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A FORMAL DATA MODEL AND OBJECT
ALGEBRA FOR OBJECT-ORIENTED DATABASES

REpa AL-HaAJJ*, M. EROL ARKUN"

In this paper we describe a formal object—oriented data model and a corre-
sponding object-algebra. Described in the literature are two trends in query
support for object-oriented databases. The first trend is to preserve exi-
sting objects, while the other trend allows for the creation of new objects.
The object algebra presented in this paper is of the second type and inclu-
des operators of the relational algebra in addition to some others, but the
semantics of all those operations has been specified to accomodate to ‘the
object—oriented features. An operand should have a defined set of objects
and a set of message expressions. A message expression is sequence of mes-
sages. Also the result of any operation is defined to have the two sets and
therefore, can be an operand. Hence the closure property is satisfied. Finally
we include some of the properties of the described object algebra operators.

1. Introduction

In object—oriented systems (Goldberg and Robson, 1983; Stefik and Bobrow, 1986),
an entity of the real world is modeled by an object that captures and encapsulates
both the state and behavior of the represented entity. Due to encapsulation, objects
are treated using messages to invoke corresponding methods in the behavior. An
object is distinguished by a single identity that provides for independence and
supports object sharing (Khoshafian and Copeland, 1986). Objects are grouped
into classes according to their common state structure and behavior. Furthermore,
classes are arranged in a hierarchy or lattice to overcome duplication and provide
for reusability. In this sense, a class is allowed to have one or more superclasses
and one or more subclasses.

It was recognized that the conventional relational model does not satisfy the
requirements of data intensive applications such as CAD/CAM, OIS and Al Hence
extensions to the relational model were proposed. The introduction of set valued
attributes was followed by the arbitrary nesting of tuples and sets as complex ob-

jects (Abiteboul et. al., 1989). Next complex objects were combined with object

identity (Abiteboul and Kanellakis, 1989; Bancilhon et. al., 1987) in a step to-
wards the combination of object-oriented features with the database technology
(Atkinson et. al., 1989; Kim, 1990).
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A number of object-oriented data models have been proposed (Banerjee et.
al., 1987; Beeri, 1989; Carey and DeWitt, 1986; Deux et. al.; 1990; Fishman
et al., 1987; Maier and Stein, 1987), but still there is no agreement on a standard
object—oriented data model. In addition there is no standard object-oriented query
language. Generally speaking, there are two trends in providing query support for
object-oriented databases. The first trend preserves existing objects (Alashqur et.
al., 1989; Banerjee et. al., 1988; Carey et. al., 1988; Straube, 1991), while the
second trend adds the possibility of creating new objects (Cluet et. al; Dayal,
1989; Guo et. al, 1991; Kim, 1989; Osborn, 1988; Shaw and Zdonik 1989). The
reason behind the first trend is that there is no need to have new relationships
added to the model as all the required relationships are specified at the modeling
level and hence only object retrievals need to be supported. But, it is not possible
to have all the relationships predefined, or to restrict possible relationships to those
predefined. Hence, operators that build new relationships should be supported.

There are some points to consider while allowing for the creation of new ob-
Jects. One point is to allow the -output of an operation to be an operand, i.e., to
satisfy the closure property. Another point is related to the characteristics of the
output of an operation and whether it is a class whose proper place in the lattice
should be determined. :

Concerning the closure property, we say that the set of natural numbers N
1s closed with respect to addition and multiplication but neither subtraction nor
division. Thatis, Vz,y € N, it is for sure that (t+y) € N and (zy) € N, butitis
not guaranteed that the subtraction of any two elements of N to be an element of
N,ie, Vz,y €N, z<y= (z—y) < 0, not 8 element of N. When applying the
same concept to the relational model, elements of the relational model are relations
and the allowed operations are those of the relational algebra (Date, 1986). The
relational model satisfies the closure property with respect to the relation algebra
operations and the result of any operation is a relation. Concerning an object—
oriented model the closure property requires that the result of a query operation
to be used as an operand.

In this paper we describe an object algebra that handles the creation of new
objects, i.e., the introduction of new relationships. Therefore, we should satisfy the
closure property and place created objects in the lattice. While the closure property
is treated in this paper, the placement iu the lattice is left out as the subject of
another paper in preparation. So in this paper we describe the object algebra and
how the closure property is satisfied. But before doing that, we introduce our data
model and the basic terminology used in formalizing the algebra.

In our object algebra, we support the operators of the relational algebra in ad-
dition to other operators, but with different semantics. The difference in semantics
is due to the object—oriented features (Atkinson ef. al., 1989; Kim, 1990; Stefik
and Bobrow, 1986) added to enrich the object—oriented data model. In our algebra,
an operand should have a defined set of objects and a set of message expressions
used in manipulating objects in the first set. A message expression is a sequence
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of messages and returns some value from the receiving object. An operation in our
algebra acts on its operand(s) to produce a result that has a defined set of objects
and a set of message expressions and hence can be an operand. In addition to the
relational operators, we introduce a nest operator that adds a required relation-
ship to the model. Another operator, one level projection, forms new objects by
evaluating some given message expressions on objects of the operand.

The rest of this paper is organized as follows. A formal description of the data
model is given in section 2 where we define classes, objects and methods in addition
to message expressions, predicate expressions and the terminology required in for-
malizing the algebra. In section 3, we formally define the object algebra together
with some properties that may be considered crucial in the optimization. Section
4 includes related work and some conclusions.

2. Formal Description of the Data Model

Suppose that the following sets are given:

e a countably infinite set of unique identifiers Uy = {ids, ids...},

a countably infinite set of classes C = {¢y, ¢, ...},

a countably infinite set of objects O = {o1,02,...},
e a countably infinite set of domains D = {d;,d>, ...},

a countably infinite set of instance variables Iy = {iv1,1vs,...},
e a countably infinite set of methods My = {mt;,mt,, ...},

e a countably infinite set of messages Ms = {ms;, mss, ...}, there is a mapping
from My to Mg, such that for every method there exists a corresponding
message.

Having these sets, next we give formal definitions for classes, objects and methods.

2.1. Classes

Simply speaking, a class is a set of objects with the common state structure and
behaviour definitions. In this section we give the formal definition of a class, define
a partial ordering among classes and define the set of domains.

Definition 2.1. A class ¢ is a tuple (S, I,, My, U;) where,

e S C C is the set of superclasses of class c,

e I, C Iy 1is the set of instance variables of class c,

Viv; € I,, 3d; € D where D .is the set of domains to be defined later in this
section, we denote domain(iv;) = d;,

Viv;,ive € I,, iv; # ivg, L.e., no two instance variables of the same class can
have the same name.
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M, C My is the set of methods of the class (the method definition is given in
section 2.3.).

U; C O is the set of objects in ¢, not common with any of its subclasses. O

Related to a class we use the following notation:

supers(c) = S, we enumerate elements of S as sy, s3, ....

Lyariastes(c) = I Uc‘"d(s) Iyariabies(si), where card(S) is used to denote the
number of elements in the set S.

methods(c) = M; Uc‘"d(s) methods(s;),

instances(c) = U;.

Tinstances(c) = instances(c) Ucard(CI) Tinstances(cli), where C1 is the set of

direct subclasses of class c. This is due to substitutability where an instance
of a‘class ¢ may be used whereever an instance of a superclass of class ¢ is
required.

In the rest of this paper, ¢ will be used in any context where Tinstances(c)
is expected, distinction will be indicated only in case of confusion.

After the formal definition of a class, next we define a partial ordering (<.) among
classes.

Definition 2.2. Given two classes ¢; and cg, we say that ¢y <. co iff;

variables(cz) - Iuariablea(cl)
That is, Viv € Ivariables(CZ)aipl € Ivariables(cl) such that,

name(iv) = name(ivy) A (domaiﬁ(ivl) <; domain(iv) V
domain(iv) = domain(ivy))
methods(cz) C methods(cy)

¢1 ¢ ¢z & ¢y is asubclass of ¢, and ¢y is a superclass of ¢ & ¢y € supers(cy).

O

Given two classes ¢; and c¢p such that ¢y <. ¢z, then all of the following are
true:

¢y € supers(ci)
instances(cl) C Tinstancea(cl) - Tinstanqes(CZ)
Iuari’ables(CZ) g Ivariables(cl)

methods(cy) C methods(cy); this property reflects a Cardelli-like semantics of
subtyping (Cardelli and Wegner, (1985).

Now we define the set of domains I which is dependent on defined classes.

Definition 2.3. The set of domains D is defined to include the following:

e The conventional domains, such as the set of integers, the set of reals, the set

of characters, etc.
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e for any class ¢, Tinstances(¢) € D. O

Elements of D are not disjoint. For instance, given that ¢ <. e =
rFinﬂances(cl) c T'instances(c2)) and giVen that (Cl <c o N < CS) =
Tinstancea(cl) C (T;'natance.s(cz) ﬂﬂnstancea(ca))

Given ¢ € C and let iv € Iyariabies(c), value(iv) € domain(iv) U gdomain(iv)
where value(iv) denotes the value of iv and 2X denotes the power set of the -
set X, i.e., set of proper subsets of X. Hence, iv may have either a single value
or a set value. Although in this paper a single value is mostly assumed, but this
does not introduce any restriction.

2.2. Objects

In this section we define objects which are instances in classes. An object has iden-
tity and value and hence objects are equal either by value or by identity. Equality
of objects is defined next in this section.

Definition 2.4. An object o is a triplet (id,c,v) where,
e id € U is the identity of the object,
e c & C is the class of the object,
e v is the value of the object
v e X2 Wverianes (D domain(Ly ariapies (€)i),
where X denotes the cross—product and Iarigpies(c)i 1is the i—th element
in Iyariaples(c). O
Concerning an object, we use the following notation:
identity(o) = id, identity™'(id) = o, class(o) =c, value(o) = v.
In the rest of this paper, o will be used in any context where identity(o) is

expected, i.e., the identity() function will be dropped in case of no confusion.

Let p be a predicate expression, we use p(o) to denote the application of the

predicate expression p to object o. Predicate expressions are defined in section
2.3.1.

Related to objects, the following holds by definition:
e Vo€ 0, o€ instances(class(0)) = 0 € Tinstances(class(o))
e Yoi,0, € O, identity(o;) # identity(os) < (01 and oy are not identical),
i.e., identity() is an injective function.
Definition 2.5. Equality of objects, Two objects o; and o, are:
e identical (0; = 0;) iff identity(o1) = identity(oz)
e shallow-equal (0; = o02) iff value(o;) = value(oz)

e deep—equal (0; = 0y) iff by recursively replacing every id € Ur in value(o1)
and wvalue(o;) by value(identity='(id)) equal values are obtained. O
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For instance, given objects o; and o, with wvalue(o1) = (z,idy,y),
value(oz) = (z,idz,y) and wvalue(identity='(id1)) = value(identity=!(idz)) =
(a,b); objects o1 and o; are neither identical nor shallow—equal, but deep—equal
because of the equality of their values after replacing id; in- o; and id, in
03 by the value (a,b). Concerning id; and idsy, they are not identical but
shallow-equal and deep-equal. In general,

(01 = 02) = (01&02) = (01 e 02)
identical = shallow — equal => deep — equal

and these correspond to 0-equal, 1-equal and w—equal of O; (Cluet et. al.)
and to identity, shallow-equality and deep—equality of smalltalk—80 (Goldberg and
Robson, 1983).

2.3. Methods

In this section, we define methods and based on methods we define predicate expres-
sions.

Definition 2.6. A method mt is defined as a pair (ms, f), where
e ms € M, is the message used to invoke the method

e f:cyxcyx...x ¢y — ¢, 1s the function of the method, where ¢y is the domain
of the receiver with ¢j,...,c, being the domains for arguments of f and ¢, is
the domain of the result. That is, Vo; € c1302 € ca303 € ¢3...30,, € cy30, € ¢,
such that

(01 ms) = f(01,02,...,0n) = o,
we use the notion arguments(f) to denote e1,c¢g,...,cn,c, 0
Consider the following illustrating examples. Let c3 and c4 be two classes.
(manager, manager, f :cqs — c3) is a method defined for class c4 such that:
Vo € Tinstances(ca), f(0) € Tinstances(ca)
o4 manager() = f(o4) = 03
(tnc_sal, increase_salary, f:c3x integer — integer)
if salary(os) = 13K then os increase_salary(2K) = f(o3,2K) = 15K
(greater_than, >, f :integer x integef — boolean)
3>4)=f38,4)=F

Given that class ¢ € arguments(f),Ve; such that ¢; <. c,arguments(f) and
arguments(f)—{c}+{c;} areequivalent,i.e., ¢; substitutes ¢ in arguments(f),
this is because

Tinstances (Ci) Cc Tinatances(c)
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2.3.1. Message Expressions

Given a class ¢, we use messages(c) to denote the set of messages corresponding
to methods(c). To define a message expression we have

o Viv € ILariabies(c), let domain(iv) = c¢;, Vo € Tinstances{c)Im €
messages(c)|(o m) = value(iv) A (0 m) € Tinstances(cj) =
(ﬂnstances(c)m) - ﬂnstances(cj);
(¢; is the domain of the result of the function that corresponds to m),

e and Vm; € messages(c;), (o m)m; is defined,
we call m m; a message ezpression.
Definition 2.7. A message ezpression is a sequence of messages mim,...m, Wwith
n > 1, such that given an object oo,
ogmimy...m, is defined iff:

m; € messages(class(og)) A (00 m1) = 01A
my € messages(class(o1)) A (01 m2) = 02A

m,, € messages(class(on—1)) A (0n—1 my) is defined
= V0; € Tinstances(class(o;)) with (0<j<n—1),
(0imjy1mjp2..Mmjsx) € Tinstances(class(oj+x)) with (j +k < n).
The set Mg is used to denote the universe of message expressions. O

Given a class c, we use M,(c) to denote message exptessions of class ¢, and
Mﬁ (C) = {:""VO € Tinstancea(c), (0 :L‘)iS deﬁned}

Concerning message expressions we have the followings:

e V& € M.(c)3m € messages(c)le = (m z;) AVo € Tmsta.nce.q(c) (o m) €
Tmstances(c]) A T € Me(cJ)

e len(x) denotes the number of messages in the message expression z.

e Let X = {x1,23,...,%,} beaset of message expressions and z; be amessage
expression, then (z;X) = {(z;z1), (z;jz2),-- o(zjza)} = {211, 212, - T1n )

e Let ¢c € CAX C M(c)|Fer,X = (ziMc(c1)) where =z; is a message
expression, then ((M,(c) — X) U {z;}) is an optimized form of M.(c) =
messages(c) is an optimized form of M.(c).

® Y0 € Tinstances(c), due to encapsulation, the only values that can be Ieturned
from o are given by (oM.(c)) if M.(c) is empty then no values can be
returned, although value(o) is not empty.

At this point, it is required to define a predicate expression before going into
the definition of the object algebra in the next section. But before doing that, we
give the following concepts to be used in the definition of a predicate expression:
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e Vo € Mg such that given o with (o z) being defined and returns either a
single value or a set value then 3d € D such that (o z) C d,

o (01 z1) = (03 x2) & (Vo; € (01 21) Joj € (02 x3) such that o; = 0;) A (Vo; €
(02 x3) Jo; € (01 z1) such that o; = o;),

o (01 z1) = (02 z2) & (Voi € (01 1) o; € (02 z2) such that
0; = 0j)A(Yo; € (02 x3) 30; € (01 x1) such that o; = o;),

o (01 21) = (02 22) & (Vo; € (01 z1) Joj € (02 z3) such that o; = 0;) A (Vo; €
(02 x2) Jo; € (01 z1) such that o; = o;),

e let d € D be a conventional domain, Yv € d we have value(v) = v and
identity(v) = v.

Definition 2.8. Predicate Expression. Any of the following, and nothing else
is a predicate expression:
e T and F are predicate expressions representing true and false,
e VoeOVde D, wehave o €d and o & d as predicate expressions,
e Yo € O Vz € Mg|(o z) is defined, Vd € D Vd; C d, we have (o z) C
di, (oz)=4d;, (oz) =d; and oz)=d; as predicate expressions,
e Yoi,09 € O, we have 07 = 03, 01= 0y and o0; = 0y as predicate expressions,
e Yo € O Vz € Mg|(oz) C d, where d € D is a conventional domain, we have

(Vv € (0z),vopy) and (Jv € (0z),v opy) as predicate expressions, where
op €{=,>,2,<,<} and y€d,

e if p; and p, are predicate expressions, then (p1),—pi,p1Vp2 and p; Aps
are all predicate expressions. 0O

3. Formal Definition of Object Algebra

Based on the previously introduced terminology, in this section we formally define
.object algebra expressions. When speaking about len(z) in any of the constraints
given next in this section, we’ll consider only message expressions « such that z
returns a stored value from a conventional domain. This follows from the fact that
if len(z) =1 and z returns a stored value from a basic domain; len(z;) > 1.

Definition 3.1. Object Algebra Expressions. Let E be the set of ob-
ject algebra expressions. Ve € E, M,(e) is defined with card(M.(e)) > 1 and
Tinstances(€) 1s defined.

Given e; € E and e; € E with M(e1) = X1, M.(e2) = Xo and
Tinstances(€1) = T1, Tinstances(e2) = T2. Elements of E are enumerated as
follows:

e Vc;, by definition M,(¢;) and Tipstances(ci) both exist, = ¢; € E.
e Projection: This operation hides a part of the objects in the operand.

Given X C X, e1[X] € E with M,(e1[X]) = X Tinstances(e1[X] =
Tinstances(el)-



A format data model and object algebra for object... 57

e Cross—Product: This operation forms new objects out of objects in the ope-
rands. It is defined in a way to satisfy associativity.

(e1 x €2) € E with,

((m1X1) U (maXz) if 3z; € X3, len(z;) = 1 Adz; € Xo,

len(z;) =1

X1 U (maXs) if Vz; € X4, len(z;) > 1 Adz; € X,

len(z;) =1

M. (e x e2) = 1 (m1X1) U X, if 3z; € X1, len(zi) = 1 AVz; € X5,
len(z;) > 1

X UX, if Vz; € Xy, len(z;) > 1 AVz; € X,

| len(z;) > 1

where m; and m, are two messages with e; and ez being the domains of
the results of m; and mg, respectively.

({0] 301 € T1 F0)2 € T3 A value(o) = identity(oy)
.identity(oz)} if 3z; € X1, len(z;)) = 1A
Jz; € Xy, len(z;) =1

{0] Jo1 € T1 F0)2 € T3 A value(o) = value(oy)
ddentity(oz)} if Vz; € X3, len(z;) > 1A
Jz; € Xo, len(z;) =1

{o] 301 € T1 F0)2 € T; A value(o) = identity(o;)
walue(op)} if 3Jz; € Xy, len(x;)) = 1A
sz € Xs, len(xj) >1

{o] Jo1 € T1 F0)2 € T A value(o) = value(oy)
wvalue(og)} if V; € Xy, len(z;)) > 1A

{ Vz; € X3, len(z;) > 1

,I;'nstances(el X 62) :<

where . is being used to indicate a concatenation of the two arguments.

e Selestion: Returns from the operand those objects satisfying a given predicate.

Given a predicate expression p,ej[p] € E with M.(ei[p]) = Me(e1) = X,
’I‘inﬂances(el[p]) = {OIO €T A (O)}

o Union: Returns all the objects in the operands.

(61 Ueg) - E Wlth Me(el Uez) = X1 ﬂXz and T,-mmme,(el U62) = T1 UT2.

e Difference: This operation is handled in one of two ways depending on the
relationship between the message expressions of the operands. If the message
expressions of the first operand is subset from the of message expressions of the
second operand, the difference operation returns objects from the first operand
which are not in the second operand. Otherwise, it is handled as a projection
of objects in the first operand on values that have no corresponding message
expression in the second operand
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(e1 — e2) € E with

[ X if X3 CX,
M(e1 —e3) = { (X1 — X3) otherwise

-1y if X3 CX,

Tinstances(e1 — e2) = { Ti otherwise

Nest: It is not possible to have all the desired relationships predefined at the
modeling level; this operation introduces such relationships

(e1 >> e3) € E with M.(e1 >> e3) = X1 U (m X,), where e; is the
domain of the result of m. Tinstances(e1 >> €3) = {0] Jo, € Ty A value(o) =
value(o1).v, where v = (o m)Av € Ty)}. '

One level projection: The previously introduced projection does not evaluate
any message expression. On the other hand, the one level projection opera-
tion evaluates the provided message expressions and form objects out of the
obtained values.

Given X C X, e1!l[X] € E with

M. (e1![X]) = {x] Fe1 € X Azy = 2ox A len(z1) = len(zo) + 1}
Tinstances(€1'[X]) = {o| 3o, € Ty A value(o) = (0; X)}.

Unnest: defined in terms of projection as,

(e1 << e2) =e1[X1 — X|X = (m X3) A Yo €Ty, (0o m) € T3).

Intersection: defined in terms of difference as,

(61 N 62) =ée1 — (61 - 82).

Aggregation: e; < X, f,X; >€ E with M,(e; < X, f, X; >) = (m M, (e1))U
{mi1}, where e; is the domain of the result of m, and the domain of the
result of f is the domain of the result of m;. Tinstances(e1 < X, f, X; >
) = {ol(om) € Ti Ao m1) = f({(or Xi)lor € Ty A Yoy € (0 m), (02 X) =
(0 X))} .

The aggregation function is applied on e; by evaluating the function f on
the result of the message expression X; for all objects that return the same
values for elements of the set of message expressions X. O

Next are some equivalent object algebra expressions. We believe that equivalence
of object algebra expressions will be useful in optimization, although not covered

in this paper.

3.1. Equivalence of Object Algebra Expressions

Let e1, e2 and ez be object algebra expressions, such that ,

M.(e1) = X1, M.(e2) = X3 and Mc(e3) = X3.

e Given two predicate expressions p; and ps,

- e1[p1][p2] = e1[p1 A p3] = e1p2 A p1] = ex[pa][pa]-
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e Given X C X; and a predicate expression pi,
cei[p1][X] = e1[X][pa] iff Ve Epy 2z € X.

® e x€y =€3x€

o e1x(eaxesz) = (e1xez)xes

o[> e M Vo €Xy, len(zr) > 1A 3z € X, len(zs) = 1
1xez= eg >> €1 iff dz; € X4, Ien(:cl) =1AVzy € X, len(mz) >1

o ¢![X] = e;[X] iff Vz € X, len(z) = 1 regardless of the domain underlying
the value returned by =z,

e e1lUea=e2Uer
o erU(e2Ues) = (e2Uer) Ues
e Given X3 C X; and X5 C Xj,
. e1[Xa][X5) = e1[X5] iff X5 C X4

The proof of the given equivalences will be left out as an exercise to the reader; all
follow from definition 3.1. As an example, next we sketch the steps that lead to the
proof of the associativity of cross-product. We define equality of object algebra
expressions and give a lemma on the length of message expressions in (e1 x e2).

Definition 3.2. Equality of Object Algebra Expressidns. Let e; and es
be two elements of ‘E. e; and ey are equal iff:

o M.(e1) = Mc(e2)
e Vo, € ey Jog € égl(ol) = (0q), 1., 01 and oy are deep—equal,

e Yoy € e5 Joy € e1(01) = (02), 1.e., 01 and o0y are deep—equal.

Lemma 3.1. Let e; and ey be elements of E.

Vz € M.(e1 xez), len(z)>1

Proof: Let X; and X, be the message expression of e; and ez, respectively.
Depending on the definition of (e; x e2), there are four cases to consider:
i) 3z; € X1, len(z1) =1A3zz € Xy, len(z2) =1
M, (e1 x e2) = {z|z € (M1 X1) U (mz X2))} (by definition)
= Vz € M,(e; x e3) Iz1 € X1, len(z) = len(zy)+ 1V 3zz € Xy,
len(z) = len(zz) + 1= len(z) > 1 '
ii) Vz; € X1, len(z1) > 1A 3xy € X, len(zs) =1
M. (e1 x e2) = {z|z € (X, U (m2 X2))} (by definition)
= Vz € M, (e} x e3) 3z; € X3, len(z) = len(z,)V Jz3 € Xo,
len(z) = len(zg) + 1 = len(z) > 1 ' |



60 R. Al-Hajj and M. E. Arkun

iii) 3z; € X1, len(z1) = 1A Vzy € Xy, len(zg) > 1
Me(e1xe2) = {z]e € ((m1 X1) UX2)} (by definition)
= Vz € M.(e1 x e2) 3z, € X1, len(z) = len(z1)+1V Jzq € Xy,
len(z) = len(zy) + 1= len(z) > 1 '

iv) Ve, € X1, len(z1) > 1 A Vz3 € Xo, len(zy) > 1
M.(e1xez) = {z]z € (X1 UX3)} (by definition)
= Yz € Mc(e1 x €e2) Jz1 € X1, len(z) = len(z1) V Iz € Xs,
len(z) = len(z2) = len(z) > 1

Hence, len(z) >1. O

Theorem 3.1. it The Cross-product operation is associative.
That is, Vej, ez, e3 € E, we have:

(61 X 62) X €3 = €1 x (62 x 63)
Proof: Follows from definition 3.2 and lemma 3.1. O

4. Related Work and Conclusions

A number of proposals on query languages for object-oriented databases are re-
ported in the literature (Abiteboul and Kanellakis, 1989; Alashqur et. al., 1989;
Albano et. al., 1985; Bancilhon et. al., 1987; Banerjee et. al., 1988; Beech, 1988;
Carey et. al., 1988; Cluet et. al; Dayal, 1989; Fishman et. al., 1987; Guo et. al.,
1991; Kim et. al., 1989; Kim, 1989; Maier.and Stein 1987; Osborn, 1988; Rowe and
Stonebraker, 1987; Shaw and Zdonik, 1989; Straube, 1991; Zaniolo, 1983). These
languages were developed based on different paradigms. The query language of
(Dayal, 1989) is based on the functional paradigm, while the query language of
(Banerjee et. al., 1988; Kim et. al., 1989) is based on the message—passing para-
digm. Other languages are based on extensions to the relational paradigm (Beech,
1988): such as extensions of QUEL (Carey et. al., 1988; Rowe and Stonebraker,
1987) and extensions of SQL (Cluet et. al.). The query language of IRIS (Fishman
et al., 1987) is based on both the functional and the relational paradigms, where
functions are used in an object-oriented SQL, OSQL, constructs.

A major drawback of languages such as those described in (Banerjee et. al.,
1988; Kim et. al., 1989; Maier and Stein, 1987; Straube, 1991) is that they do not
satisfy the closure property. Although operands in such languages have object-
oriented properties, whereas the output is a relation which does not have the same
structural and behavioral properties as the original objects. Consequently, the
result of a query cannot be further processed by the same set of language operators.

* The query languages of (Bancilhon et. al., 1987; Carey et. al., 1988; Rowe
and Stonebraker, 1987) use nested relations as their logical view of object-oriented
databases. Although operators in these languages operate on nested relations and
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produce nested relations, we argue that nested relations do not form a proper
logical representation of object associations. In order to use nested relations to
represent object a large amount of data has to be replicated in the representation.

Some of the models described in the literature introduce non—object-oriented
constructs in supporting the closure property. For instance in Oa (Cluet et al.)
the value concept was introduced while in (Shaw and Zdonik, 1989) the output of a
query is of the Tuple type which is essentially the nested relational representation,
since it allows the nesting of tuples. Regarding our work, the closure property is
satisfied by the algebra described in this paper as the operand(s) and output of
any operator are defined to be compatible by having a set of objects and a set
of message expressions. Out of the scope of this paper, we have proved that the
output of any of the described operators ends up to be a class. Also we have
derived the relationship between such a class and classes existing in the lattice.
All of these are being done to allow the output of a query to persist in the lattice
without violating any of the object-oriented features. By doing this we’ll have
schema changes supported by the object algebra.

Finally, it is important to indicate that although the algebra described in
(Straube, 1991) is formal, but that algebra is restricted to object retrievals where
the introduction of new relationships and the closure property are left out. In this
sense our algebra is more general by considering both the closure property and the
introduction of new relationships, and hence the creation of new objects.
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