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CONTROL OF REDUNDANT ROBOTS UNDER
END-EFFECTOR COMMANDS: A CASE STUDY
IN UNDERACTUATED SYSTEMS

ALESSANDRO DE LUCA*, RAFFAELLA MATTONE*
GIusepPE ORIOLO*

We analyze the control problem for a kinematically redundant robot driven by
forces/torques imposed on the end-effector, an interesting example of underactu-
ated system. A convenient format for the dynamic equations of this mechanism
can be obtained via partial feedback linearization. In particular, we point out
the existence of two special forms in which the system can be put under suitable
assumptions, namely the second-order triangular and Caplygin forms. Nonlinear
controllability tools are utilized to derive conditions under which it is possible to
steer the robot between two given configurations using end-effector commands.
With a PPR robot as a case study, a steering algorithm is proposed that achieves
reconfiguration in finite time. Simulation results and a discussion on possible
generalizations are presented.

1. Introduction

We consider the dynamic control problem for a kinematically redundant robot con-
trolled only through forces/torques imposed at the end-effector level. In particular,
we analyze the conditions under which the robot can be arbitrarily reconfigured, and
we propose a steering algorithm that achieves the reconfiguration in finite time.

From the point of view of application, this problem and its solution may be of
interest in the manipulation with multifingered hands or in cooperating tasks with
multiple robot arms (Bicchi et al., 1995). In both cases, the natural input commands
are defined at the task level, i.e. in terms of forces/torques required at the tip of the
single open kinematic chains. However, while performing the primary task, one is
also interested in the internal configurations assumed by each robotic subsystem.

For conventional (non-redundant) robots, the control problem is trivial because
there is a one-to-one mapping between end-effector and joint commands, provided that
kinematic singularities are avoided. Instead, for a kinematically redundant robot with
n joints, only m < n end-effector commands are available. Therefore, we are dealing
with a class of underactuated mechanical systems, namely with fewer control inputs
than generalized coordinates.
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Underactuated systems often arise in the presence of nonholonomic constraints,
e.g. in wheeled mobile robots under the rolling without slipping condition (Laumond,
1990), in dextrous manipulation with rolling fingers contact (Murray et al., 1994), and
in satellite-mounted manipulators under angular momentum conservation (Umetani
and Yoshida, 1989). The presence of non-integrable differential constraints introduces
a basic difference between local and global mobility of these systems. In fact, while
feasible instantaneous motions at each configuration are restricted, accessibility of the
whole configuration space is still possible by appropriate maneuvers. From a control
point of view, it is known that nonholonomic systems have a structural obstruc-
tion to the existence of smooth time-invariant stabilizing feedback laws (Brockett,
1983). This has motivated the use of open-loop controllers (Murray and Sastry, 1993)
and of time-varying (Samson, 1993) or discontinuous feedback (Canudas de Wit and
Sgrdalen, 1992; Kolmanovsky et al., 1994).

While nonholonomy is most of the times intrinsic to the nature of the problem,
there are instances where enforcing a nonholonomic behaviour may present advan-
tages. Recently, Sgrdalen et al. (1994) have designed a planar nonholonomic manipu-
lator so as to allow configuration control of its n joints using only two velocity input
commands at the robot base. In the same spirit, in (De Luca and Oriolo, 1994) we
have determined conditions for choosing one (of the many) inverse kinematic maps of
a redundant manipulator so that full accessibility of the configuration space is guar-
anteed by using only m < n task velocity commands. Finally, Lynch and Mason
(1995) have addressed the problem of arbitrarily positioning an object in the plane
by pushing it along a limited set of directions.

In all the above cases, both the system analysis and the control synthesis are
performed at a first-order kinematic level, assuming the direct applicability of gen-
eralized velocity inputs. The underlying differential constraints on the system are in
the first-order (Pfaffian) form (Neimark and Fufaev, 1972)

Alg)g=0 (1)

where ¢ are the system generalized coordinates. Second-order dynamic models of
nonholonomic systems have been considered by Bloch et el (1992), and Campion
et al. (1991), with generalized forces acting as inputs, but still in the presence of
non-integrable constraints of the first-order form (1).

However, there are many control problems for underactuated systems where the
underlying differential constraints appear directly in a second-order form

R(q)§ +5(q,4) =0 (2)

For example, Arai and Tachi (1991) have considered a robot with one passive joint
with brakes on/off capability. Hauser and Murray (1990) and later Spong (1995) have
developed control laws for the Acrobot, a 2R robot with unactuated shoulder joint
moving in the vertical plane.

For this class of mechanical systems, inclusion of the dynamics in the analysis
is mandatory. Similarly to eqn. (1), constraint (2) may or may not be integrable.
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In the first case, one may distinguish between partial integrability to a velocity-
dependent constraint and total integrability to a purely configuration-dependent con-
straint. When constraint (2) is not integrable, the system is nonholonomic and there
is no limitation on the accessibility of the robot state space. A detailed analysis of
eqn. (2) for underactuated manipulators, with necessary and sufficient conditions for
partial or total integrability, has been made by Oriolo and Nakamura (1991). A par-
allel analysis for a class of underactuated vehicles (e.g. underwater robots) has been
presented by Wichlund et al. (1995).

The case of redundant robots driven only by end-effector forces/torques falls into
this class of problems, and in fact it is possible to write a set of dynamic constraints of
the form (2). Instead of checking the total or partial integrability of the second-order
differential constraint, we will perform a controllability test in the proper nonlinear
setting of the problem (Isidori, 1995; Sussmann, 1987), which is often a more system-
atic procedure. If this test is verified, it is possible to apply an end-effector steering
algorithm for reconfiguring the redundant arm between two equilibrium points. Such
an algorithm can be inspired in principle by the literature on nonholonomic motion
planning. However, the presence of a second-order differential constraint brings forth
a drift term in the system equations (i.e. net motion under zero input command),
requiring special caution in the extension.

The paper is organized as follows. In the next section, we show that a partial
feedback linearization allows us to put the robot dynamic equations in a simpler for-
mat useful for analysis and control. The existence of two special forms is pointed
out in Section 3, namely the second-order triangular and Caplygin forms. A detailed
controllability analysis is performed in Section 4 in order to derive conditions for
solving the reconfiguration problem. In Section 5, we describe a point-to-point steer-
ing algorithm applicable to redundant robots that admit a second-order triangular or
Caplygin form. The algorithm is illustrated using a PPR planar robot as a simula-
tion case study. In the concluding section we briefly outline possible extensions of the
proposed approach.

2. Partial Feedback Linearization

Consider a robotic manipulator with n joints whose end-effector pose is described
by m variables, n —m > 0 being the degree of kinematic redundancy. Denote by
g € R™ the joint coordinates vector, and by J(g) the m xn standard Jacobian of
the robot. We shall assume that kinematic singularities are avoided, so that J(gq)
has full row rank.

Following the Lagrangian approach, the dynamic model of the system can be
written as

B(q)i +h(g,q) = JT(¢)F (3)

where B(g) is the n xn inertia matrix, h(q,q) = c(q,q) + e(q) collects the vector
c(q,q) of centrifugal and Coriolis terms and the vector e(q) of gravitational terms,
while F' is the m-vector of generalized forces acting on the end-effector.



228 A. De Luca, R. Mattone and G. Oriolo

Let us partition the joint vector as ¢ = (ga, qs), with ¢, € R™ and ¢, € R*™.
Correspondingly, the dynamic model (3) may be written as

B.,. B, Ga h Jr
b q. + a _ F (4)
BL By Gs hy Jr

Assume that, with the given partition,

JT Bg

rank =n (5)
J,:f By

Due to the full row rank assumption about J(g), this can always be achieved, after
possibly reordering the joint variables. In fact, one can always pick m — m columns
out of the n independent columns of B(g) which, together with the columns of J T
constitute a basis of R™.

Model (4) can be left-multiplied by the following nonsingular matrix T(q)

I, —Ba By}
—BI B! A

T =

where I is the & x k identity matrix, so as to obtain

Baa ~() da + }:La — J:gl F
OT By Go hy JE
where O is an m x (n — m) matrix with zero entries.
It is possible to show that J, is always nonsingular. In fact, we have

JT = [ Im —BaBjj ] JT = (JF — BBy JF)
Hence (Kailath, 1980)

. JI B
det J, = det

det B!
JE  Buw

which is nonzero by virtue of property (5).

At this point, the end-effector generalized forces F' can be chosen as a partially
linearizing and decoupling feedback control

F=jT (Baau + ﬁa) (7)
with v € R™ an auxiliary input vector, so that the dynamic equations take the form

Go=u (8)
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Note that the described procedure is equivalent to computing §; from the second
equation in (4), substituting it into the first equation and solving for an (invertible)
partially linearizing and decoupling control F (i.e. eqn. (7)). Interestingly, we can
derive from eqns. (8)—(9) the second-order differential constraint

G(q)da — ds + f(g,4) =0 (10)

which is always satisfied by the robotic system during its motion. One may wonder
whether this differential constraint can be integrated twice to give a constraint de-
pending only on the configuration variables ¢. In fact, if this were the case, the robot
would not have complete mobility in the configuration space. We shall come back to
this issue at the end of Section 4.

3. Special Second-Order Forms

While the system can always be put in the form (8)—(9), simplifications are obtained
under suitable hypotheses. The first simplification occurs when the vector field f
and the matrix G in eqns. (8)—(9) depend only on qu,qd, and g,, respectively. In this
case, the evolution of the joint variables g, is not influenced by the values of ¢; and
Gy, and the dynamic equations become

Go = u (11)
g = f(qayqa) + é(qa)’u, (12)

We call this a second-order triangular form, and f the acceleration drift term. Below,
we shall give conditions under which the above form can be obtained. The following
preliminary assumption is needed.

Assumption 1. The manipulator Lagrangian £ and the Jacobian matrix J do not
depend on the joint variables g,.

Remark 1. This property is indeed restrictive, but can be achieved in many inter-
esting cases. One possibility is to exploit the existence of cyclic variables (Goldstein,
1980), i.e. generalized coordinates whose value does not affect the system Lagrangian.
In the proper joint coordinates, such variables do not appear either in the manipula-
tor inertia matrix B or in the gravitational vector e. For example, consider a robot
with a single degree of redundancy (n —m = 1) moving in a horizontal plane, so that
e(q) is zero. Defining the joint variables via the Denavit-Hartenberg convention, the
inertia matrix does not depend on the first variable ¢;, and the latter is a cyclic coor-
dinate. Moreover, the Jacobian matrix can be made independent of ¢; by means of a
simple change of coordinates in the space of the end-effector velocities. In particular,
denoting by Rj(q1) the rotation matrix from the base frame to a frame in which the
z axis is aligned with the first link of the robot, one has

JT(q1> . aqn) = jT(QZa v 7qn)Rl(q1)
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where J is the Jacobian matrix relating the joint velocities to the end-effector veloc-
ities expressed w.r.t. the rotated frame. At this point, one may set

F = Rl (ql)F
and Assumption 1 holds for the ‘rotated’ Jacobian J7 by taking g, = ¢q;.

As a consequence of Assumption 1, both vectors ¢ (velocity terms) and e (grav-
itational) terms do not depend on gj. Let

C(Qa,Qa;(ib) = CI(Qa:da) + C”(Qa:QaaQb)

where ¢(ga,da) includes the quadratic velocity terms involving only the da;’s, for
t =1,...,m, while ¢"(¢s,da,qs) collects the quadratic velocity terms in which at
least one ¢y, appears, for j =1,...,n — m. We have the following result.

Proposition 1. Under Assumption 1, the dynamic equations (8)-(9) of the system
take on the second-order triangular form (11)-(12) if and only if

¢"(4ar oy G) € R(JT) (13)
where R(JT) denotes the range space of matriz JT.

Proof. The sufﬁmency is shown first. Due to Assumption 1, the input matrix
G = J J TBaa in equn. (9) is a function of g, only. Using the expression
of the transformed matrices, the first term in the right-hand side of eqn. (9) is rewrit-
ten as

fl

F=B (FJ:The = hs) = By R(P — L)(c + ) (14)
with

R=| -BLB:! Inn |

il

P=JgT ([ Im —BuBy! ] JT)~1 [ I. —BuBy! ]

The reader may easily verify that matrix P is idempoternt and has rank m. Moreover,
the null space of (P —1I,,) coincides with the range space of J7, since

VEN(P-I)<=v=Pv<v L NPT) = v LN(J) < veRUT

where N(-) denotes the null space of a matrix and we have used the properties of
matrix P.

Equation (14) shows that f is obtained as the sum of two terms. Because of
Assumption 1, f does not depend on g,. Besides, the second term does not depend
on gy, and the same is true for the first term, since eqn. (13) implies that ¢"(¢a,¢a,qs)
belongs to the null space of (P —I,). In conclusion, f in eqn. (9) is a function of

Ga,(a only.
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As regards the necessity, for f in eqn. (9) to be a function of gq,q. only, we
must have

R(P —I,)c"(qa,§) =0, or equivalently ¢"(ga,q) € N(R(P - In)>

It is easy to prove that the null space of R(P — I,,) coincides with the null space of
(P — I,), i.e. with the range space of JT, and the result follows. ]

Remark 2. Condition (13) may be given an intuitive interpretation. Since Cartesian
commands F are mapped into joint forces/torques via the Jacobian transpose, it is
possible to cancel only those dynamic terms that belong to R(JT).

We now point out the existence of two special cases in which condition (13) is
satisfied, so that Proposition 1 applies.

Case 1. If vector ¢ does not depend on ¢», we have ¢ = 0 and condition (13)
is trivially satisfied. Under Assumption 1, this happens if and only if the following
condition holds:
ab,;k N (9bjk
dq; Oq; ’
where by is the generic element of the inertia matrix. This result is readily established
by exploiting the expression of the i-th component of vector c:

e . . _ by 1 0bj
Ci = J; ;Cijk%‘%, with Cijk = EYR - 5 3{1—;

Vi, 7, Yk qx € @ (15)

Case 2. If ¢ € R(JT), condition (13) is certainly satisfied. In fact, since ¢’ =
c(4a, §a,0) and ¢’ =c—c', we have

ceRUJT) = " eRUT)
A further simplification of the general form (8)—-(9) occurs when the acceleration drift

term in eqn. (9) (equivalently, eqn. (12)) is zero. In this case, the dynamic equations
become ,

fo=1u (16)
G = g1(ga)ur + -+ + Im(da)tm (17)

We refer to this system as a second-order Caplygin form, extending the definition
of Bloch et al. (1992). The evolution of the g, variables depends only on the input u,
while the evolution of g, depends on ¢, and w, but neither on ¢, nor—as before—on
gy, Gp- We have the following result.

Proposition 2. Under Assumption 1, the dynamic equations (8)-(9) of the system
take the second-order Caplygin form (16)—(17) if and only if

(a) c€ R(JT)

(18)
(b) eeR(JIT)
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Proof. Following the same lines of the proof as in Proposition 1, and using the
expression (14) for the acceleration drift £, it is easy to see that c+e € R(JT) isa
necessary and sufficient condition for obtaining a second-order Caplygin form. Since
vector ¢ depends also on the joint velocities ¢, while e is a configuration-dependent
vector, they must separately belong to R(JT). ]

We shall see that the availability of a second-order triangular form or, even better,
of a second-order Caplygm form, has consequences on the controllability analysis as
well as on the synthesis of a control law. We conclude this section with two examples
illustrating the two types of canonical forms.

3.1. An Example of Second-Order Triangular Form: The PRR Robot

Consider a PRR robot as in Fig. 1, with one prismatic and two revolute joints, moving
on a horizontal plane (e(¢) = 0). This manipulator is redundant for the task of
positioning the end-effector in the plane (n —m = 1). The input to the system is the
two-dimensional vector F' of (z,y) Cartesian forces acting on the end-effector, with
components expressed in a fixed coordinate frame. Let m; be the mass of the i-th
link, for ¢ = 1,2,3. For the j-th link (j =2,3), let £;, d; and Z; be respectively its
length, the distance between its centre of mass and the j-th joint axis, and its central
moment of inertia.

|ﬂ|

Fig. 1. A planar PRR robot.

The dynamic model of this robot under end-effector commands is
B(g2,93)4 + c(g2, 95, G2, 43) = J (g2, q3) F
where
ay —Q@582 — Q4523 —G4823
B(g2,93) = | —ass2 — a4s23 a3 + ag + 2a4lacs a3 + aslocs

—Q4523 a3 + aqlocs a3
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— (asco + aqc23) 42 — asczzds(da + ds)
c(q2,93,42,43) = —a4l25343(242 + ¢3)

-2
aglys3q;

1 —lp83 — 3503 —{3893
J(q27 QB) =
0 flocy +4L3co3 fcos

with the shorthand notation sy = singy, ¢z = cosqe, s23 = sin(gz + ¢3), co3 =
cos(gz + ¢3), and with

a1 =mp +mg +ms

as =I5 + mgdg + mglg
a3 =13 + m3d§

a4 = msds

as = mady + msly

Note that both the inertia and the Jacobian matrices do not depend on the cyclic
coordinate gy, i.e. the prismatic joint position. As a consequence, Assumption 1 holds
choosing ¢, = (¢2,¢3) and ¢ = ¢1. One may verify that, with this choice, the rank
condition (5) is found to be generically satisfied.

As the vector c of velocity terms does not depend on ¢, condition (13) holds,
and in particular Case 1 applies.! However, ¢ does not belong to R(JT); as a
consequence, by using the feedback control (7), the dynamic equations (8)—(9) will
take on a second-order triangular form with a nonzero acceleration drift f. For
example, assuming { = {3 = 1m, m; = 1kg ( = 1,2,3), uniform mass distribution
for the links, and link shapes such that 7o = 73 = 1kg'm?, the following model is
obtained after partial feedback linearization:

. Go U
qll = . =
as Uz
b = 1 = f(g2,3,02,d3) + G(g2, g3)u

_ 253(2¢2G2 — c2343)do 4cocs
4s3 +sin(2g2 + q3)  4s3 +sin(2¢2 + g3

)

Note that the above model is not globally defined, due to the existence of a singular
surface of equation 4sin gz + sin(2¢2 + ¢3) = 0.

! In fact, it can be seen that the inertia matrix satisfies eqn. (15).
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3.2. An Example of Second-Order Caplygin Form: The PPR Robot

Consider a PPR robot, having two prismatic and one revolute joint, moving on a
horizontal plane (see Fig. 2). As the PRR robot, this manipulator is redundant for
the task of positioning the end-effector in the plane (n —m = 1). Let m; be the mass
of the i-th link ( = 1,2,3), d the distance between the centre of mass of the third
link and the third joint axis, Z the central moment of inertia of the third link, and
£ its length.

| S (P Dy)

14

Fig. 2. A planar PPR robot.

The dynamic model of this robot under end-effector Cartesian forces is

B(g3)d + c(g3, d3) = I (@) F

with
ai 0 —Qa483
B(gs) = 0 ax  ascs
—a483 Q4C3 as
C3
(g3, d3) = —asdj | s3
0
1 0 —583

0 1 ZC3
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where
a; = my +ma +m3
as = mg + Mg
as =I+m3d2
a4 :m3d

and s3 = singgz, €3 = €0Sgs. .

The inertia matrix and the Jacobian matrix depend only on g¢s, i.e. the revolute
joint position. As a consequence, Assumption 1 holds choosing either ¢, = ¢; or
gv = ¢q2- It is easy to verify that, in both cases, the rank property (5) is generically
achieved. In particular, one must have ¢z # 7/2+kn for the first case and g3 # kn for
the second case. These values correspond to singularities for the partially linearizing
and decoupling feedback (7). However, at any point of the state space, at least one
of the two feedback laws is well-defined.

For this manipulator, ¢ € R(JT) and e = 0, so that Proposition 2 applies. This
means that, by using the feedback control (7), the dynamic equations will take a
second-order Caplygin form. As a matter of fact, depending on the choice of g, two
alternative forms are obtained:

.. a1 Uy
qa —_ . —
a3 u2 (20)
Gv = Go = §1(g3)u1 + Go(g3)uz = o tangs u; + B secqs uz
and
. g2 uy
qa = . =
qs u2 (21)
@ = G1 = G1(g3)ur + Ga(g3)uz = @ cot g3 uy + Bacsc gz ug
where
ayg — (Llé (L4Z — as
=TI g MO
ayg — azf a4 — azl
ag — azé az — a,4£
Qy = ——p, B = ——
aq — a1l as — a1l

As expected, the above two models are not globally defined because of the singularities
of the feedback transformation in g3 = 7/2 + k7 and ¢s = km, respectively.
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4. Controllability Analysis

In investigating the control problem for redundant robots under end-effector com-
mands, we are basically interested in determining whether, for any choice of two
robot states z° = (¢°,¢°) and z? = (¢¢,4%), there exists a finite time 7' and an
input u (related to the Cartesian generalized forces F through eqn. (7)) such that
z(T,2°%u) = 2%, ie. z? is the state attained at time T starting from z° and ap-
plying the input ». This amounts to testing the controllability of the corresponding
dynamical system

&= £(@) + (@1 + -+ G (@) (22)

Unfortunately, general criteria for verifying this kind of controllability do not exist.

For nonlinear systems with drift, a useful concept is short-time local controlla-
bility (STLC), introduced by Sussmann (1987), who gave sufficient conditions that
were subsequently refined by Bianchini and Stefani (1993). A control system is STLC
from z° if, for all neighbourhoods V of z° and for all 7T, the set of reachable states
within 7' from z° with trajectories in V contains a non-empty neighbourhood of
z°. Roughly speaking, for an STLC system one is able to reach any point near z°
in an arbitrarily short time with trajectories remaining arbitrarily close to z°. It
can be shown (Sussmann, 1987) that STLC implies the natural form of controllabil-
ity defined above. Therefore, establishing the STLC property for our system would
guarantee that the control problem admits a solution.

We recall the following definitions from differential geometry (Isidori, 1995):

e The Lie bracket of two vector fields v1, vy € R™ is defined in local coordinates

as
ov ov
[v1,v2](2) = —3;2”1(93) - a—;vz(z)
e The distribution A associated with the vector fields {v1,...,v,} is the map

that assigns to each point z € R™ the linear subspace

Az) = span{vl(z), e ,vp(a:)}
e A Lie algebra is a space of vector fields closed under the Lie bracket operation.

Assume that the control input w = (u,...,um) of system (22) takes values in the
limited region Q = {u € R™: |u;| < p;, 1 = 1,...,m}. Define the accessibility
distribution Ac as the distribution generated by the smallest Lie algebra C contain-
ing f,g1,...,9m. Given a Lie bracket v € C, denote by §°(v),8'(v),...,6™(v) the
number of occurrences of f,g1,...,9m, respectively, in v. Any vector of nonnegative
integers 8 = (6p,61,...,0,,) such that 6; > 6y, Vi =1,...,m, is called an admissible
weight vector, and the §-degree of v is defined as Y1~ 6;6*(v).
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The following result provides a sufficient condition for an STLC:

Theorem 1. (Bianchini and Stefani, 1993). Assume dim Ac(z®) = n and that,
for any Lie bracket v € C such that §°(v) is odd and 6'(v),...,6™(v) are even,
there exists an admissible weight vector 8 such that v is 6-neutralized, i.e. it can be
written as a linear combination of brackets of lower 0-degree. Then, system (22) is

short-time locally controllable from z°.

In the following, the Lie brackets with 6° odd and ¢*,...,6™ even are simply
called ‘bad’. Thus, to establish the STLC property for system (22), one needs (i) to
exhibit a basis of the state space (a 2n-dimensional manifold) whose elements are
chosen among f,91,...,9m and their ‘good’ Lie brackets, and (ii) to show that there
exists an admissible weight vector @ such that all bad Lie Brackets are §-neutralized.

Since controllability properties are invariant under invertible state feedback, we
may conveniently analyze our system by using the state-space form (22) corresponding
to the partially linearized eqns. (8)—(9), i.e.

& = f(qa>qbsar @) + 91(da, @)ur + -+ + gm(da, @) um (23)
with the state vector z = (qa, b, da, ) and

da Om
| f(@.9) | | 9:(a)

where the n-vectors f , §; are defined as

0 0

. 1 —— i-th entr
fed=| | =] ety (25)

0 0
L f(qaq) i L gl(q) .

Thus, the (n + 7)-th entry of the generic input vector field g; is equal to 1.

Below, we investigate the controllability properties of system (23)—-(25) at an
equilibrium point z¢ in the particular case of a single degree of redundancy. However,
a similar discussion can be repeated for the general case.

Proposition 3. Consider a system in the form (23)—(25) with n —m = 1. If at the
equilibrium point ¢ = (q¢%,¢§,0,0)

3k (1 mhg gk 70 (20

l95,[f,95])(z¢) =0

then the system is short-time locally controliable at x°.
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Proof. Consider the set of 2n good vector fields

B= {glw-‘-)gn—h[fagl]1‘"’[f)gn-—l]7[gj’[fagk]]1[f7 [gj![f)gk]]]}

When ¢ = 0, the structure of the elements of B is:

On
gi = , 1=1,...,n—1
9i

[f,9:] = { o } , i=1,...,n—1

On
[95, [f> gx]] = { - }
,lpjk

UF, Loy 1 gul] = { ik }

with

and

Ogr , 03 _OGk. 0. O (of
T+t + 0+ 0k — — | =0 ) §; 27
aqaj aqak aqb g] 3(](, g aq 6q gk g] ( )
where g4, is the i-th component of the subvector g,. If [g;,[f, gx]](z®) # O, then
its only nontrivial scalar entry 1,x(g) is nonzero at z., and the vectors in B span a
2n-dimensional space at z°.

We have to show now that all bad Lie brackets are #-neutralized. The first group
of bad brackets to be considered is

T/Djk(Q) =

[gi’[frgi]L izla"'7m

0, - 0n_1
[gi) [f) g’L]] = [ N J ) with ,lp’i‘i = |i - :I
Vi Vi

the vector field [g;, [f, ¢:]] is aligned with [g;, [f, gk]]. Consider the admissible weight
vector f defined by

bo=6,=1 and 6,=2, 1#0, i #j

Since
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With this choice of the weight vector, the 6-degree of [g;, [f, gk]] is equal to 4, while
the f-degree of [g;,[f,9i]] is 5 for ¢ # j, and 3 for ¢ = j. However, by hypothesis
the Lie bracket [g;,[f,g;]] is zero at z°. Hence, nonzero bad brackets of the first
group can be written as linear combinations of brackets of lower #-degree (namely, of
[9,[f, gx]] alone). Note that the maximum 6-degreein B is 5.

A second group of bad brackets to be neutralized is

[fa[fa[gi>[f;gi]”) i=1,...,m

whose f-degreeis 7 for @ # j, and 5 for ¢ = j. While the above Lie brackets for 7 # j
are neutralized by the basis vectors in B, one should pay attention to neutralize the
bracket [f,[f,[9;,[f,9;]]] by using only those elements of B with §-degree less than 5.
As a matter of fact, it can be verified that this bracket is aligned with [g;, [f, g&]]
at z¢. The proof may be completed by verifying that all other bad brackets are
f-neutralized in a similar way. ]

Remark 3. In order to test condition (26), one simply needs to compute the scalar
functions v at z°.

In the particular case of systems in the second-order triangular form (11)—(12),
the drift and the input vector fields in the state-space form (23) are expressed as

da . Om
f(Qaa q.a) Qb) = s ) gi(Qa,) = On—-m
f(Qav“ja) gi(Qa)

Therefore, the sufficient condition (26) for short-time local controllability becomes

ogx 05 0
aqaj 8Qak &jaj 04,

e
dj,kef{l,....m}, j#k: - (28)
8g; O0°f
2—=L — — 1 (z°) =0
l 0a,; 6@2]] (z°)
where the expression (27) has been used.

Finally, for systems in the second-order Caplygin form (16)—(17), one has

q.a Om
f(Qay qb) = qb 3 gi(qa) = On—m
0, gi(qa)

Note that the drift vector f contains in this case only the trivial velocity drift (upper
part), since the acceleration drift (lower part) is zero. Condition (26) simplifies to

g g,

3j,ke{l,...,m}, j#k: ’ - (29)



240 A. De Luca, R. Mattone and G. Oriolo

Note that for the second of eqns. (29) to hold at any equilibrium point, g; must not
be dependent on the variable g,; which is directly controlled by wu;.

Before performing the above controllability analysis on two robotic examples, we
point out the close relationship between the controllability of system (23)-(25) and
the non-integrability of the second-order differential constraint (10). If the robot is
controllable via end-effector commands, then we have accessibility to any point in
its state space. Hence there does not exist any geometric restriction on the robot
attainable configurations, implying that the differential constraint (10) is not inte-
grable. In other words, eqn. (10) represents a second-order nonholonomic constraint
for our robotic system, limiting its instantaneous motion without reducing its global
mobility.

On the other hand, the loss of controllability is equivalent to the integrability of
eqn. (10), under suitable regularity assumptions (De Luca and Oriolo, 1995). However,
since the condition (26) is only sufficient for an STLC, and the STLC is in turn
only sufficient for controllability, its violation does not necessarily mean that the
constraint (10) is integrable.

4.1. Controllability of the PRR Robot

The partially linearized model of the PRR robot described in Section 3.1 takes the
second-order triangular form (19) for the chosen set of values for the dynamic param-
eters. Thus the condition (28) can be used to test the controllability of the system.
We note that any configuration ¢ assumed with zero velocity is an equilibrium state.
Since

7 253(2c2g2 — c23G3)42 ~ deacs -
f = ; 3 g1 = T ’ g2 = 0
4s3 + sin(2¢z + ¢3) 4s3 +sin(2¢2 + ¢3)
it is readily verified that
g1 | 0G2 3 f _ _—4cos3 —2s3co3  4deacs [des + cos(2g2 + g3))]
dgz  O0ga  9¢20¢s 4s3 + sin(2g2 + ¢3) [4s5 + sin(2g + g3)]°

is generically non-zero, and
8g, O°f
2202 _ 011
Oqs 043

Since with the chosen partition ¢ = ¢, and g3 = ¢a,, condition (28) holds by taking
the indices j = 2 and k¥ = 1. Thus the PRR robot is short-time locally controllable
by means of end-effector commands.

4.2. Controllability of the PPR Robot

We have shown in Section 3.2 that the PPR robot driven by end-effector Cartesian
forces can be put in second-order Caplygin form. In particular, depending on the
choice of ¢, the dynamic equations are expressed as (20) or (21). For example, let
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us assume ¢, = (q1,93) and gy = ¢, so that the drift and input vector fields in the
state-space model (23)—(25) are

[ 4 | o] [ o ]
qs3 0 0
=12 = ’ y o G2 = ’
0 1 0
0 0 1

I 0 ] | o1tangs | i B secqs |

and hence g = ajtangz and §» = 1 secqs. The simplified controllability condi-
tion (29) is satisfied with j =1 and k = 2, since

952 031 _ @ 99

= 0 and ==+ =0
O  Oq3  cos?gs 70 an

I

g1
oq

hold wherever model (20) is defined.
As a matter of fact, a similar conclusion may be drawn for the alternative

form (21). Hence we have established short-time local controllability also for the PPR
robot, so that arbitrary reconfiguration under end-effector commands is possible.

5. Point-To-Point Steering

Assume that a redundant robot is short-time locally controllable from the end-effector.
We now address the problem of determining a proper sequence of input commands so
as to transfer the system from an initial equilibrium point z° = (¢°,0) = (¢%,¢?,0)
to a desired equilibrium point z¢ = (¢¢,0) = (¢¢,¢,0). Such a sequence certainly
exists by virtue of the STLC property. In principle, two approaches are possible:

1. Steer the system state from z° to z¢ through an open-loop (feedforward) con-
trol, in which the input u does not depend on the system state (g,¢). As a
by-product, one obtains a joint trajectory connecting ¢° to ¢¢ that satisfies the
second-order constraint (10), which is nonholonomic owing to the controllability
of the mechanism.

2. Use a feedback control law uw = wu(q,q) that renders z¢ asymptotically sta-

ble. The design of this type of controllers is more difficult, but they would be
preferable for real-time motion control under uncertain or perturbed conditions.

However, it is necessary to take into account the following result on feedback control.

Proposition 4. For a system in the form (23)-(25), there exists a smooth time-
invariant feedback which stabilizes an equilibrium point z° = (¢%,0) only if the map-
ping f(q,0) is surjective around the origin.
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Proof. According to Brockett’s necessary conditions for smooth stabilizability (Brock-
ett, 1983), the image of the map ¢ : (z,u) — £ defined by (23)—(25) should contain
a neighbourhood of the origin. This is true if and only if the linear system

€1 q On On
€= = + U+ F Um

€2 f@) G1(q) dm(q)

is solvable in (g,¢) for any e near the origin. Due to the structure (25) of the vector
fields in eqn. (23), letting € = (0,,,0.m,&2) implies ¢ = 0 and « = 0, so that the above
linear system reduces to

é2 = f(lL 0)
which must be solvable in ¢ for any é» near the origin. [ |

Proposition 4 immediately leads to a negative result in two significant instances
of our problem.

Corollary 1. A redundant robot moving in the horizontal plane is not smoothly stabi-
lizable at an equilibrium point =¢ via time-invariant feedback end-effector commands.

Proof. Since the gravitational term e(q) = 0, eqn. (14) implies f(g,0) = 0. [ |

Remark 4. Although the presence of gravitational terms may allow for the existence
of smooth stabilizing control laws, it also restricts the region of equilibrium points
for the closed-loop system. A similar situation occurs for robots with some unactu-
ated joints (Oriolo and Nakamura, 1991), an example of which is provided by the
Acrobot (Spong, 1995).

Corollary 2. A redundant robot that can be converted into the second-order Caplygin
form (16)-(17) is not smoothly stabilizable at an equilibrium point z° wvia time-
inwvariant feedback end-effector commands.

Proof. Tt is immediate, because in this case f =0. ]

Since standard nonlinear control techniques typically produce smooth stabilizing
laws (Isidori, 1995), the above corollaries indicate that there is no ‘simple’ way to
design end-effector commands in a feedback mode so as to move the redundant robot
between two joint configurations. A recent result by Coron (1992) states that sys-
tems satisfying the STLC condition are locally asymptotically stabilizable by means
of a continuous time-varying feedback law. Another possibility to overcome the lim-
itations of smooth controllers is to make use of discontinuous feedback (Murray and
M’Closkey, 1995). Therefore, despite the aforesaid obstruction, the asymptotic feed-
back stabilization problem can be solved for our mechanism. However, while sys-
tematic approaches to the design of time-varying or discontinuous nonlinear feedback
exist for controllable driftless systems (see e.g. Samson, 1993; Canudas de Wit and
Sgrdalen, 1992; Kolmanovsky et al., 1994), the case of systems with drift (as is our
mechanism) has received much less attention. In view of this, we present below an
open-loop controller that generalizes the holonomy angle method (Bloch et al., 1992),
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a technique for steering controllable driftless systems widely used in the nonholonomic
motion planning context.

The proposed strategy for point-to-point motion prescribes the execution of two
phases:

1. Drive in finite time 7} the joint variables g, to their desired values ¢¢ by a
proper choice of u. Therefore, at the end of this phase we obtain g,(7}) = ¢¢
and ¢,(T1) = 0. Correspondingly, we have gy(71) = g{ and ¢(T1) = ¢{, where
in general g/ # ¢¢ and ¢f #0.

2. Perform a cyclic motion of duration 7% on the g, variables (i.e. a motion such
that g.(T1 + T2) = ¢o(T1) and ¢,(T1 + T2) = 0) so as to obtain the desired
value gf for g, with zero final velocity.

The first phase can be performed using standard discontinuous feedback control for
the decoupled chains of two integrators represented by the first m equations in (23)
(or, equivalently, by eqn. (8)). For example, one may set

u; = —7; sign (qai - qgi + 2%iqa; |G )7 i=1,...,m (30)
where ; is an arbitrary positive constant (Bloch et al., 1992). The final time T}
will depend on «; as well as on the initial conditions for gq,.

In the second phase, which is inherently open-loop, it is convenient to select the
cyclic control input » within a parameterized class, in order to simplify the computa-
tion of the required command. Indeed, the chosen class of inputs should be sufficiently
rich to contain a solution for the problem. This procedure is greatly simplified if the
system equations can be put into second-order triangular or Caplygin form. For the
sake of clarity, we rewrite below the second-order triangular form (11)—(12)

o =u (31)
do = f(da,da) + G(ga)u (32)

Let us denote by U the chosen class of cyclic control inputs parameterized by the
p-vector U = (Uy,Us,...,U,), and let u(U,t) € U. Then, from eqn. (31) we have

Ti+t
Go(T1 + t) =/ uw(U,7)dr = V,(U, 1)
Ty
T+t
Ga(T1 +8) = / Va(U,7) 47+ ga(Ty) = Pu(U, 1) + ¢
Ty

for 0 <t <T5,. As the control is cyclic, one has V,(U,T3) =0 and P,(U,T:) = 0.
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Substituting into eqn. (32) and integrating twice we obtain

Titt_ Ti+t
T+ = [ PR,V b G ) dr )
= VA(U,0) + df (33)
T+t
a(Ty + t) =/T V(U,7)dr +G; t + q5(Th)
= AU +dl 34

for 0 <t < Tz. Here V3(U,t) and Py(U,t) are respectively the wvariations of g
and of g, measured at time 7Tj + ¢ with respect to the initial values q‘,{ and ql{ ,
corresponding to the application of the control input w(U,7), Ty <7 < Ty +t.

In order to determine the parameter vector U* that yields the desired reconfig-
uration, we impose

T +T2) | | ¢ . RUT) | | a—q
@ (Th +T3) 0 Vo(U*, T2) —qj

For a fixed T5 > 0, this is a set of 2(n — m) nonlinear equations in the p unknowns
Uf,...,U,. For this system of equations to be solvable, the choice of the class I of
cyclic inputs should be such that the mapping

Pb(U’ T2)
Vo(U, T3)

n:Um—

is onto R2("=™) p > 2(n —m) being a necessary condition. The surjectivity of 7
guarantees that at least one solution U* exists, which may be found either in a closed
form or, in general, by resorting to numerical techniques.

It should be noted that the point-to-point steering problem may be solvable
under a weaker condition, namely that the image of 7 contains a neighbourhood of
the origin of R*™~™). In this case, a simple reasoning shows that (gZ,0) may be
reached by iterating the second phase. Of course, the number of cycles required is
related to the amount of reconfiguration needed and to the size of the neighbourhood.

The fundamental difference of the proposed technique with respect to the an-
cestor method in (Bloch et al., 1992) lies in the structure of the second phase, and
is essentially due to the nonholonomic constraint (10) being expressed at the accel-
eration level. The main consequence of this fact is that V3(U,t) and P,(U,t) in
eqns. (33)—(34) depend on the ¢rajectory of the g, variables, i.e. not only on the geo-
metric path but also on the time history. Therefore it is not possible to implement the
second phase as a sequence of feedback stabilization steps, like in the aforementioned
work.

In the next section, we shall work out a detailed case study to illustrate how to
design a suitable class of input trajectories for a robot that admits a Caplygin form.
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6. A Case Study: The PPR Robot

As shown in Section 3.2, the PPR robot can be put in one of the two second-order
Caplygin forms (20) or (21). The two-phase strategy introduced in the previous
section can be applied for steering this robot to a desired joint configuration ¢¢ via
Cartesian commands.

The first phase is performed by using the discontinuous feedback law (30). For
the second phase, a convenient choice is to use rectangles as cyclic paths in the
g. variables, with bang-bang accelerations on each side and traveling time 75 =
46 (see Fig. 3). The corresponding class U of piecewise-constant control inputs is
parameterized by the magnitudes U; and U of the accelerations on the sides of the
rectangle. The generic input in this class is expressed as

,

w1 (t) = Uy, uz(t) =0, te[0,6/2)
ul(t) = _Ul) u2(t) = Oa te [6/216)
ul(t) = 07 UZ(t) = U27 te [67 36/2)
u1(t) =0, ug(t) = =Us, t€[36/2,26
P EC ()= U, t€[35/2,20)
ui(t) = =U1, wus(t) =0, t € [26,56/2)
ul(t) :Ul, ’ILz(t) =0, t e [55/2,36)
ul(t) =0, u2(t) = —Ug, tE [35, 75/2)
L ’Lbl(t) =0, 'LLz(t) = Uz, tE [75/2,46)
u;= U, uy=-U.
qa2 D u;= 01 u;= 0 ' C
U= u;=0
uy=-0U, uy=-U,
9 [ ]
u=0 u=0
Ug= U2 Ug= U2

A u =0 u=-U; B

ug=0 up=10

4y

Fig. 3. A rectangular trajectory in the g, variables.



246 A. De Luca, R. Mattone and G. Oriolo

This choice yields a simple form for the ¢, evolution. In fact, on each side of the
rectangle, only one of the two inputs is active, while the other is zero, keeping the
corresponding component of g, constant. In particular, for both models (20) and (21),
we have along sides AB and CD

ug =0 = @4, = g3 = constant
so that
gp = Gru1, with §; = §1(g3) = constant (35)

which shows that also the acceleration g is bang-bang. As a consequence, we have
that (i) a closed-form expression for ¢,(t) is available along AB and CD, and (ii)
the velocity ¢ is equal at the vertices of each of these two sides.

On the other hand, along sides BC' and DA
uy =0 = @, = constant

so that

gp = Go(t)uz, with gao(t) = g2 (gs(t)) (36)

The actual expressions of §; and > depend on which of the two Caplygin forms (20)
or (21) applies. For example, if model (20) is used, we have §; = «;tangs and
g2 = P1secqs.

In both cases, no closed-form is available for the solution of eqn. (36), and the
variation of ¢, along BC and DA as afunction of U; must be computed numerically.
For illustration, Fig. 4 shows the relationship between U, and the variation of ¢, = ¢
obtained for model (20), with the dynamic parameters given in Section 6.1.

015 ' T T T T T T T T

varlation of q2 velocity (m/s)

PO S S S N U N SN SR S
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
U2 (rad/s"2)

Fig. 4. Variation of ¢, = g2 after one cycle as a function of Us.
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Based on these considerations, we can determine the parameter values U}, Uj
that yield the desired reconfiguration according to the following procedure:

L. With the aid of Fig. 4, select U; so as to obtain the desired variation —g/ for
gy along BC and DA (and hence along the cycle). At this point, compute the
corresponding variation g, for ¢, along BC and DA via forward integration
of eqn. (36).

2. By using the closed-form expression for g¢,(t) along AB and CD (i.e. the
solution of eqn. (35)), determine U} so that the variation of g, along AB and
CD equals ¢f — ¢f — . In this way, g, will attain the desired value gf at the
end of the cycle.

To complete the analysis, we note the following points:

o If no variation of ¢, is required (i.e. if ¢/ = 0), Fig. 4 would suggest to set
U, = 0. This choice, however, is not feasible, because any value of U; would
give no variation for ¢, at the end of the cycle. Therefore, in this case it is
necessary to perform two cycles in the second phase giving velocity variations
of equal magnitude and opposite sign.

e Assume that there exists an upper bound on the magnitudes U; and U; of the
acceleration, e.g. UP® = Us*** =1 (the actual units depend on which of the
two Caplygin forms (20) or (21) is being used). From Fig. 4, it appears that
the maximum attainable variation for ¢, in this case is about 0.12 m/sec. If a
larger variation is needed, i.e. if |¢/| > 0.12m/sec, we must perform multiple
cycles.

¢ Realistic bounds on U; and U; depend—through eqn. (7)—on the maximum
applicable Cartesian forces F'. In particular, as the system approaches the sin-
gularities of the control law, these bounds become smaller, and a larger number
of cycles will be required in order to achieve the desired reconfiguration. In
view of this, it is advisable to choose in advance the size of the cycles in such a
way that the singularity regions are avoided. For example, with model (20) one
should stay away from values of g3 close to /2.

6.1. Simulation Results

The proposed approach has been simulated for a PPR robot having all links of unit
mass and a uniform thin rod of length 2 m as the third link. We present only the
results of the second phase, which is most interesting. Suppose that at the end of
the first phase, the joint configuration is ¢/ = (0,0.5,0) [m, m, rad] with velocity
¢’ = (0,0.05,0). The final desired state at time 4§ = 8sec is ¢ = ¢¢ = (0,0,0).
The desired joint reconfiguration corresponds to an end-effector displacement from
(3.5, 2.5) to (3.5, 2), due to the offset (1.5, 2) on the prismatic joints.

For this task, the joint vector must be partitioned as ¢, = (g1,¢3) and ¢ = ¢o.
Correspondingly, the system is put into the form (20) via feedback. A careful exami-
nation of Fig. 4 shows that the required variation of —0.05 m/sec for ¢, is obtained for
Uy = —0.80rad/sec?. This introduces a net variation g, for ¢, along sides BC and
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At

-3 -2 -1 0 1 2 3 4

Fig. 7. Arm motion along the cycle.

7. Conclusions

An analysis of redundant robots driven by end-effector generalized forces has been
made by using tools from nonlinear controllability theory. We have identified condi-
tions under which such systems may be cast into second-order triangular or Caplygin
forms, and we have exploited these particular structures in order to design an end-
effector steering algorithm that achieves a desired joint reconfiguration in finite time.
The PPR planar robot was used as a case study to illustrate the proposed approach.

We are currently considering the design of feedback controllers to perform the
reconfiguration in a more robust fashion, as well as the application of our technique
to more complex redundant robots. Furthermore, it would be desirable to gain more
insight into the structure of the controllability conditions, in order to relate them to
the dynamic properties of the mechanism. To this end, useful indications may be
obtained by investigating the integrability properties of the underlying second-order
differential constraint.

Finally, the tools introduced in this paper with reference to a special class of
underactuated mechanical systems might prove beneficial also in more general cas-
es. In particular, both the nonlinear controllability analysis and the reconfiguration
algorithm are quite naturally applicable to underactuated robots (De Luca et al.,
1996).
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