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ESTIMATION AND PREDICTION
OF POLLUTANT CONCENTRATIONS INVOLVED

IN NITROGEN OXIDES CYCLES
A DOUBLY STOCHASTIC MODEL

P. KAZIMIERCZYK*, Pawet J. SZABLOWSKI**, K. TWARDOWSKA**

The purpose of this paper is to present a new type of model that forecasts the
instantaneous concentrations of several species involved in the NO; cycle in the
lower atmosphere, by treating the trajectories of pollutants’ particles as trajectories
of stochastic processes, and which takes all the advantages of filtering theory. The
previous filtering models were found to be of limited use because of complicated
chemical reactions for NO,. Basing on the model considered here one can also
identify the sources that participate in the up-crossings of the critical values of
concentrations (the so—called alarm model).

1. Introduction

Processes that describe the pollutant transport in the atmosphere were systematically
studied by deterministic methods (Juda, 1986; Marczuk, 1985; Nowicki, 1985; Seinfeld,
1977). The stochastic versions of these methods were intensively developed because, in
general, the processes of pollutant transport have random nature that arises from random
events in the atmosphere, random emission, and inaccuracy of parameters in a model.
See (Korbicz and Zgurovsky, 1991) for a thorough description of these stochastic models.

Filtering theory and maximum likelihood estimation were applied to estimation of
nitrogen oxide concentration in the vicinity of a roadway by Omatu et al. (1988). The
time series analysis was used by Merz et al. (1972) to study the nitric oxide. The
deterministic Eulerian type NO,—model was examined by Budzinski and Juda—~Kuczka
(compare also (Juda-Kuczka, 1986) for the Eulerian SO, model).

Since NO_; concentration models are more complicated than similar SO, models,
the latter ones were studied deeper and in greater detail. Several adaptive—filtering SO,
models were considered e.g. by Bankoff and Hanzevack (1975), Runca et al. (1979),
Bonivento et al. (1980), Twardowska (1989). The computational algorithm for the
instantaneous concentration prediction is based on the method of fractional steps and
Crank — Nicolson method (Crank and Nicolson, 1947). For the direct numerical solution
a turbulent transport partial differential equation coupled with a regressive least—squares
filter are used. Such a model was tested on Cracow’s (Poland) data taken from the expe-
rimental data set MONAT (1984), and in Silesian District (Poland), during continuous
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on-line testing experiments TEST1 (March 1988) and TEST?2 (June 1988) (Twardowska,
1988; 1989).

Optimal filtering algorithms for linear distributed—time parameter systems based
on the Wiener—Hopf theory were presented in the paper of Omatu and Seinfeld (1981).
Two different stochastic models were studied in the papers of Finzi et al. (1982; 1983;
1984) both oriented towards the real-time forecast of daily SO, pollution. The first
one is a ”black-box” model with input—output transfer function identified by time—series
method (Box and Jenkins, 1970). The second one is a ” gray—box” model with a simple
reasonable structure in accordance with the physical laws of the phenomena. These
models are statistical in their main framework. A statistical model was also considered by
Morawska—Horawska, (1979). Correlations between the global (for all urban area) daily
average SO, concentrations and average meteorological conditions have been observed
during a long period. The model works also on global average emission. Therefore, from
such models one obtains the global average of SO, forecasted concentration.

Our NO, model originates from the theory of stochastic differential equations with
randomly varying structure, as well as from the adaptive filtering theory applied to mi-
nimization of modeling errors. These errors are connected primarily with the differences
between the model and the real dynamics of such phenomena as random events and ran-
dom emission, and result from the inaccuracy of monitoring devices and of calculations.

The first part of our model includes several input algorithms for interpolation, extra-
polation etc., that process a large set of input data in order to assign proper values to
every grid point of a three-dimensional network covering the tested domain. The output
set of forecasted concentrations is also obtained at every grid point.

The second part consists of a system of seven parabolic partial differential equations
describing the transport, advection and diffusion of NO,, as well as the reactions with
other pollutants in the atmosphere (see equations (la)—(1f)). Processes of creation and
annihilation of NO, are also included in those equations. We apply a new mathema-
tical theory of systems with randomly varying structure (Kazakov and Artemeev, 1980;
Kazimierczyk, 1989). This theory enables us to model the chemical reactions of the
NO, cycle in a more precise way than the earlier models utilizing filtering theory. Such
models, e.g. models for the SO, cycle (Bankoff and Hanzevack, 1975; Bonivento et al.,
1980; Twardowska, 1989) consist of one partial differential equation, and the only term
connected with chemical evolution of pollutant concentration describes the decomposition
of the pollutant, proportional to the time that elapsed from its creation (at the sources).
In our model chemical creation and annihilation of several species at random moments
are taken into account. The trajectories of the particles are discontinuous (they appear at
the instants of creation, and disappear after removal and after chemical reactions). This
is the reason for the use of varying structure models. Intensities of chemical reactions
are not assumed to be constant and, in particular, depend on the concentrations of all
substrata (not only on the concentration of the pollutant under consideration).

The third part of the model consists of a filter of random noises. Here, filtration
theory for systems with randomly varying structure can be used.

The fourth part is formed by the output algorithms for some graphic programs. The
alarm model results can also be incorporated in our model.
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Let us notice that the self-learning model, which is obtained due to the use of the
filter, is the best solution in the construction of the system of the, so called, on-line
continuous forecasts. That is, the forecasts are calculated recursively, and a forecast for
time n is made upon all available data collected up to time n—1. Qur model learns from
the differences between the forecasts and the actual measurements. Therefore, precision
of the forecasts improves with filtering time. However, in order to take all advantages of
the powerful filtration methodology, we have to employ chemical and mechanical models
as precise as possible. An oversimplified model subjected to filtration would cause the
divergence of the filter.

2. Input Data Description
2.1. Basic Set of Necessary Data

The great advantage of the model presented is that it acts on the same set of meteorolo-
gical and climatic data, and on the same network as the SO, model. The sets of emission
and immission data also have the same structure. Therefore, we can use the same input
and output programs,taking into account mutual reactions between examined pollutants
at every step of computations. In what follows, we present the set of input data for the
computation of one twelve-hour ahead instantaneous forecast.

2.2. Meteorological and Climatic Data

The following meteorological and climatic data are considered:

— wind velocity v, (t), m = 1,..,4, and direction measured or computed at the:
z1 = 10 m or 15 m (height of the ground meteorological station), z3 = 100 m,
z3 = 250 m and zg4 = H (height of the inversion layer base) at time ny when we
start computing our forecast; these data are forecasted at times ng +1,...,n0 + 12.
Between ng+1¢ and ng+ 7+ 1, we use linear interpolation;

— temperature and stability class s(t) of the atmosphere given as above;

— rainfall intensity and the height H forecasted for the periods (no,7n0 + 6) and
(’I’LO + 6,710 + 12),

— vertical and horizontal diffusivity coefficients K? and K¢, K9, respectively, solar
radiation, scattered solar radiation, cloudiness for smog investigations.

The upper wind velocity vy, (t), m = 2,3,4, and the diffusivity coefficient K? may
be computed, e.g., by the following formula (Runca et al., 1979)

Vm () = v1() (2 /21) )
K?(z,5(t)) = KP (s(t))z exp(—p(s(t))z/H)
KP(s(0)) = 27 K* (o1, 5(t)) explpls(0) 21/ H)

The values of «(s(t)) and p(s(t)) as well as of K®(s(t)), K¥(s(t)) and K?(z1,s(t))
are given in Table 1 (Runca et al., 1979).
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2.3. Emission Data

The set of emission data is organized as follows:
_ Point emission from every high source is forecasted as one value for the whole period
(no,no + 12) or for every hour (ng+ ¢,m9 + i+ 1), separately. It can be considered
as a function of time; every source is placed to an appropriate grid point (z,y,z), by
considering also plum rise H; (for the method of computation of H; see Instruction
of the Environmental Protection Ministry, 1981).

On the level nearest to the forecasted inversion layer base we assume the following per-
centage of the emission amount:

E = (H, — h/H,)E100%

where h is the height of the considered source and E is the instantaneous emission
([g/sec]). The reason for this is purely numerical; otherwise, it would be uncomfortable
to introduce varying height of the last level zj.

Surface emission is estimated for each square [1 km x 1 km]. Afterwards, these values
are assigned to neighbouring grid points of the network. Emission stemming from traffic,
treated as linear sources, is added to the surface emission.

2.4. Immission Data

The values of instantaneous concentrations at the ground in [g/m?®] are obtained from
several monitoring sites and are represented by the values assigned to the grid points
(z,y,71) by the well known KRIGING interpolation method (Ripley, 1981).

The values at high altitudes can be computed from a function which éan be deter-
mined empirically, using, e.g., measurements from an airplane.

The immission data are used twice in our model. First, immission is the initial
value of the concentration at time t; = mg in our parabolic partial differential
equations. Secondly, immission is the base for prediction by the filter. First, we
have to identify the probability distributions of the concentrations by using statistical
tests, e.g. Kolmogoroff-Smirnoff, ¢-Student, Fisher tests. To.do this, we treat
concentration as a random variable X. The observable concentrations (immission)
at every monitoring site separately, are considered as the values of independent random
variables X),..,Xp (M is the number of monitoring sites). When the distribution is
known, we can complement the missing data using statistical methods.

2.5. Chemical Data — Assumptions Concerning Coefficients Responsible for
Transformation and Deposition of Pollutants from the Atmosphere

In order to compute transformations of pollutants it is necessary to measure the concen-
tration of nitrate and sulfate aerosol as well as of formaldehyde during day and night,
separately. These compounds are products of transformation of SOz, NO; and hy-
drocarbons, respectively. Relations between primary and secondary pollutants will give
estimates for the empirical transformation coefficients.
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The coefficients of dry deposition velocity can be taken from (Metcalfe et al., 1989
— Tab. 4, p.2036) and (Derwent et al., 1989 — Tab. 4, p.1900).

The coefficients of sulfates and nitrates wet deposition were examined in an empi-
rical way, see e.g. (Hryniewicz, 1981; Kasina, 1981) for sulfates for Cracow area and
(McMahon and Denison, 1979) for other pollutants.

2.6. Influxes

A special program for computing the forecasted influxes from beyond the investigated
domain is important for preparation of input data for the model. The boundary values of
concentrations treated as influx values can also be computed by the KRIGING method
using measurements of immission from several monitoring sites (some of them should be
located near the boundaries of the domain).

3. Block Diagram

The forecast of instantaneous concentrations made at the n-th computation step is
described in the diagram below.
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4. Mathematical Modeling of Evolution of the Concentration of
Nitrogen Oxides and Related Air Pollutants

4.1. Chemical Reactions

The model proposed is a result of a compromise between the tendency to cover all details
and the need for economy (Eykhoff, 1981). Considering the whole complicated cycle of
chemical reactions that involve nitrogen oxides, we decide to use a lumped. parameter
model similar to that developed by Gusten (1986). It contains all basic mechanisms
leading to removal of primary and secondary pollutants, as well as those responsible for
build up of high diurnal concentrations, including photochemical smog build up mecha-
nism (Kasina, 1981). Some links with the sulphur oxides cycle were taken into account.
The links with the ammonium cycle, as well as with the (related) aerosol formation were
not considered.

The complete list of reactions taken into account is given in Table 1, below, where the
reaction rate constants are also reported from Seinfeld (1977) and Gusten (1986). The
values were used in the model construction and can be employed as starting estimates.
Similar sets of data can be taken from more recent publications (Chang et al., 1988;
Derwent et al., 1989).

The concentrations of the following substances are regarded as dependent variables:
03, NO, NO,, NO3, RAD, HC. RAD stands for all free radicals treated as one (lumped)
group of substances (both as products and as substrata), while HC stands for all (lumped)
hydrocarbons involved in the NO, cycle. Such treatment is dictated by impossibility
of gaining any detailed information about the actual hydrocarbons concentrations in the
atmosphere. The concentrations of radicals will be neither traced nor measured at all.
Thus, any information about their concentrations will come from the state estimation
capabilities of the extended Kalman filtration procedure.

In the system (1a)—-(1f) below, the concentrations of O and OH will be determined from
the steady-state approximations as functions of the state variables listed above. The
concentration of HNO, will be approximated by the Wayne and Yost method (Seinfeld,
1977). The respective formulae are as follows

[0] = k1[NOy] {ky + k4[NO3] + ks[NO3] + k7[NO] + k15[HC]} ™"

[OH] = ky1[HNO4] {k12[NO} + k13[NOs] + k14[HC]} ™"
[HNO] = k7;' {k12[OH}[NO] + k15[NO][NO5]}

where [z] denotes concentration of z while coefficients k; are taken from Table 1.
Further, the concentrations [O,], [H], [H20] and [SOs] are input data. They come with
the meteo—data and as the output of the SO, model.
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Tab. 1. Table of chemical reactions [p=parts per million, m=min]

|No. | Reaction lk,‘(from(Seinfeld, (1977)) I ki (from (Gusten,(lQBG))l

1|NOz+hv - NO+O — 0.4 m™?

2|/0(+02 +M) — Os + M (M=0; or N3) |2.33 x 107°p~'m™" [2.64 x 10°m™’

indep. of {O2},

3/0; + NO — NO; +0: 295 x 10'p~'m™! |40 p~'m™?

4|0+ NO; — NO +02 1.38 x 10*p~'m™ _

5|04+ NO; (+M) — NOs (+M) 4.50 x 10°p™'m™! —

6| NO3s+ NO — 2NO, 1.48 x 10*p™'m™ —

7[00+ NO (+M) — NO; (+M) 2.34 x 10°p~2m™! —

{(M=0; or N3)
8|2NO+ O, — 2NO, 7.62 x 1071%p2m™! —
9(NO3+ NO; — N,Os 4.43 x 10°p~!m™! —
10 {NO2+ O3 — NOj + O, 0.46 x 10~ 'p~lm™? —
11 |HNO2+ hv — NO + OH — 103m™! =10 3sec™?
12|OH - + NO — HNO, 1.20 x 10*p™'m™ |10 p~'m™?
13|OH - + NO; — HNOs 1.50 x 10*p~'m™ [30p~'m™?
14|OH - + HC — 2| RO (9% # R~ R + 5O — 80 p~im™?
150 + HC — 2| RCO(+02) — RCO, — 6100p " m ™
16 |RAD + NO — NO; + radicals 1.20 x 10*p~'m™ 1500 p~'m™*
17|RAD
(ROO;) + NO — PAN — 6 p~'m™!
18|03 + HC — RO, (RAD) — 0.0125 p~'m™'
19|NO + NO; (+H20) — 2HNO; 4.30 x 10~°p~2m™! [0.01 p~'m™*
(without Hp0)

20 [S0; + NO; — 803 + NO 1.30 x 10~ *p~'m™? —
21|S0; + O3 — SO3 + O2 slow in gas, not in water —_
22|80, + NO3 — SO; + NO, <2.5 x 10~°p™Im™ —

d
dt

Therefore, in the idealized analysis of the time evolution of the concentrations treated
as dependent variables, we obtain the following set of differential equations (Gusten, 1986;
Seinfeld, 1977):

(O3] = k5[O] — k3[05][NO] ~ k10[03][NO2]

(1a)
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%[NO] = k1[NO3] — k3[O3][NO] + k4[O][NO,] — ks[NO3][NO] — k-[NO][O]
+k11[HNO3] — k12[OH][NO] — k15[RAD][NO] — k15[NO][NO;] — k30[SO:][NO;]  (1b)

a‘-‘t-[Noz] = —k4[NO] + k5[O3][NO] — k4[O][NOs] + 2k6[NO3]INO] + k+[O][NO]
+2k5[NO] — kg [NOz][NO‘g] — km[NOg][O;;] - klg[OH] [NOQ] (10)

—kyr[RAD][NOz] - kw[NO][NOz] - kzg[SOg][NOz] + kzz[SOz][NOQ]

(%[NO;;] = k5[0] [NO2]"‘k6 [NOg][NO]—kQ [NOg] [NOz]—kw[NOQ] [03]—]622 [SOz] [NOz](ld)

%[HC] — kyg[HC|[OH] — k15[O][HC] — k1[Os][HC] (1f)

The above equations describe an idealized air parcel under stable conditions. Ho-
wever, not only the conditions and rate constants do vary, but also all other phenomena
such as transport, mixing, diffusion, turbulent diffusion, wet removal, deposition etc.
influence those conditions. Therefore, the above equations (and similar equations con-
cerning other substances and other reactions) are only used to make an initial selection
and choice of the most important chemical reactions and groups of species.

4.2. Physical Phenomena (Equation of Particle Motion)

Let T={0,1, ..,6} be the set of indices (types of particles) that are assigned to atoms
observed in the atmosphere. The set of all atoms will be denoted by Q. An atom w € Q
will be assigned index 1 if it is contained in an O3 particle, indices 2, 3, 4, 5, 6 if it is in
an NO, NOgj, NOs, RAD or HC particle, respectively. Index 0 is assigned to atoms
in all other types of particles. The index assigned to an atom w at time t will be
denoted by j(w,t) (the atom w at time ¢ is in a particle of type j(w,t)).

Let X;(w) denote the position (in Cartesian coordinates) of the atom w at
time t. Define

Xt"(w)={ K@) 1wy =1 i=0,..6
00 if j(w,t)#1

The situation can be described in the following way: there are seven observers tracing
the trajectory of'an atom w. Each of them can only see w in one type of particle, say
i~th, and he can then determine its position X}(w). If w disappears from the i-th
observer’s "world” (by entering another type of particle), the observer defines X}(w) to
be oo.

In order to describe the motion of an atom joining consecutive particles of various
kinds one has to use several models. The actual model in use varies in time since the atoms
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may enter different types of particles. This can be effectively treated by the theory of
systems with randomly varying structure (Kazakov and Artemeev, 1980; Kazimierczyk,
1989).

Let i €1 be any type of particles. The motion of an i- th type particle will be
modeled by the following Itd stochastic differential equation

dXiw) = V(i,t,w, Xi(w)) dt + B(i,t,w, Xi(w)) dW (i, w, 1)
+dC (4, t,w, X}(w)) + dAG, t,w, X (w)) (2)

Here V(i,t,w, Xi(w)) is a random advection velocity vector of a particle that is at the
point X§(w) at time t (thus, containing the atom w). The horizontal components of
V are essentially the same for all types of particles — they are equal to the horizontal
components of the wind velocity. The vertical component of V, however, is the sum
of the vertical component of the wind velocity, and the velocity of dry deposition. For
the initial values of dry deposition velocities for different species see §2.5. It should be
stressed that these values are treated as starting estimates, and that the model is capable
of improving these estimates during its operation.

In the first approximation we will assume that the velocities of dry deposition are
the only nonzero parts of the vertical drift (advection). This assumption results from
the lack of data concerning the vertical components of the wind velocity. The second
term in the right side of equation (2) is responsible for diffusion (we will interpret this
term as the eddy diffusivity term). To simplify matters we assume that the 3x3
matrix B(i,t,w, Xi(w)) is diagonal (B = V2 diag{B®, BY, B*}), where the diago-
nal elements are random fields whose mean values are the classically determined eddy
diffusivity coefficients, assumed to be equal for all ¢ € I. Next, W(i,t,w) is the stan-
dard three-dimensional Brownian motion for each i € T. We assume that for i # j the
processes W(i,t,w) and W(j,t,w) are statistically independent (Tkeda and Watanabe,
1981).

The dC term in equation (2) describes the creation, and the dA term — the
annihilation of atoms in the i-th model. That means that whenever the i-th observer
notices the atom w in a type—i—particle, then the state Xj(w) is transferred by dC
from oo to the point Xi(w), at which the atom has been noticed. Analogously, if the
atom disappears (it is drawn out of the region of interest, or it joins a particle of another
type due to a chemical reaction), then the observer assigns the value oo to the process
Xi(w), by defining the annihilation process to have an infinite increment.

The processes leading to creation of particles are, firstly, immission through the
boundary; secondly, emission from point, linear and area sources; thirdly, production due
to chemical reactions. The process C(4,-,-) is the sum of the respective components,
assumed to be statistically independent of each other, Markovian, and progressively me-
asurable with respect to the Brownian motion W(i,-,-). The components are defined via
their Markovian probability distributions, whose type will be identified and whose shapes
will be parametrically introduced into the model on the basis of actual measurements
and envisaged data and, finally, from influxes. The annihilation terms are the following:
removal due to chemical reactions, by rainout and washout, out—crossing the district
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boundary, sedimentation. The first two processes are W-independent, W-progressively
measurable and Markovian and are defined through their intensities (Ikeda and
Watanabe,1981). The third and fourth processes are, by definition, dependent on the
moment of reaching the boundary, and so they are X{(w)-measurable Markov proces-
ses with the special feature that the boundary layer is a partially absorbing, partially
reflecting boundary (depending on the dry deposition velocity).

Therefore, the atoms observed can be categorized according to their macro—scale or
micro-scale movements. The main assumption is that these classifications are mutually
independent. Such random fields like wind velocity, eddy diffusivity coefficients, chemical
reaction rates etc. are assumed to be slowly varying in space and time. On the other
hand, the diffusion itself, the chemical reactions and border crossings by (Brownian-like)
particles are short range processes. Thus, the set  of all atoms can be regarded as the
direct product of two probability spaces

{Q,f,P} = {Q1 X Qz, fl xfz, P1 x'Pz}

where {Qi, F1,P1} is a macro-scale probability space, and {Qa, F;, P2} is a micro-
scale probability space. We assume that the processes V, B, and the intensities defining
the processes C and A depend only on w; (the intensities are regarded as local
averages and so they are independent of the micro-scale events). We also assume that
the Brownian motion processes W are functions of w, exclusively.

4.3. Equations for Concentrations (the Basic Model)

We assume that the advection field V and the eddy diffusivity coefficients B are
P1—almost surely jointly globally Lipschitzean. Then for almost all w; € P; the above
assumptions allow us to consider equation (1a)—(1f) as an Itd system with creation and
annihilation processes. The application of the theory of systems with variable structure
leads to the following generalized Fokker—Planck—Kolmogoroff equations for conditional
densities of the processes X{(w):

0
Ep(i)t):mwl) = ‘C(":)t)x)wl)p(i)t)x7wl)

"a(iytax)wlapla"'yps) + c(i,t,:c,wl,pl, ceey p6) (3)

with the initial conditions p(7,0,z,w;) = po(?,%,w;) and with the boundary conditions
taken into account via sink and production terms @ and ¢ (for definitions see below).
Here p' = p(i,t,z,w;) is the density of the Lebesgue-regular part of the conditional
probability that the considered atom is seen at the point z at time ¢, provided that it
is in an i-th type particle and was subjected to the macroscopic history w;. £ is a
differential operator

L(i,t,z,w1) = (L(5,t,2,w;,wy))s
=VT(i,t,2,01)V, + V2 diag {K®, KY, K*}(,t,2,w,) Vs

where (.)2 denotes averaging with respect to the measure Pj, that is, with respect
to microscopic fluctuations, while AT denotes transposition of 4; p(0,¢, Sw1) + .+



Estimation and Prediction of Pollutant Concentrations Involved in ... 741

p(6,t,-,w;) = 1 (which means that system (3) can be regarded as a system of mass
conservation equations). Directly from the definition, the quantity D-10°-p(i,t,z,w1),
where D is the volume of the spatial domain above the considered area, can be under-
stood as the instantaneous random concentration (in ppm) of particles of type 7 at the
point (¢,z).

The terms a and c are sums of terms of the following form

§(C(3,z) — g(i))v(i,t, z,w1)

(where §(z) = co if 2 =0 and 0 otherwise, § is the Dirac’s delta function)

describing creation (with v = pu(i,t,z,w;1)) or annihilation (with v =
p(i,t, z,w1)p(i,t,,w1)) on the surface I'(i,z) = g(i), with intensity v;

8(C1(i, @) — 91(8)) 8(Ta(3, z) — 92(3))
describing creation at the intersection of two surfaces (along a line source);
8(T1(4, %) — 91(4)) 6(Ta(4, z) — g2(3)) 8(T'a(i, z) — g3(1)) v(i, 2, w1)

describing creation (due to emission) at a point source;

p(i, t; x,wl) V(i) t) 17,(.01)

describing removal due to rainout with » being the intensity of rain multiplied by
a factor characteristic for i—th type particles.

Here I'(i,z) and T;(i,z), j = 1,2,3 are the boundary surfaces in the state
space, on which the state changes take place. These surfaces are given by equations
[(i,2) — g(i) =0 or T;(i,z) —g;(s) =0, j =1,2,3, where, g(7) and g;(2), 7=1,2,3
are known scalar values. (For the exact definitions of these surfaces see Kazakov and

Artemeev, 1980).

The remaining parts of the processes a and c¢ are just the right hand sides of
system (1a)—(1f) describing the removal and reproduction of particular species. In these
equations the concentrations [-] are just replaced by p and the rate ”constants” k
should be regarded as randomly fluctuating fields k(z,t,z,w;).

So we have the following system of coupled equations

D gl t,01) = (LG & 2Dl b, 01) = AG 8,292, )

+C(i,t,2,pt,...,p%) + R(4, ¢, z,w1) (4)
with the same initial conditions as in (3), where
R(i,t,2,w1) = (L= (Lh)p—(a — A) +(a = C) (5)

is regarded as the random external loading, with A and C formed from a and ¢ by
replacing all fluctuating intensities (dependent on w;) by their averages over the micro
scale space €5. Here the symbol (L); denotes averaging with respect to the measure
P, that is, with respect to all possible macroscopic observations.
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System (4) is our basic model. Residual part (5) is of stochastic nature and is an
aggregate of many random factors. It is thus reasonable to assume a special form of the
process R to assure efficiency of the method. The main idea is to assume as much as
possible about R in order to simplify the method of estimation of both the state p and
model parameters on the basis of observed concentrations at few points of the region.

Since for all ¢ and z we have p(0,t,z,) = 1/D, the equation for particles of type
0 can be neglected.

4.4. Discretized and Linearized Model

In order to make use of an efficient filtration algorithm the basic model (4) has to be
discretized. Our discretization method is the same as for the sulphur dioxide model as far
as the spatial variables are concerned. It is based on the method of fractional steps and
the Crank — Nicolson (Crank and Nicolson, 1974) method. Discretization with respect to
time should be performed according to Gear’s method (Willonghby, 1974; Kreiss, 1978).
This is because of the different reaction times in different equations of system (3). Of
course, it can be done after checking whether the system is stiff.

The new feature is that we deal with a system of coupled equations and that the
chemical production and sink terms coupling the consecutive equations are highly non-
linear.

Therefore, we apply the method of fractional steps. The first step concerns the
nonlinearities. In this way, we arrive at the system of equations for the vector of concen-
trations

X(k) = [p((),tk,z,,uw),p(l,tk, mlmn); "'1p(6)tk)xqrs)]

of the following form

X(k +1) = fu(X (k) + Ra(w1) (6)

The basis for the estimation of the state X' (k) and for parameter validation is the
observation of the concentrations at few nodal points

Z(k) = HT X (k) + v(k), (7)

where H is a matrix of zeros and ones (zero when there is no monitoring site at the
nodal point and one otherwise), while v(k) is a measurement noise vector. Clearly, R;
is treated as the state equation noise. R and v(k) are independent Gaussian white
noises.

The extended Kalman filtering theory will serve as a tool for estimating the state
vector of concentrations. The main direction of investigations will be the linearized
version of system (6), (7).
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5. Application of Adaptive Filter to Forecasting the Distribution
of Air Pollution Concentrations

5.1. Preliminaries

Let us consider a stochastic process {(z:,y:); t € I}, taking values in IR” x IR/, defined
for t € I, where I is a subset of the set of integers Z or real numbers IR.

Suppose that from the knowledge of the so called observable process {y:;t € I} up
to s € I, one would like to determine, as accurately as possible, the value of the process
{z4;t € I} at time s+u. If u > 0, then the problem is referred to, as a prediction
problem; if u =0 then one talks about filtration; finally, if u < 0, then one talks about
smoothing of the unobservable process {z;t € I'}.

In our case the observable process y; is given by measurements of immission
concentrations, and the unobservable process z; is the concentration of pollutants.

We will assume that Z, (the estimator of ,) is measurable with respect to the
o-field Y,, where we have set Y, = o{y:; t < s}.

Our filtration problem will be considered solved, if we find the conditional distribu-
tion P(A|Y,), for A € B(IR"). We recall that P(A4]Y,) £ P{z, € 4|V, }.

On the next few pages we will show how the problem of filtration is solved in the
case when state and observation processes are linear, and all noises are Gaussian. This
is the most important case. In more complicaded cases we will refer the reader to the
literature.

5.2. Filtration of Linear Systems with Discrete Time

Consider the system of recursive equations

41 = Qeme + 0y (8)
t e fto, ..., T
Yt = @t:ct + €y (9)

where ® and ©, are nxn and jxn matrices, respectively, and
{€1y, o415 -+ ET Vig, Vo1, -, U7} 1S @ sequence of independent Gaussian random vec-
tors with known covariance matrices

E{vwT}=Ri(t), E(v)=0
E{eieT} = Ra(t),  E(e:)=0

The random variable «;, is also Gaussian with known mean value E(z:,) = m,
and with covariance matrix E{(z:, — m)(®:, — m)T} = Ry. We also assume that z;, is
independent of {vi,e,; s,t € [to, T]}. The matrices ®;,®; depend only on t. We set
Vs = 0{yty,--,¥s} for s € fto, T7.

We will also need the following notation
8= E(,)y,),  Po=E{(z—8)(z, —3)T V)
S, = E{(zs — E{zy|Yeu1})(®s = E{zs|Yeut DT Vs-1}-
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Theorem 1. The random process {Z;; t € [to,T]} satisfies the following system of
equations (Jazwinski, 1969; Anderson and Moore, 1979)

Tip1 = 8421 + K1 (Y141 — Orq1®iZy), t € [to, T — 1],
with initial condition Ty, = E{zy,|yt,}- The matriz K, depends only on time.

Theorem 2. The matrices P,K,S satisfy the following system of recurrent relations
(Jazwinski, 1969; Anderson and Moore, 1979)

Pii1 = Siy1 — Ki410:415141, T>t>t
Si41 = Pi®] + Ry(t), : T>t>t
Kiy1 = S041071[04415:110T + Ro(t + 1)]7Y, T >t >t

with initial condition S;, = Ry.

It has to be underlined that this variant of filtration algorithm was applied for the
SO; model used in Silesian District (Twardowska, 1989).

5.3. Filtration of Nen—Gaussian Systems

Relaxing the assumptions of the previous section usually causes many difficulties and
complications in the filtering algorithm. Nevertheless, if the disturbances {e;} and
{vs} are jointly elliptically contoured (Szablowski, 1989), and other assumptions on
systems (8) and (9) remain in force, then the resulting filter does not differ substantially
from the Kalman filter. The first of the equations of Theorem 1 remains the same. The
difference lies in the fact that the matrix S, is now random. More precisely, it is of the
form: Pj times some random variable depending on k. The simplicity of this case lies
in the fact that this sequence of random variables can be approximated by the sequence
{S%} generated by the following recurrent relationship (Szablowski, 1989)

SE=(1-1/k)Si_; + (1/k)(yx — Ok zx) [0 PLOT + Ra(k)] ™ (yx — OxZk)

5.4. Filtration of Nonlinear and Non—Gaussian Systems

For the nonlinear and non-Gaussian case, the computational difficulties become
enormous. Presenting them in this short note would take too much space. That is
why we refer the reader to say monograph of Anderson and Moore (1979).

5.5. Processes with Varying St;;’i’xcture

Processes with varying structure are described by a vector of s+ 1 variables (s is the
number of different structures); s of them take values in IR", and one is discrete, and
describes the actually utilized structure.

Each of the continuous variables satisfies a system of stochastic differential equations.
The discrete random variable (structure) usually forms a Markov chain with transition
probabilities depending, in general, on the values of the state vector describing the current
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structure. It is usually assumed that the observations are linearly related to the state
vectors, and that the structure process is observable.

All these remarks lead to the conclusion that filtering of systems with varying struc-
ture i1s a very complicated task. It leads to a system of integro—partial differential equ-
ations which can be solved analytically only in very special cases. Hence, various me-
thods of approximating the exact solution have been developed. The most recommended
(Kazakov and Artemeev, 1980) are those based on Gaussian approximation of a posteriori
(conditional) transition probability density of the state vectors, given the observations
and the current structure. The idea of these methods was already described in the pre-
vious section. Presenting the precise approximation algorithm would be out of the scope
of this paper, the more that we intend to resort to the varying structure filtration tech-
nique only if all the previously described techniques prove to be insufficiently powerful.

Let us remind that, although the starting point to our modeling was the varying
structure equation of particle motion, it is not the particle positions which is the aim of
our filtration algorithm. What we look for are the concentrations of the pollutants at
the nodal points. The basic equation (4) for the concentrations, is no longer a model of
varying structure. Therefore, the varying structure systems theory reenters our analysis
not because our model (4) a has varying structure, but because this system is highly
nonlinear and the theory offers a highly sophisticated approximative method for the
filtration of such systems.

Besides its nonlinearity, system (4) has one more specific feature: since the dependent
functions p;, i = 1,...,6 are the probability densities, therefore they remain nonnegative
and together with p, are summable over the domain D to unity. All these features can
be taken care of in the following way.

As in section 4.4 we define the state variable Xty = (@) =
[Po(t, Touw )y - P1(E, Timn )y - P6(t, Tgrs)]T. This time we will discretize model (4) with
respect to the space variables only. Thus, system (6) will be replaced by

X(t) = f(t, X(1)) + R(t,w). (10)
Here X(t) €D ={X¥ = (x1,--»Xn) 1 X5 2> 0, :Elxj <1}

Let us split 0D into Sy U Sy, where S = {z € 9D :z; >0}, So =0DP\ 8. To
assure that the boundary conditions z; > 0 are satisfied one can embed the boundary
So with the e-layer Dy C D (of the thickness ¢), in which model (10) is modified in
such a way, that f is replaced by FE(¢)X(t), where FE(t) is a square matrix with
rows Fdej satisfying F(%X(t) >0 for j s.t. z;(¢) < e. Further, the boundary & in
Dy is considered reflecting. Similarly, to assure that E;.’:I X; <1 one can embed the
boundary S; with an e-layer D; C D (the technicalities concerning the corners and
the border between D; and Dy are left aside here). Again, function f of (N') is
replaced in D; by Flg(t)(l’(t), such that [1,...,1]7 Ff(t)X(t) <0 for z€D;. & 1is
considered a reflecting boundary.

To take care of the nonlinearities, the remaining part of the domain D is divided
into disjoint classes D;, j = 2,...,K in each of which function f from (10) is linearized
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with respect to X' and it is replaced by F;(¢)X(t). All these modifications are made in
such a way as to preserve continuity of the piecewise linear substitute of function f, as
well as to allow numerically effective and qualitatively correct approximation (since f
and F; depend on time, one has to look for a fast and robust algorithm, rather than
for the one that would be sophisticated and optimal with respect to distributions). This
can be achieved by defining Fj(t) in consecutive cubes via equating the values of the
nodal points.

In this way one arrives at K + 1 different linear models
27 = B )X + RO2) (11)
which can be treated as a varying structure system by adding in—and—out fluxes through
the boundaries between the cubes (processes of creation and annihilation).

The filtration for system (11) consists of constructing the a posteriori estimates Xk

of the actual system state X7°“* based upon the discrete-time observation Z,
[Z(0), ..., Z(n)], where

Z(n) = H/l’tj:d +Va (12)

Assuming that RI(t) are white noises with known intensities ’R,j (t) dt =
Di(t)dW/(t), and that the measurement noise V, is white with EV, VI = 6,.Q,,
one can arrive at the following estimates (Kozakov and Artemeev, 1980):

X, = B(X|Z) :/ 2oy, de.
D

Here Wp(z) = E;K:o Gg)(m‘) and the a posteriori densities can be determined from
the iterative equation (for j =0,1, ..., K)

K
03}, (z) = 89)(2) — AUV (2,8) + Y By (2, tn) — Trj (2, )]}

r=0

———Atw(’)(x)[f (z,7) / Fa(y, 2)00 (y) dy]

where
. 1& 5 D .
) (e1) = ()04 (2) - § 3 5, (DL 03 o, 1)
M . ~r
Vjr(z,tn) = Z&(xk - air)s;?rﬂg)(z,tn)
k=1

(sj?r = 41, if by decreasing variable z; below aj' one leaves region r and enters
region j and sf, = —1 if it is obtained by increasing variable zj; otherwise s =0).
Moreover, U,;(z,t,) = Uj(,15).
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Finally, expression f,(z,z) is defined as follows
fal2,2) = [Z(n) - HATQ5[Z(n) — HA]

Unfortunately, the above equations are too complicated to develop a direct analytical
recursive algorithm for estimates Aj. Therefore, the computational complexity of the
above approach justifies the use of simpler methods and resorting to the varying structure
filtration technique only in the last instance.

6. Parameter Identification and Model Validation
6.1. Identification of Model Parameters

Along with filtration, adaptive identification of parameters entering the model will be
performed. We shall only describe the method for a linearized model. The same ideas can
be applied to the nonlinear model. The difference is that the likelihood functional cannot
be formed so easily in the latter case, and another criterion (based on an approximation
of the likelihood functional) would have to be employed.

Let us first consider the case of identification of coefficients of the observable quan-
tities. In this case model (6), (7) can be rewritten in the form

ZTr41 = Far + Gy + Kvg + ug
yr = 0Tz,
2k = Yk + vk

where 6 is the vector of parameters to be identified, F, G and K — some matrices, u
— the external input (it can be a function of the observation z). For the above simple
system, filtration and parameter identification can be performed simultaneously. The
estimate of the state is based on the current value of the estimate of the parameter, and,
conversely, the estimate of the parameter is calculated from the state estimate (Eykhoff,
1981)

k= 2k — Yk
Ak =,0;{fl:\kx

~ ~ o f T A
O = 01 — Alc+193k (Zk — Ty 91:-1)

where Agy1 = Ap — AxZx (BT ARTh + I)—lifAk and I denotes identity matrix.

A more general algorithm may be developed (if necessary) based on the extended
Kalman filtration algorithm described in the previous section. Another general method
leads to a prediction error algorithm resulting from the solution of an optimization pro-
blem of the form

g (Z Qr (2zx — Zk|k-1,9)) — min (13)
k
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where # may be formed of all matrices F, G, H and the covariance matrices of the
noises v and v. @’s are positive definite, matrix valued functions of their arguments
and g¢ is a convex real function. In particular, for linear systems the likelihood functional
takes this form (Kazakov and Artemeev, 1980).

6.2. Identification of Additional Models for Missing Meteorological Data

Several simple models for basic meteorological characteristics have been developed. Based
on ten years’ hourly observations of wind speed and direction, humidity, temperature
and solar radiation, the basic correlations have been estimated and a coupled system
of ARMA models for these quantities for each month of a reference year have been
proposed (Bonivento et al, 1980). Using these tools the missing hourly data can be
estimated according to the local climate characteristics.
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