discussed later.

In order to complete the understanding, the following
corollary explains that pursuing ηp,i = 0 means that agent
i must track a certain “consensus” reference point p∗i (see
(15) below) given by a weighted sum of positions of each
of the agents (plus some constants). For notational brevity,
shortcut

∑
j will denote thereafter the sum

∑N
j=1.

Corollary 1. When the formation control error defined
in (12) tends to zero, the position vector for each agent pi
tends to

p∗i =
1∑

j

αij

⎛
⎝∑

j

αijpj +
∑
j

αijδ
∗
ij

⎞
⎠ , (15)

where ∑
j αijpj∑
j αij

and ∑
j αijδ

∗
ij∑

j αij

can respectively be viewed as convex combinations of the
neighbor positions of the current agent (including the own
agent i if αii �= 0) and the references δ∗ij .

Proof. The proof can be outlined from the equivalences

ηp,i =
∑
j

αij

(
δij − δ∗ij

)

=
∑
j

αij

(
pi − pj − δ∗ij

)

=

⎛
⎝∑

j

αij

⎞
⎠ · pi −

∑
j

αij(pj − δ∗ij).

Hence

ηp,i =

⎛
⎝∑

j

αij

⎞
⎠ · (pi − p∗i ),

i.e., coordinates η are proportional to the “error” between
an agent’s position and p∗i , which can be interpreted as a
“position reference” for the said agent. �

An illustration of the above idea appears, too, in
Fig. 1.

5. Closed-loop formation control with
feedforward terms

5.1. Open-loop state-space model. The open-loop
dynamics of the multiagent system is determined from (1)
by the time-derivative of (12):

η̇p,i = ηv,i (16)

η̇v,i =
∑
j

αij (ui − uj) +
∑
j

αij (fi − fj)

−
∑
j

αij δ̈
∗
ij , (17)

where, implicitly, we have defined ηv,i =
∑

j αij(δ̇ij −
δ̇∗ij) to write (16), and velocities and accelerations of the
reference relative positions (11) appear in (17).

Now, letting

ηp =
[
ηTp,1 · · · ηTp,N

]T
,

ηv =
[
ηTv,1 · · · ηTv,N

]T
,

u =
[
uT
1 · · · uT

N

]T
,

f =
[
fT
1 · · · fT

N

]T
,

δ∗ =
[
δ∗T1 · · · δ∗TN

]T
,

(18)
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the above expressions can be written in compact form, for
the whole formation, as

[
η̇p
η̇v

]
=

[
0 IN ⊗ In
0 0

] [
ηp
ηv

]

+

[
0

L ⊗ In

](
u+ f− δ̈∗

)
.

(19)

5.2. Output feedback control. In the sequel,
sensors for relative velocities will be assumed to be
unavailable. Hence, an output feedback control scheme
will be thereafter considered, using only relative position
feedback from graph neighboring agents.

Consider the following dynamic output feedback
control scheme of order q with state and output equations

ξ̇i = Fξi +Gηp,i, (20)

uFB
i = Kξi +Hηp,i, (21)

where ξi ∈ R
q is the controller’s state variable of the

vector for agent i. Accordingly, once feedforward steering
terms (10) are added, the actual control action for each
agent is

ui = uFB
i + uF

i . (22)

We assume a decentralized implementation, where
the same controller is used by each agent. Thus, F ∈
R

q×q , G ∈ R
q×n, K ∈ R

n×q and H ∈ R
n×n are the

controller parameters to be designed.
Note that the feedforward term is an absolute

acceleration which depends on the position of the agent
in the virtual structure, as well as the rotational position,
velocity and acceleration of the virtual structure’s
reference frame. This term can thus be computed by
a centralized “steering computer” or, if a model of the
virtual structure is available to each agent, then it can carry
out the computations (7)–(9) independently of the other
agents.

5.3. Closed-loop formation dynamics. With the
above closed-loop controllers, the closed-loop formation
acceleration can be expressed as

η̇v,i =
∑
j

αij

(
uFB
i − uFB

j

)
+
∑
j

αij (fi − fj) (23)

because the feedforward terms uF
i cancel out the reference

accelerations δ̈∗ in (19). Hence, a representation of
the closed-loop system formed by (1) and the dynamic
controller (20)–(22) is obtained as

ẋ = Āx+ B̄f, (24)

where

x =
[
pT vT ξT

]T
,

p =
[
pT1 · · · pTN

]T
,

v =
[
vT1 · · · vTN

]T
,

ξ =
[
ξT1 · · · ξTN

]T
,

f =
[
fT
1 · · · fT

N

]T
,

(25)

Ā =

⎡
⎣

0 IN ⊗ In 0
L⊗H 0 (IN ⊗K)nN×qN

L ⊗G 0 IN ⊗ F

⎤
⎦ ,

(26)

B̄ =
[
0 IN ⊗ In 0

]T
.

The closed-loop dynamics will be shown to have two
uncontrollable poles per degree of freedom, associated to
steering (Section 3). These poles must be “separated”
from the dynamics for any stabilizing formation control
design to be feasible; this is the objective of the next
section.

5.4. Decoupled representation of closed-loop dynam-
ics. The following theorem proves that there exists a
“steering point” ps ∈ R

n for the closed-loop formation
control, whose acceleration is always zero in the absence
of external forces and formation control is decoupled from
the movements of this point.

Theorem 1. Let γ be a 1 × N row vector in the left null
space of the Laplacian matrix L of the weighted sensing
graph, (14), such that γ · 1N×1 = 1. Set ps = (γ ⊗
In) · p, where p is the column vector comprised of the
juxtaposition of the n positions; ps ∈ R

n will be referred
to as the ‘steering point.’

If the initial conditions of the control state variables
ξ(0) satisfy

(γ ⊗ Iq) · ξ(0) = 0, (27)

then, for all t ≥ 0, the dynamics of the multiagent forma-
tion can be expressed as

⎡
⎣

ṗs

v̇s

ż

⎤
⎦ =

⎡
⎣

0 In 0
0 0 0
0 0 Ā

⎤
⎦
⎡
⎣

ps

vs

z

⎤
⎦

+

⎡
⎣

0
γ ⊗ In
J2

⎤
⎦ f, (28)

where

J2 =

⎡
⎣

0nN×nN

IN ⊗ In −W (γ ⊗ In)
0qN×nN

⎤
⎦ , (29)
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z being the formation-specific state vector formed by the
juxtaposition of the relative position and velocities with
respect to the steering point (say, pi−ps and vi− vs, i =
1, . . . , N ), expressed as

z =
[
(p−W · ps)T (v −W · vs)T ξT

]T
,

(30)

where W = 1N×1 ⊗ In.

Proof. From the theorem statement, we have that γL = 0.
Considering the full closed-loop state vector x̄, note that
ps = γ̄ · x with γ̄ =

[
γ ⊗ In 0 0

]
.

Recalling that x is of size 2nN + qN and γ̄ is of size
n × (2nN + qN), the acceleration of the steering point
can be obtained as

p̈s = γ̄ · ẍ = γ̄Ā2x+ γ̄ĀB̄f + γ̄B̄ḟ ,

where Ā and B̄ are defined in (26). From Ā and B̄ in (26),
it can be deduced that

γ̄Ā2 = [0n×nN 0n×nN (γ⊗In)n×nN

· (IN⊗K)nN×qN ],

γ̄ĀB̄ = γ ⊗ In, (31)

γ̄B̄ = 0.

Applying the mixed-product property of the Kronecker
product, one has that

(γ ⊗ In)n×nN · (IN ⊗K)nN×qN = (γ ⊗K)n×qN ,

and therefore the acceleration of the pseudo-center of
gravity yields

p̈s = Γx+ (γ ⊗ In) f (32)

with Γ =
[
0n×N 0n×N γ ⊗K

]
.

Hence, from (32), with the initial condition for ξ̄
satisfying (27), we can conclude that Γ = 0 because
(γ ⊗K) · ξ = K · (γ ⊗ Iq) · ξ for any matrix K .

This property also holds for higher time-derivatives
of ps. Indeed, dkps/dtk = γ̄Ākx.

Let us now prove, by induction, that γ̄Āk = [0 0 γ ⊗
R(k)] with R(k) = KF k−2, for k = 2, 3, . . . .

Indeed, the assertion is true for k = 2, with R(2) =
K . Now,

[
0n×nN 0n×nN γ ⊗R(k−1)

]
Ā (33)

= [−(γ ⊗R(k−1)) · (L ⊗G) 0

(γ ⊗R(k−1)) · (IN ⊗ F )]

but

− (γ ⊗R(k−1)) · (L ⊗G)

= −(γ · L)⊗ (R(k−1) ·G) = 0,

and, from the same mixed-product property, one has that

− (γ ⊗R(k−1)) · (IN ⊗ F )

= −(γ · IN )⊗ (R(k−1) · F ).

Henceforth, γ · IN = γ and

R(k) = R(k−1) · F = KF k−2, k ≥ 2.

Hence, we have proved that γ̄Āk = [0 0 γ ⊗ R(k)] with
R(k) = KF k−2 for all k ≥ 2.

Note also that (γ ⊗ R(k)) · ξ = R(k) · (γ ⊗ Iq) · ξ
for any matrix R(k) of compatible dimensions. Hence, if
(γ ⊗ Iq) · ξ̄ = 0, then (γ ⊗ R(k)) · ξ̄ = 0. Thus, with the
initial condition for ξ̄ satisfying (27), all derivatives of ps

from the second onwards are zero under no external forces
(because expressions γ̄ĀkB̄ appearing in higher-order
derivatives of the steering point are zero), so the dynamics
of ps’s are those of a double integrator excited by an
external force.

Once the steering point dynamics have been
established, we will introduce the relative displacement
vector z from (30).

Then, it is easy to show that the joint dynamics of
the steering point and of z, composed of agents’ relative
positions, velocities and controller states, are governed by

⎡
⎣

ṗs

v̇s

ż

⎤
⎦ =

⎡
⎣

0 In 0
0 0 0
J1 0 Ā

⎤
⎦
⎡
⎣

ps

vs

z

⎤
⎦ (34)

+

⎡
⎣

0
γ ⊗ In
J2

⎤
⎦ f̄ ,

where matrix Ā was defined in (26), and

J1 =

⎡
⎣

0nN×n

0qN×n

(L⊗G) · W

⎤
⎦ ,

J2 =

⎡
⎣

0nN×nN

IN ⊗ In −W (γ ⊗ In)
0qN×nN

⎤
⎦ .

(35)

Recalling that 1N×1 is the right eigenvector associated
with the zero eigenvalue of the Laplacian matrix L, it can
be seen that (L ⊗G) · W = (L ⊗G) · (1N×1 ⊗ In) =
(L · 1N×1) ⊗ (G · In) = 0, leading to J1 = 0 in (35).
Consequently, as J1 = 0, the expression (28) is obtained.

�

Minimal realization. The interpretation of the above
theorem is that the multi-agent system is seen as a
plain ‘double integrator’ if only the steering point is
taken into account, so formation control is “decoupled”
from steering, and an external driver/pilot needs only



422 A. González et al.

taking care of the movement of ps. Formation control
dynamics and those of the steering point are decoupled
from the block diagonal structure of (28). The theorem
shows that the stability analysis of the formation control
must be addressed without considering the steering
point’s double-integrating behavior, i.e., analyze only the
dynamics of z.

However, the realization (28) is nonminimal, as ps is
a linear combination of agent states. Recalling that ps =
γ̄p and vs = γ̄v, it can be deduced that γ̄ · (p−W ps) =
0, γ̄ · (v −W vs) = 0 and, therefore, rewriting

Γγ z̄ = 0, Γγ :=

[
γ̄ 0 0n×qN

0 γ̄ 0n×qN

]
(36)

indicates that there are 2n uncontrollable modes in
formation control (weighted sum of relative positions and
velocities) that can be readily eliminated using the change
of variable z = [null(Γγ) ΓT

γ ]z̄r, discarding the last
two elements of z̄r (uncontrollable), compensating for the
addition of ps and vs in (28). As the change of the variable
is linear, the resulting reduced-order dynamics, whose
state transition matrix will be denoted as Ār(F,G,K,H),
will also be expressed as an affine function of controller
matrices (decision variables), so the proposed control
synthesis methodology will also apply to the transformed
matrices with straightforward modifications.

Note that, actually, it is mandatory to work on the
minimal realization of the formation control arising
from z̄r; otherwise, the uncontrollable modes associated
with the (marginally) unstable steering dynamics
would preclude obtaining feasible asymptotically stable
solutions to the matrix inequalities.

6. Control synthesis

The design of the parameters F,G,K and H in (20),
(21) can be addressed by means of iterative convex
optimization algorithms, once the independence from the
steering task has been established by Theorem 1 and the
cancellation of feedforward terms in (21).

As the translational/rotational steering dynamics
reduce to a double integrator for each degree of freedom, a
controller for it can be designed with well-known textbook
methods or, possibly, left to an external “pilot” to care
about it, maybe with visual feedback. Anyway, designing
controllers for the steering task is intentionally out of the
scope of this work.

Closed-loop specifications. The design of the controller
parameters F,G,K and H is carried out with the
objective being to ensure the convergence of the formation
control to the desired position with a prescribed decay and
damping.

Formally, specifications for control synthesis will
be set up based on the D-stability criterion (Peaucelle

et al., 2000), prescribing a region (the shadowed area in
Fig. 2) where closed-loop poles must lie. The parameter r
(the radius of the right circle) should be chosen to respect
a certain bandwidth limitation (an upper bound to the
natural frequency), while σ = qc + ρ (bounding the real
part of the closed-loop poles) should be negative, and
ensuring a minimum settling time (decay rate bound) to
reach the formation pattern. The damping characteristics
are determined by

cos(θ) =
r2 + q2c − ρ2

2r|qc|
.

Note that decreasing radius ρ has the beneficial effect
of improving both the decay rate and the damping
coefficient.

Let n̄ be the size of Ār, Ār being the state-transition
matrix of the reduced-order dynamics discussed at the end
of Section 5.4, depending on the controller matrices. The
existence of symmetric matrices P1, P2, Q1, Q2 ∈ R

n̄ >
0 and control parameters F,G,K,H (embedded into Ār)
satisfying the constraints P1Q1 = I , P2Q2 = I and the
linear matrix inequalities

[
−r2P1 ĀT

r

(∗) −Q1

]
< 0, (37)

[
−ρ2P2

(
Ār − qcI

)T
(∗) −Q2

]
< 0

ensures that all closed-loop poles are located in the convex
set given in Fig. 2. Indeed, the Schur complement makes
the above inequalities equivalent to r2P1 − ATP1A > 0,
ρ2P2 − (A − qcI)

TP2(A − qcI) > 0, P1 > 0, P2 > 0,
which are well-known conditions for the eigenvalues of
A being in the disc with radius r and those of A − qcI
in the disc with radius ρ, both centered at the origin.
Of course, other desired pole-regions shapes are also
possible if desired, using the above-mentioned D-stability
conditions.

In this work the final goal pole region will be
iteratively reached, as discussed below, from an initial
controller placing closed-loop poles in a larger region
which will progressively shrink and/or move left.

Integral action. Apart from the translational steering
acceleration fF , the presence of arbitrary external
disturbances as part of fi may change the formation’s
shape. If low-frequency disturbance rejection is desired,
the control scheme (21) and (20) can be modified by
introducing an integral action so as the effect of constant
loads in the formation control can be steady-state rejected.
In such a case, it is sufficient to choose the controller gains
F and G in (20) of the following structure:

F =

[
0n 0
G1 F

]
, G =

[
In
G2

]
(38)
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Fig. 2. Desired pole region, intersection of two discs D(0, r)
and D(qc, ρ). Design parameters are r > 0, ρ > 0,
qc < 0; see the decay rate (σ) and damping (θ) formulas
in the main text.

for some matrices G1, F , G2 of appropriate dimensions.
As (38) is a particular case of (20), incorporation of the
integral action is straightforward if desired.

Solution via the CCL+performance-shaping algo-
rithm. Note that the conditions (37) with the equality
constraints P1Q1 = I , P2Q2 = I render the problem non
convex. Therefore, finding a feasible solution to ensure
that all poles are located in the region corresponding
to the intersection between both circles in Fig. 2 is
addressed via the cone-complementarity linearization
(CCL) algorithm (El Ghaoui et al., 1997) by relaxing the
equality constraints PlQl = I to

[
P1 I
I Q1

]
≥ 0,

[
P2 I
I Q2

]
≥ 0, (39)

together with the objective function

min
(
trace

( 2∑
l=1

(
PlQ

(k−1)
l +QlP

(k−1)
l

))
(40)

to minimize at each CCL iteration k = 1, 2, . . . until
the trace is 2n̄, where P

(0)
l , Q(0)

l , l = 1, 2 are obtained
from the feasible solution for a given initial controller and
associated (relaxed) performance levels. Actually, CCL
iterations are embedded into an outer iteration loop with
progressively more stringent performance constraints (37)
until CCL’s lower trace bound ceases to be attainable.

An initial controller and associate performance levels
are needed. Intuitively, a reasonably performing controller
for a single agent is suggested.

This provides a sensible starting point so that
CCL+performance shaping iterations can retune such a
controller to accommodate the interaction with the rest of
agents in the formation. Indeed, when inserted into the
formation, LMI-guaranteed initial values of ρ and r will,
expectedly, not be satisfactory, but the above performance

requirements can be made more stringent by decreasing
ρ (better damping), increasing σ (faster decay rate) or
decreasing r (lower natural frequency), setting up suitable
step sizes and bisection-like optimization (details omitted
for brevity). For simplicity, only the decrease in ρ will be
pursued in the case study in the next section.

7. Case study

The proposed formation control strategy will be illustrated
by the following four-agent setup.

System description. Consider a multiagent system
formed by N = 4 agents whose sensing graph is depicted
in Fig. 3. The adjacency matrix Ã describing the sensing
graph (2) and the weighted adjacency matrix in (13) are
therefore defined by

Ã =

⎡
⎢⎢⎣
0 1 0 0
0 0 1 1
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦ , (41)

A =

⎡
⎢⎢⎣

0 α̃12 0 0
0 0 α̃23 α̃24

α̃31 0 0 0
0 α̃42 0 0

⎤
⎥⎥⎦ , (42)

where the weighting coefficients α̃ij �= 0 can be designed
to set the position of the steering point ps = (γ ⊗ In) · p.
In this example, we have

γ = [α̃23α̃42α̃31 α̃42α̃31α̃12

α̃23α̃42α̃12 α̃12α̃24α̃31].

Here, we wish to put the steering point in the center of
the multiagent system’s desired formation, say, γ = 0.25 ·
[1, 1, 1, 1]. Under this requirement, a feasible option for
α̃ij is

α̃12 = 0.5, α̃23 = 0.5, α̃24 = 1,

α̃31 = 0.5, α̃42 = 1.

CCL and performance-shaping initialization. Initial
controllers for the CCL algorithm have been set to the
state-space representation of stabilizing controllers for a
SISO double integrator with closed-loop poles inside a
desired pole region, i.e., close to s = −2. An additional
integral action was added via an augmented realization
with an input disturbance. The initial control was
designed via state-feedback+observer pole placement, so
controller

Gr(s) =
−84.88(s2 + 1.02s+ 0.42)

s(s2 + 10.20s+ 41.61)
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3

4

Fig. 3. Sensing graph for the example.

stabilizes a SISO double integrator with closed-loop poles
at [−2,−2.02,−2.04,−2.06,−2.08], while rejecting
input disturbances (wind) with no steady-state error
(indeed, an integral action is present in the controller).
A transformation to a modal canonical form was used to
express the state-space representation of Gr(s) in the form
of (38), with details left to the reader; this is required
in our developments, in order to keep the controller’s
integrator fixed in the iterations.

Of course, due to the coupling between agents,
the actual closed-loop poles of the formation-control
state-transition matrix Ār will lie in a different position
(otherwise, the problem’s solution would be trivial), but
the above initial setup is considered to be a sensible CCL
starting point. Specifically, the initial control Gr(s), with
the given communication topology in (41), leads to a
closed loop system with poles depicted as the lighter gray
marks in Fig. 4. Thus, setting ρ = 29.95, r = 28,
qc = −30 (i.e., σ = −0.05) allowed obtaining the initial
feasible performance levels and associated matrices P (0)

1 ,

P
(0)
2 , Q

(0)
1 , Q

(0)
2 . The chosen values for r, qc and ρ

do overbound the actually achieved pole region: this is
intentional in order to have room for improving the decay
rate σ, which was selected as our main performance goal.

Note that single-agent decay-rate performance was,
ideally, −2, but the coupling between agents (not
considered in the initial controller) forced us to set
a bound of −0.05: the naive, non-optimized, initial
formation-control was at the verge of instability;
low-damped poles were also present (see Fig. 4). This is
why a performance improvement was intentionally shaped
in the iterations via decreasing ρ, which improves both the
decay rate and damping coefficients.

Results. After applying the above-described CCL
algorithm by decreasing ρ at each CCL iteration,
we obtain a stabilizing dynamic formation control
(20)–(21) after 82 performance-shaping iterations with
all closed-loop poles in the region determined by the
intersection of the circles of Fig. 2 with r = 28 and qc =
−30 and ρ = 29.54. In this way, the decay rate bound
was improved from the initial value of −0.05 to a value of
σ = −0.46, i.e., roughly a 9-fold increase. Furthermore,

actually achieved decay rates (dominant poles) are better
than that given by σ, as LMIs provide only a worst-case
bound, given our two-circle setup, as discussed later.

The finally designed control parameters are

F =

⎡
⎣

0 0 0
−1.11 −13.78 2.03
−2.75 2.03 −7.42

⎤
⎦ ,

G =

⎡
⎣

1.00
−3.15
−11.02

⎤
⎦ ,

K =
[
−7.25 −3.68 −12.45

]
,

H = −24.81. (43)

If desired, the agent’s formation controller can also be
expressed in transfer function form as

Gr(s) =
−24.81s3 − 384.5s2 − 411.9s− 160.1

s3 + 21.21s2 + 98.16s
.

The lighter gray marks in Fig. 4 depict the pole location in
the complex plane with the initial design, and the darker
gray marks denote the pole location with the designed
control parameters (43) via CCL. The displacement of
the closed-loop poles at each algorithm iteration is also
depicted in Fig. 4 as black lines (some “jagged” artifacts
appear due to step-size/bisection steps, but that may be
expected and poses no problem in our setup). Figure 5
shows the evolution of the real part of the dominant pole
(top, the more negative, the better), worst-case damping
coefficient cos(θ) (bottom, the larger the better). It can
be appreciated in Figs. 5 and 4 that the real part of
the dominant pole (convergence ratio) is decreased from
−0.13 to −0.61 with the control design (43). Moreover,
the worst-case damping coefficient is increased from 0.1
to 0.37.

Closed-loop simulation. Two simulations have been
carried out: The first one (Simulation 1) will be made
from out-of-formation initial conditions, in the absence
of external disturbance forces. In this case, from the
results in this work, steering will not be considered as the
steering point will remain fixed, not affected by formation
control dynamics. Indeed, Fig. 6 shows that all agents
effectively reach the desired formation target, and it can
be appreciated that the steering point ps remains in the
same location. The time evolution of the formation errors
δ12, δ13, δ14 is depicted in Fig. 7, exponentially decaying
to zero, as prescribed by the LMIs.

Simulation 2 illustrates the effect of external forces
with initial conditions in the desired formation shape. In
particular, the following external accelerations appear at
instant t = 1 s, different for each of the agents: f1 =
[−2.4, −2] m/s2, f2 = [−2, 0.6] m/s2, f3 = [3, 2.6]
m/s2 and f4 = [2.2, −6] m/s2. As external forces do exert
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Fig. 4. Achieved regional pole constraints with the designed
formation control. A zoomed version (top left) shows
the rightward movements of the dominant poles (closer
to the imaginary axis) as the bound for ρ is made more
stringent.
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Fig. 5. Evolution of the real part of the dominant pole at each
CCL iteration k (top), evolution of the damping coeffi-
cient cos(θ) at each CCL iteration k (bottom).

(virtual) accelerations over the steering point, a steering
controller is needed; in this case,

Gsteer(s) =
10(s+ 0.2)(s+ 0.1)

s(s+ 2)

was chosen, for both horizontal and vertical degrees of
freedom; this controller can be interpreted as a PID with a
noise filter. The rotational degrees of freedom were kept
constant, setting τF ≡ 0 in (4), so the goal is keeping
formation shape under a sort of uneven “wind” and, on
top of that, the pilot has to steer the formation providing
the necessary acceleration to counteract the effect of such
wind over the steering point’s position (steering controller
has an integral action).

Results of this second simulation show that the
external forces are steady-state rejected due to the
integral action of both the formation control and steering
strategies: the formation pattern is not broken after the
transient, despite the existence of different external forces
in each agent (see Fig. 8). The time evolution of the
formation errors δ12, δ13, δ14 is depicted in the solid lines
in Figs. 7 and 9. The dashed line represents the evolution
of the steering point, with the reference position set to
(0, 0). Note that, as steering dynamics are the same in
both the horizontal and vertical degrees of freedom, and
forces are constant, the steering point follows a straight
line trajectory, deviating from the initial position at the
start of the simulation, but returning to it later on.

Comparative analysis. As most of the literature
reviewed in Introduction pursues only consensus
achievement (stability with no disturbances), settling time
and low-frequency disturbance rejection are not part of
their problem statement so performance is not guaranteed
in such setups. For instance, the dashed black lines in
Figs. 7 and 9 (labeled as δ∗1) depicts the modulus of the
deviations (to avoid cluttering) using the observer-based
technique from the work of Zhang and Chen (2017)
where state-feedback was computed with pole-placement
at s = −2 (as done in our initial controller here),
and observer dynamics used the Riccati equation with
Q = R = I (see the cited work for details). Their
resulting control is stable, of course, but its settling time
is slower and there is a position error under disturbances,
when compared with our CCL proposal (each deviation
δ12, δ13, δ14 also depicted in the solid line style in Figs. 7
and 9 for comparative purposes).

8. Conclusions and perspectives

This paper presented a formation-control setup based
on, first, decoupling the formation steering from
the formation shape control, and second, building a
minimal-realization for the formation shape problem
(consensus) and proposing a pole-region placement
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Fig. 6. Trajectories followed by each agent during formation
control (Simulation 1).
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) || obtained by Zhang and
Chen (2017) (Simulation 1).

specification; a solution to the latter problem is obtained
via the CCL algorithm with progressively more stringent
specifications. The steering control, independent of
formation control, was addressed via a virtual structure
approach. In this way, a complete methodology was built
for the output-feedback control of formations of multiple
agents.

Numerical simulations illustrate the proposal’s
performance. Nevertheless, optimization with
fixed-structure controllers is a nonconvex problem
so local minima might be attained; also, as discussed in
Introduction, we did not take into account the possibility
of inter-agent communication (maybe with delays), or
a detailed analysis of disturbance rejection. However,
the use of matrix inequalities and CCL algorithms opens
up more performance/robustness possibilities (H∞,
μ-synthesis, Lyapunov–Krasovskii analysis) that will be
explored in future work, from the perspective of providing
a complete methodology ready for practical applications.

−2 −1 0 1 2
−2

−1

0

1

1

2 3

4

X (m)

Y
 (

m
)

Fig. 8. Trajectories followed by each agent during formation
control (Simulation 2).
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) || obtained by Zhang and
Chen (2017) (Simulation 2).
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