Appl. Math. and Comp. Sci., 1995, vol.5, No.1, 189-208

STRUCTURING THE MESSAGE-PASSING CHANNELS'

STanisLaw CHROBOT*, AcaTa STRAS*, RoBERT STRAS*

Low-level primitives for a high-level language and protocols in this language
are proposed to implement synchronous message passing for a set of distribu-
ted processes running on a set of single-processor multiprocessing nodes. This
implementation is meant to explicitly express process scheduling and message
dispatching algorithms in the high-level language. The link is proposed as a
low-level one-to-one asynchronous communication channel able to buffer a sim-
ple data entity. Protocols are presented for using links in synchronous message
passing. These protocols use interrupts as a main synchronisation tool. This
decreases the context switching and process scheduling overhead considerably.
On the top of these protocols, many-to-one message channels are implemented.

1. Introduction

The art of programming with interrupts has its own specifics. It differs from sequential
and concurrent programming. Accepting an interrupt invokes an action (interrupt
handler) asynchronous to the running process. The interrupt handler seems like a
regular subroutine, but the programmer cannot foresee when such a subroutine will
be invoked in the course of process execution. This is why the interrupts are usually
hidden inside the operating system kernel which provides the user with safe and
convenient synchronous IO operations and message-passing primitives.

Recently, interrupts have become available at the user level in the form of signals
or exceptions generated by the kernel. Signals, implemented in (SunOS, 1990), can be
sent to heavyweight (UNIX-like) processes. Ezceptions, implemented by Jagannatan
and Philbin (1994), can be sent to lightweight threads. Such signals give the user
the possibility of designing reactions for events like arithmetic exceptions, interrupts
generated by user requests, or completion of non-blocking IO operation.

A close relationship between interrupts and message passing primitives is reflected
in many distributed languages which allow high-level interrupt handling (Occam,
1988; ADA, 1983; Gehani and Roome, 1986; Andrews et al., 1988). Using Ada
terminology, “an interrupt acts as an entry call issued by a hardware task” (ADA,
1983). Interrupt handling is considered a rendezvous between the device process and
the server process.

Rendezvous is widely used in the client-server model of distributed programming.
The server process defines a set of operations, called entries or transactions, which
can be called remotely by client processes. A transaction is executed after it has been

t This work was supported by Kuwait University under the grant number SM 087
* Kuwait University, Department of Mathematics, P.O. Box 5969 Safat, 13060 Kuwait

190 S. Chrobot, A. Stras and R. Stras

called by a client and accepted by the server. The server can wait for more than one
transaction call at a time using the select statement. When more than one transaction
1s acceptable, the server selects one of them in an arbitrary way. To be always ready
for accepting the client call stream, the servers usually execute the select statement
in a loop.

Such a model is a source of significant process management overhead. To analyse’
it, let us assume that the server is waiting for a client. When the client’s message
arrives, the client is blocked, and the server is resumed. This requires a contert
switch and process rescheduling. When the transaction is completed, the server is
blocked, and the client is resumed. This requires another contert switch and process
rescheduling. It is worth stressing that this kind of overhead is extremely expensive on
RISC processors where the context switching needs reloading the register windows.

Let us note that such overheads do not appear when the buffer is implemented
by a monitor. If a process calls a monitor when its critical region is not occupied,
neither context switch nor process rescheduling is needed.

Another source of overhead is the guard evaluation. The server has to re-evaluate
the guards every time the select statement is started. This leads to a semi-busy form
of waiting. In monitor, the synchronisation conditions are evaluated when there is a
need, before a potential waiting or signalling.

In this paper we suggest that both the process management and the guard eva-
luation overheads can be reduced considerably, if the interrupt feature is used as a
regular low-level synchronisation mechanism for message passing IPC. Ada entries or
Concurrent C transactions can be considered interrupt-driven not only when called
by a hardware process, but when called by any software process as well. On top of
the interrupt feature, other high-level message passing primitives can be built in a
structured way, much the same as the shared memory primitives are built on top of
the spin lock (Chrobot, 1994; Wirth, 1985).

Both the interrupt feature and the spin lock are hardware supported features.
Both of them are one-out-of-many selection mechanisms. In case of spin lock, many
processes compete, in a loop, for a signal deposited in a shared bit. The process
that finds the signal set, resets it, and passes the selection operation (traditionally
called Test-and-set). The hardware support for this kind of selection is called memory
arbiter.

In case of interrupt, one process checks, in a loop, many signal bits. Each of
them is associated with a process to be selected. A process is selected when it has
sent a signal to its signal bit and when the selecting process has accepted this signal.
The hardware support for this kind of selection is called an interrupt system. The
processor plays usually the role of the selecting process. The signal bits are called
interrupt sources, and the processes associated with the signals are called interrupt
handlers.

The spin lock can be considered a prototype of the mutual ezclusion mechanism,
while the interrupt a prototype of the rendezvous mode of execution. Two aspects of
our approach are worth stressing. We suggest that

Structuring the message-passing channels 191

— high-level inter-process communication (IPC) primitives can be built on top of
low-level concepts in a systematic way,

— the low-level message passing IPC concepts are related to the interrupt feature;
which means that neither spin lock nor monitor need to be used to structure the
high-level message passing primitives.

The advantages of our approach follow from both the above mentioned aspects.
As far as the first aspect is concerned, including the low-level primitives into a high-
level programming language allows the user to

— express both the process scheduling and message dispatching algorithms at the
application level, so queuing disciplines in these algorithms can be tailored to the
application needs,

— choose different kinds of message passing primitives for different applications ac-
cording to the nature of his application.

As far as the second aspect is concerned, using the interrupt feature to structure
the message passing mechanism yields significant efficiency gains. It reduces

— the process management overhead related to context switching and process sche-
duling,

— the overhead related to the evaluation of guards (synchronisation conditions) which
control the acceptance of the messages incoming to the server.

In this paper we will focus on the rendezvous type of message passing and will
illustrate our discussion with the bounded buffer example. The paper consists of 7
sections. In the two main sections, Section 2 and Section 3, we introduce the low-
level concepts: link, coroutines, and needles. In Section 4 we present how they can
be used to build structured channels. Qur main interest is in the mailbox as a part of
a multi-client server. In Section 5 we present the directions for further work. Section
6 describes related research and Section 7 is the conclusion.

2. Links and Related Protocols
2.1. The Link Concept

We introduce the link as an elementary message passing concept. The linkis a type of
asynchronous, uni-directional, point-to-point communication entity for transmitting
values between processes. The link can store a simple data entity (word or pointer)
and a signal bit. The link, however, is not a one-capacity bounded buffer. The stored
entity can be overwritten if it has not been read early enough. Processes access a link
through its ports: link output port and link input port. A link ! associated with an
output port op and an input port ip will be denoted by (op, ip).

A link output port op is accessible through its three output operations:
LPUTW(op,w) or LPUTP(op,p) and LSIGNAL(op). The LPUTW(op, w) opera-
tion writes the word (int) value w to the link ! associated with the port op, and
LPUTP(op,p) writes the pointer (void*) value p to the link ! associated with the
port op. The value w or p is stored in the link ! until the next LPUTW() or
LPUTP() operation to the same link overwrites it. LSIGNAL(op) sets a signal in the

192 S. Chrobot, A. Stras and R. Stras

link / (assigns value 1 to the signal bit). The signal is stored in the link ! until it is
reset (value 0 is assigned to the bit signal) by the LWAIT(ip) operation accessing the
input port ip associated with the link I.

A link input port dip is accessible through four operations: LWAIT (ip),
LTEST(ip), LGETW(ip,z) and LGETP(ip, pz). LWAIT(ip) busy-waits until the
signal bit in the link ! associated with ip is set and then resets it. We will say that
a process has accepted a signal from the port ip when it has reset its signal bit.
LTEST(ip) is a Boolean function that returns ¢rue when the signal bit in the link [
1s set; otherwise it returns false. LGETW(ip, z) reads the word value stored in the
link [and assigns it to the variable z. LGETP(ip, pz) reads the pointer value stored
in the link ! and assigns it to the variable pz. To avoid undefined results, we assume
that a given link is used either to transmit words (word link) or to transmit addresses
(pointer link).

Links can be used to pass words or addresses between processes running on the
same processor (local links) or on different processors (remote links). The sender and
the receiver of a local link can be the same process.

It is obvious that the link is not a typical asynchronous channel. Such a chan-
nel, to be safe and reliable, usually includes unbounded buffering and transmission
protocols. From our point of view, such a channel is too heavy to be used as a primi-
tive concept to build other channels; we need a simpler concept to express both the
buffering and the protocols on top of it.

2.2. Simple Transmission Protocols

Well-defined results of the transmission down a link are achieved if the sender and the
receiver apply the same transmission protocol. In this section we analyse protocols
that transmit simple values of the word or pointer type. We call such protocols simple
transmission protocols. Later on, we will analyse protocols to transmit structured
values — messages.

Transmitting more than one word requires engaging two links: data link
d(opd, ipd) and signal link s(ops, ips) and using them according to the protocol:

a) for each word transmitted, the sender puts the word w into link d, signals down
this link and waits for a signal from the link s

LPUTW(opd, w); LSIGNAL(opd); LWAIT(ips)

b) for each word received, the receiver waits for a signal from the link d, gets a word
from this link and sends a signal down the link s

LWAIT(ipd); LGETW(ipd, z); LSIGNAL(ops)

The above protocol will be called the simple acknowledgement protocol The link
d will be called data link, while the link s will be called signal link.

There is an alternative protocol where the link s is used by the receiver to send
a request signal. We will call this protocol the simple request protocol:

Structuring the message-passing channels 193

a) for each word sent, the sender waits for a request signal from the link s, and then
puts the word w into the link d and signals down the link d

LWAIT(ips); LPUTW(opd,w); LSIGNAL(opd)

b) for each word received, the receiver sends a request signal down the link s, waits
for a signal from the link d and gets a word from d into variable =

LSIGNALops); LWAIT(ipd); LGETW(ipd,z)

In the above protocols the processes use a data link and a signal link. The signal link
is used for strict synchronisation purposes. We call such protocols simple synchronous
protocols.

Another kind of protocol uses two data links: [1(opll,ipll) and 12(opl2, ipl2).
To exchange two words (request and replay) between the sender and the receiver, we
use the following protocol:

a) for each request, the sender puts the request word w into link 11, signals down
this link, waits for a signal from the link /2 and gets a replay word from this link
into variable z1

LPUTW(opll,w); LSIGNAL(opll); LWAIT(ipl2); LGETW(ipl2,z1)

b) for each request, the receiver waits for a signal from the link /1, gets a request
word from this link to the variable z2, puts the replay word r in the link /2 and
sends a signal down this link

LWAIT(ipl1); LGETW(ipll,z2); LPUTW(opi2,r); LSIGNAL(opi2)

The receiver can execute any operation R after getting the request z2 and
before putting the replay r. If the operation R takes x2 as its input parameter and
returns 7 as its output parameter, it is called a simple rendezvous operation, and the
protocol is called a simple rendezvous protocol.

LWAIT(ipll); LGETW(ipll,22); R(z2,r); LPUTW(opi2,r); LSIGNAL(opl2)

The simple synchronous protocols can be considered specific cases of the simple
rendezvous protocol if

— the receiver using the acknowledged protocol executes the operation R(z) (R
takes z as its input parameter) after getting the value z from its data link and
before sending the acknowledgement down the signal link or

— the sender using the request protocol executes the operation R(w) (R produces
w as its output parameter) after getting the request signal and before putting the
value w into its data link.

For the above three protocols, the process which executes the rendezvous opera-
tion is called the server process. Its partner at the other end of the channel is called
the client process. A pair of links working in a simple protocol will be called a simple
channel.

194 S. Chrobot, A. Stras and R. Stras

Using the LWAIT operation binds the server to one link. The server can, however,
transmit data entities through many channels alternately using the LTEST operation
to monitor their input ports in a selective loop. Such protocol applied by the server
will be called selective acceptance protocol.

3. Using Interrupts in the Simple Protocols

3.1. Busy and Non-busy Waiting in the Protocols

The LWAIT() operation and the selective acceptance protocol presented above use
the busy form of waiting. The server continuously tests its input ports until the link
signal is set in any of them. Such a form of waiting is acceptable if each server runs on
its own processor. If the server and other processes are multiplexed on one processor,
this solution is not efficient. The non-busy form of waiting is usually used for such
multiplexed processes.

Typically, the non-busy form of waiting for the processes which share common
memory is implemented by blocking the waiting process inside a monitor. The monitor
solution for the selective acceptance protocol is as follows:

— the server is blocked on a monitor condition if none of the input ports is ready for
acceptance; the first client which sends an entity to an unmasked channel resumes
the blocked server which executes the rendezvous operation and replays to the
client,

— the client is blocked on a monitor condition associated with its channel if the server
1s not ready to accept its message; when the server is ready, it selects one of the
clients blocked on one of the unmasked channels, processes its message, returns
the replay, and resumes this client.

The monitor implementations of the synchronous channel and of the selective
acceptance protocol are both very common. Shared memory implementations for
one-to-one, many-to-one and many-to-many channels are well-known (Brinch, 1987;
Gehani and Roome, 1986; Occam, 1988). Unfortunately, the shared memory imple-
mentation does not work for the processes running on different computers interconnec-
ted with a network. However, even in such configurations the monitor implementation
usually dominates. The operating system kernel treats the network as a peripheral
device using interrupt signals for synchronisation purposes and input/output regi-
sters to transmit data to/from one device at a time. This way of handling devices
corresponds roughly to our simple one-to-one channels. The acceptance protocol and
other types of channels and protocols, however, are implemented on top of such simple
one-to-one channels using monitors.

Below we will show that this transformation from the interrupt paradigm to the
monitor paradigm is not necessarily needed. The higher level protocols and channels
can be implemented in the interrupt paradigm only. As a presentation language
we have chosen Modula-2 since its low level concurrency primitives are a very good
starting point for further extension.

Structuring the message-passing channels 195

3.2. The Modula-2 Low-Level Concurrency Concepts

In Modula-2, Wirth (1995) introduces a kind of process called coroutine. A set of
coroutines can run on a single processor in an interleaving mode one at a time. The
coroutines pass control explicitly from one to another using the TRANSFER(p1, p2)
operation. It suspends the current coroutine, assigns its identifier to pl, and resu-
mes the coroutine designated by p2 previously suspended by another TRANSFER
operation.

The coroutines can be synchronised with the processes running 1n
the environment (e.g. IO devices) using interrupt signals. The operation
IOTRANSFER(pl, p2,1), much like the TRANSFER, suspends the current corou-
tine, assigns its identifier to pl, and resumes the coroutine p2. Later, on the arrival
of the interrupt signal 7, the current coroutine is suspended, its identifier is assigned
to p2, and the coroutine pl is resumed (just after the IOTRANSFER operation).

3.3. Non-busy Waiting in the Simple Transmission Protocols

The first crucial step on our way to using the interrupts to implement message passing
protocols is to identify the link signals with the interrupt signals. One could say in
technical terms that we “connect the link input ports to the interrupt system”. In
this way the link signals have become a subset of the interrupt signals. This can raise
some naming problems. Naming, however, is out of the scope of this paper, and for
the sake of simplicity we assume the set of link signals and the set of interrupt signals
are identical, so the interrupt signals can be well-identified by the names of the link
ports connected to them.

On top of the low-level primitives, we are going to build a module which maintains
the queue of ready processes. It also implements the process management and the
non-busy form of waiting for monitor signals and interrupt signals. For the non-busy
waiting for interrupt signals we are going to design the IOWait(ip) procedure which
delays the running process until the interrupt signal from the link input port ip
arrives. The delay is implemented by suspending the calling process and resuming
one of the ready processes by the IOTRANSFER() operation. When the signal from
the link input port ip is accepted, the current process (providing it is not the idle
process) becomes ready, and the delayed process becomes running.

COROUTINE run, idle;
ProcessQueue Ready;

void IOWait(LINPORT: ip);
{ COROUTINE delayed;
delayed = run;
if (Empty(Ready)) run = idle else Remove(Ready, run);
IOTRANSFER(delayed, run, ip);
if (run <> idle) Insert(Ready, run);
run:= delayed;
}
Our IOWait() operation is functionally equivalent to the LWAIT() operation but
uses an efficient non-busy form of waiting. Thus IOWait(ip) can replace LWAIT(ip)
in the simple transmission protocols presented in Section 2.2.

196 S. Chrobot, A. Stras and R. Stras

It is worth noting that each IOWait() operation switches the context and resche-
dules processes twice: first before the calling process is suspended in the IOTRAN-
SFER operation, and then after it is resumed by this operation.

3.4. Non-busy Waiting in the Selective Acceptance Protocol

IOTRANSFER() and IOWait(), unfortunately, cannot be used in the selective accep-
tance protocol. The process which calls IOTRANSFER() or IOWait() can wait for
one interrupt signal at a time only. To overcome this problem we could introduce new
primitives: IATTACH() and ITRANSFER(). The IATTACH(ip) operation attaches
the link input port ip to the calling coroutine. More than one link input port can be
attached to a given coroutine at a time. ITRANSFER(pl,p2) suspends the calling
coroutine until an interrupt signal from any of the attached input ports is accepted;
after resumption, the calling coroutine detaches all the input ports attached to it.

On top of ITRANSFER(), the IWait() operation is defined. It corresponds to
the IOWait() operation. IWait() has no parameters since it waits for any of the
attached interrupt signals. Its algorithm is very similar to the IOWait() algorithm;
IOTRANSFER() is simply replaced with ITRANSFER().

3.5. Needle Concept

The operation which follows IWait() in the above protocol can be considered a handler
of the interrupt signal which completes this operation. A full context switch (inside
ITRANSFER()) and a process rescheduling (inside IWait()) have to be done before
the handler starts. As a result, the handler is executed as a part of the coroutine
body. We will call such a handler coroutine (or process) level handler.

Many distributed languages like ADA (ADA, 1983) or Concurrent C (Gehani
and Roome, 1986) use the process level handlers to handle the interrupt signals. The
advantage of such handlers is that they can be designed like any other part of the
server. Among others, the server can be suspended in a selective acceptance protocol
nested in the process level handler. The cost of this facility is, however, too high in
many situations. Generally, real-time systems do not accept the overhead introduced
by the process level handler. They usually do not nest the selective protocols, and
they require a fast interrupt reaction time.

If the server accepts the client requests in a loop, additional overhead can be
observed. After accepting one request, the server has to start the select loop again
to re-evaluate all the channel guards, reattach all the input ports, and invoke the
rescheduling operation and context switching before accepting the next request.

An alternative for the process level interrupt handler is a handler which is exe-
cuted on the stack of the interrupted process. Before invoking such a handler, the
context of the interrupted process must be saved to be restored when the interrupt
handler is completed. In this way the interrupted process can continue its run without
any stack switching or rescheduling of the running process. The handler has, however,
no identity of its own, which is why no delay operation can be invoked in it.

Structuring the message-passing channels 197

In terms of context switch and process scheduling overhead, such an interrupt
handler is “lighter” than lightweight threads implemented in the same memory space.
This is why we call it needle handler or just needle.

3.6. Using Needles in the Selective Acceptance Protocol

In order to use the needle handlers in the selective acceptance protocol, we have
introduced five primitives: ATTACH(), MASK(), UNMASK(), MTRANSFER(),
and CONTINUE().

Formally, the needle handler is a procedure H associated with a signal bit of
the link input port ip which is attached to the calling coroutine by the primitive
ATTACH(ip, H). The calling coroutine will be called native coroutine for this handler.
Many input ports can be attached to one coroutine at the same time. Each input
port is also associated with a mask flag. The mask flag indicates the masked or
unmasked state of the port signal bit and is set or reset by two primitives MASK(ip)
and UNMASK(ip).

The interrupt flag (to indicate the enabled or disabled state of the interrupt sys-
tem) is an element of the coroutine context. This means that each coroutine saves
the interrupt flag when it is suspended and restores it when it is resumed (by the
TRANSFER, IOTRANSFER(), ITRANSFER() or MTRANSFER() primitives). A
coroutine disables and enables the interrupt system on entry and on exit, respectively,
from the monitor procedure. Each coroutine is provided with a continuation flag. It
is set to false when MTRANSFER() starts and can be turned to true by any handler
associated with this coroutine by calling the CONTINUE() primitive.

The MTRANSFER(pl, p2) operation suspends the current coroutine, assigns its
identifier to pl, sets the current coroutine continuation flag to false, makes the corou-
tine designated by p2 current, and resumes it. From now on, if the current coroutine
interrupt flag is enabled, any attached and unmasked interrupt signals will be accep-
ted. On each acceptance the current coroutine is interrupted, the handler H of the
accepted signal is executed, and the control returns to the interrupted coroutine. Such
interrupt handling will be repeated until the handler H sets the calling coroutine’s
continuation flag to true. In this case, after the completion of the handler, the current
(interrupted) coroutine is suspended, its identifier is assigned to p2, all the input po-
rts attached to the coroutine pl are detached, and pl is made current and resumed
(just after its MTRANSFER() operation).

During a needle execution, the interrupt system is disabled. Thus, at most one
needle can be executed at a time. When the needle is completed, the MTRANSFER()
operation is still pending and other signals can be accepted. It is worth stressing that
the sequence in which the needles are selected for execution is not defined by the
foreground process program (and its data). It depends on the sequence of arrival
of interrupt source signals. If more than one signal has arrived at the same time,
the selection is done in an arbitrary way by the interrupt system. Such a mode of
selection of operations for execution in a process will be called the dynamic selection
mode. It is an alternative to the static selection mode in which the next operation to
be executed by a process is selected (defined) by the program (and the data) of the
process.

198 S. Chrobot, A. Stras and R. Stras

The foreground process enters the dynamic sélection mode by executing a
MTRANSFER() operation and stays in it until one of the needle handlers clo-
ses it explicitly by executing the CONTINUE operation. When the needle calling
CONTINUE() is completed, the control is transferred back from the current process
P2 to the native process pl. The native process enters the static selection mode
and stays in it until the next MTRANSFER() operation is executed. This process
handles the interrupts in the static selection mode by using IOTRANSFER() to wait
for interrupts. In the static selection mode, interrupts are handled by process level
handler on the stack of the native process. In the dynamic selection mode, interrupts
are handled by needle handlers on the stack of interrupted process.

On top of MTRANSFER(), the IOMWait() operation is defined. Like IWait(),
it is similar to IOWait() with the only difference that IOTRANSFER() is replaced
with MTRANSFER() in IOMWait().

Introducing the needle handlers removes the two deficiencies of the process level
handlers:
- the needle handler starts as soon as possible (after saving the state of the inter-
rupted process);

— a set of input ports once attached is not detached after accepting one interrupt
signal; the next signals can be accepted repetitively without any need to re-attach
the ports and re-evaluate their guards; the state of the guards can be represented
by the port signal masks; the handlers switch the masks only when the states of
the guards have been changed.

3.7. The Producer-Consumer Example

To illustrate the low-level concepts, we present a Producer-Consumer system. Links
are used to pass messages, and needles are used to implement transactions in the
system. Two coroutines, Producer (P) and Consumer (C), use the Buffer Server
coroutine (S) to exchange word messages between them. The Producer and Server
are connected with the channel send consisting of the links: send_data and send_signal.
The channel uses the acknowledge protocol. The Producer is a sender, while the Server
is a receiver for this channel.

On the other hand, the Consumer and the Server use the channel receive working

in the request protocol and consisting of the receive_data and receive_signal links. The
Server is a sender for this channel, and the Consumer is a receiver for it.

send_data _receive_signal

N £
send (WRIT@ (RE AD) receive
_/ —
P send_signal S \‘ receive_data C

C) needle handler —{ 1}-» datalink —————— signal link

Fig. 1. Coroutines, links and needles in a distributed Producer-Consumer system.

Structuring the message-passing channels 199

The Buffer Server coroutine implements a circular buffer and accesses the ports:

#define max ... /* size of the buffer */
int buf[max];

int n, n, ou;

LINPORT send_data_input, receive_signal input;
LOUTPORT receive_data_output, send_signal output;

Attached to the input ports are two needles: WRITE() and READ():

void WRITE();

{ LGETW (send.-data_input, buf[in]); LSIGNAL(send.signal output);
in:= (in + 1) % max; n + +;
if (n == max) MASK(send_data_input);
if (n == 1) UNMASK (receive_signal input);

}

void READ();

{ LPUTW (receive_data_output, buflou]); LSIGNAL(receive_data_output);
ou = (ou + 1) % max; n — —;
if (n == 0) MASK(receive_signal input);
if (n == max —1) UNMASK(send_data_input);

}

The Buffer Server’s body initialises the interrupt sources and enters the dynamic
selection mode by the IOMWait operation. The Server body and the needles maintain

the invariant: 0 < n < N by masking and unmasking the interrupt signals depending
on its internal state.

void BufferServer();
{ n=0; 1n=0; ou=0;
ATTACH(receive signal input, READ); ATTACH(send data_input, WRITE);

MASK (receive signal input); UNMASK(send_data_input);
IOMWait();

The Producer accesses two ports. It produces a word and sends it down the
send_data link. To wait for the acknowledge signal, it uses IOWait(send_signal_input):

LOUTPORT send_data.output ;
LINPORT send_signal.input ;
void Producer()
{ int w;
while (1)
{ produce(& w); LPUTW((send-data_output, w); LSIGNAL(send_data.output);
IOWait(sendsignal.input); }

The Consumer also accesses two ports. It signals readiness to consume the next
portion of data, waits for its reception using IOWait, and consumes it.

200 S. Chrobot, A. Stras and R. Stras

LOUTPORT receive_signal _output;
LINPORT receive_data_input;
void Consumer()
{ int w;
while (1)
{ LSIGNAL(receive_signal output); IOWait(receive data_input);
LGETW(receive.data_input, & w); consume(w); }

Since two different protocols are employed, the BufferServer structure is symme-
trical with one channel on each side. Such symmetry cannot be obtained in languages
like Occam (Occam, 1988) which use one kind of communication protocol and require
that an input operation can only be used in the alternation statement.

An important thing is that our Buffer Server solution reduces the context swit-
ching and eliminates the process scheduling overhead almost completely. After initia-
lisation, the BufferServer coroutine stays in the IOMWait, and the whole job is done
by the needles. There are also no guards; the synchronisation is enforced by interrupt
masks.

4. Structured Channels

Presented above are the simple one-to-one channels and the related protocols: they
transmit the values of the word or pointer type between one sender and one receiver.
On top of them, more structured channels and protocols can be built. Below we will
discuss how the messages containing one or more words can be transmitted and how
many-to-one channels can be built.

4.1. Message Channels

Message channels are used to transmit structured values (messages) between proces-
ses. The way the messages are actually transmitted depends on the architecture of
the memory accessed by the processes.

In the shared memory with uniform access (UMA), the messages are sent by
pointers. The receiver accesses the message contents directly in the sender’s memory
location and then acknowledges it. In the shared memory with non-uniform access
(NUMA), a message pointer is transmitted to the receiver, and then the message
contents are copied from the server’s to the receiver’s location before the message is
acknowledged.

In the distributed memory, the message contents are transmitted down a so called
message channel, word by word. Below, we present such a channel for the remote
transmission of messages between two processes running on different computers. The
message is represented as an array of words with its length defined at the first position.
On each computer the channel is accessible as a message port. The message port is an
agent process interconnected with the master processes by a simple pointer channel.
The message port agents (on different computers) are interconnected with a simple
word channel.

Structuring the message-passing channels 201

The sender process sends the message to its local agent by pointer and waits for
acknowledgement. The agent reads the message word by word from the sender’s area
and sends them to its counterpart on the other computer using the simple acknowled-
gement protocol. The other agent collects the message words in its own area. When
the transmission is completed, the receiver agent sends the message by pointer to the
receiver process. The receiver process accesses its agent copy of the message as if it
were accessing the remote sender’s copy.

When the message is processed {possibly by modifying some of its contents),
the receiver acknowledges to its agent. The receiver agent sends back the (modified
part of the) message contents again word by word in the acknowledgement protocol.
The sender agent receives the contents, updates the sender’s message area, and sends
acknowledgement to the sender. Let us note that the sender and the receiver work
with their local agents in the simple pointer acknowledgement protocols. The remote
processes do not have to be aware that their agents send the message word by word by
the remote link. In this way, the sender and the receiver communicate, while actually
not aware of whether they are local or remote to each other.

Employing one agent for each sender and one for each receiver is not the most
optimal solution. We have chosen it, however, since it can be generalised to the
case where one remote simple channel is used to pass messages between many sen-
ders and many receivers. The agents simply need to implement classical multiple-
xing/demultiplexing algorithms. The agents use, in such a case, the selective accep-
tance protocol to communicate with their master processes.

4.2. Message Dispatcher

In many distributed programming languages, servers use many-to-one channels to
accept transactions from many clients. Such channels can also be implemented using
our primitives and protocols.

Let us assume that C client processes are interconnected with a server process
which provides 7' types of synchronous transactions. The server is attached to a
mailboz which allows each client process to send messages to each transaction. Such
a mailbox can be implemented by a process called message dispatcher and simple
pointer channels. All simple channels work in the simple acknowledgement protocol.

The clients are interconnected with the message dispatcher by client channels.
Remote clients are represented by their local agents. The message dispatcher is a
receiver for these channels. The client channels are seen at the message dispatcher
side as two arrays:

LINPORT ccip[C]; /* client call input ports */
LOUTPORT caop[C] /* client ack output ports */

The server is interconnected with the message dispatcher by 7' simple pointer
channels called transaction channels. The message dispatcher is a sender for these
channels. For each transaction type ¢ the dispatcher maintains also

— pointer tm to the client message which is currently processed by the transaction ¢

202 S. Chrobot, A. Stras and R. Stras

Client o E——

'/-il_—y

. client transaction .
client channels (call) @nninatioD transaction channels
- | e—
Client ¢<—————)p Server
Message Dispatcher

@ needle handler €——P simple channel

Fig. 2. Needle handlers and simple channels used by the message dispatcher.

— index ¢ of the client’s input port from which the message pointer ¢m has been
received; if there is no such message, tm takes the value NULL;

— queue pen of the transaction invocations (tm, c) which are waiting to be processed
by this transaction; they are called pending invocations;

The above entities constitute a transaction description structure called
TransDsc. The descriptions for all transactions are collected in the transaction table
TT[T):

struct TransDsc

{ LINPORT taip; /* transaction ack input port */
LOUTPORT tcop; /* transaction call output port */
void * tm; /* current message */
int ccip; /* current client input port */
InvocQueue pen; /* pending invocation queue */

} TT(TY;

After initialisation, the message dispatcher works in the dynamic selection mode.
All the client link input ports are handled by the client_call() needle, and all the
transaction link input ports are handled by the transaction_termination() needle,

void MeassageDispatcher()
{ int 1;
for (i = 0; i < C; 1+ +) ATTACH(ccip[i], client_call);
for (1 =0; i < T; i ++) { ATTACH(TT[i].taip, transaction_termination);
TT[i).tm = NULL; }
IOMWait(); '
}

Structuring the message-passing channels 203

The client_callineedle receives a message pointer m from the client input port ip,
and dispatches it to appropriate transaction. The number ¢ of the transaction is sent
in the message contents. If the transaction ¢ is occupied by another invocation, the
incoming invocation (ip,m) is inserted into the pen queue. Otherwise, the incoming
invocation occupies the transaction, and the message pointer m is sent to the server
down the link output port TT[t].tcop.

void client_call()

{ LINPORT ip; /* client input port */
void *m; . /* client message pointer*/
int t; /* transaction number */
ip = THISIP(); /* get input port for calling needle*/
LGET(ip, m); /* get message pointer*/
t = get_transaction_number(m); /* and transaction number */
if (TT[t).tm == NULL) ' /* is transaction occupied? */
{ TT[t).tm = m; TT[t].ccip = ip; /* save current invocation */
LPUT(TT(t)-tcop, m); LSIGNAL(TTYt].tcop); } /* invoke server */
else insert(TT[t].pen, ip, m); /* transaction occupied — queue

the invocation */

Having completed the transaction, the server sends an acknowledgement signal
back to the message dispatcher. As a result of accepting this signal, the transac-
tion_termination needle is invoked. The needle recognises the number ¢ of the trans-
actions which has been terminated and forwards the acknowledgement to the client
which has called the transaction. If there are some pending invocations for the trans-
action t, one of them 1is selected and sent to the server. Otherwise, the transaction is
freed by assigning NULL value to tm.

void transaction_termination()

{ LINPORT ip; /* transaction input port */
LOUTPORT cop; /* client output port */
int ¢; /* transaction number */
ip = THISIP(); /* get input port for calling

needle */

t = transaction_terminated(zp); /* get transaction number */
cop = MYOP(TT(t].ccip); /* get client output port */
LSIGNAL(cop); ‘ /* acknowledge client */
if (empty(TT[t].pen) TT[t].tm = NULL; /* no pending invocation */
else { remove(TT[t].pen, TT[t).ccip, TT{t).tm); /* get new current

invocation */

LPUTP(TT[t])-tcop, TT[t].tm); LSIGNAL(TT[t].tcop);} /* invoke server */

As we can see, the many-to-one channel can be built using the one-to-one chan-
nels. With this approach, the message dispatching algorithm (a queue of pending

204 S. Chrobot, A. Stras and R. Stras

invocations) which is a part of such a channel, can be designed at application le-
vel. The message dispatcher works in the dynamic selection mode thereby avoiding
superfluous context switching and process rescheduling overhead.

4.3. The Producer-Consumer Example Revisited

In this example we present a many-producer-many-consumer system. Since the clients
and the server are interconnected via the mailbox, data is sent and received as mes-
sage contents. All the simple channels used in the system are now pointer channels.
Presented below, is a modified solution of the system from Section 3.7.

The transaction channels are seen at the Buffer Server side as two arrays of ports
(index 0 for WRITE and index 1 for READ transaction).

LINPORT tcip[2]; /*transaction call input ports */
LOUTPORT taop[2]; /* transaction ack output ports */

define max ...
int buf[max];
int n, in, ou;

void WRITE(); /* needle handler */
{ void *m; : /* transaction message pointer */
int w; /* character to write */

LGETP(tcip[0], m); LSIGNAL(taop[0]); /* get message pointer and acknowledge*/

w = get_input_parameter(m); buf[in] = w; /* retrieve and buffer data */

in:= (in + 1) % max; nt¥; /* update buffer status */
if (n == max) MASK(tcip[0]); /* update link masks */
if (n == 1) UNMASK(tcip[1]);

}

void READ(); /* needle handler */

{ void *m; /* transaction message pointer */
int w; /* character to read */
LGETP(tcip[1], m); /* get message pointer */

w = buf[ou]; put_output_parameter(m, w); /* read char and put it into message
contents */

LSIGNAL(taop) ; /* acknowledge */
ou = (ou + 1) % max; n — —; /* update buffer state */
if (n == 0) MASK(tcip[1]); /* update link masks */
if (n == max —1) UNMASK (¢cip[0]);

}

void BufferServer();

{n=0;in=0; ou=0;
ATTACH((teip[1], READ); ATTACH(tcip[0], WRITE);
MASK (tesp[1]); UNMASK (tcip[0]);
IOMWait();

Structuring the message-passing channels 205

The client channels are seen at the client side as two arrays of ports. Each Client
uses its own unique index 7 to access the ports.

LINPORT ccop[C]; /* client call output ports */
LOUTPORT caip[C]; /* client ack input ports */

Each Producer has to pack the WRITE transaction number and data to be
buffered in the message.

void Producer(int 1)

{ MsgBuffer mb; /* message contents buffer */
int w; /* data to be sent */
while (1)
{ produce(&w);
put_input_parameter(mb, w);
put_transaction_number(mb, 0)

LPUTP(ccop[s], mb); LSIGNAL(ccop[i]); /* send message pointer to message
dispatcher */

IOWait(caip[s]); /* wait for acknowledgement */

Each Consumer has to send the pointer of its message with the READ transaction
number packed in it. After the transaction is acknowledged, it has to unpack the data.

void Consumer(int)

{ MsgBuffer mb; /* message contents buffer */
int w; /* data to be received */
while (1)

{ put_transaction_number(mb, 1)

LPUTP(ccopli], m); LSIGNAL(ccop[t]); /* send message pointer to message
dispatcher */

IO Wait(cazp[t]); /* wait for acknowledgement */
get_output_parameter(mb, &w);
consume(w);

}

}

As we can see, the Server meant for many Producers and many Consumers can
be built as a collection of two processes: Message Dispatcher and Buffer Server inter-
connected with links and using interrupts for their synchronisation.

5. Future Works

We have implemented both the message channel and the message dispatcher on top
of the UNIX operating system. The low-level library defines coroutines in a UNIX-

process memory space and links connecting the coroutines in the same or different
memory spaces.

206 S. Chrobot, A. Stras and R. Stras

We are continuing our work in two directions:
— performance evaluation of structured channels, and
- introduction of multi-grain transactions.

The grain is meant to be a part of a process which does not contain any synchroni-
sation delay and is separated from other grains by synchronisation delay operations.
Thus, a grain can be executed as a needle. We propose to represent a transaction as
a chain of grains executed in the interrupt-driven mode. A grain execution can be
delayed by masking associated interrupts. A multi-grain transaction can be nested in
a non-blocking way. Thus, many transactions can run in parallel in one server, in the
same way as many operations can run in parallel in a monitor (Hoare, 1974).

As a result, the expressiveness of the multi-grain transaction can be compared
with that of the monitor call.

6. Related Works

Silberschatz (1979) has presented a set of a system level primitives and protocols for
an abstract implementation of the CSP I0 commands and guarded statements (Hoare,
1978). The primitives and protocols are similar to our primitives and busy-waiting
protocols. We, however, have related our primitives to a simpler communication con-
cept, link, and shown that it can be used to implement not only the CSP constructs
but more complex channels as well. Moreover, we have shown that an efficient im-
plementation of the non-busy form of waiting in such protocols can be based on the
interrupt feature.

An extension of Modula-2 low-level concurrency features similar to our IATTACH
and ITRANSFER primitives is given in Modula-2 Standard Draft (1992). It facili-
tates implementation of selective acceptance protocol and supports the process level
interrupt handlers. The Draft, however, considers the interrupt to be an IO device
synchronisation feature. It does not define any mechanism to either generate the
interrupt signals by the processes or to transmit data between the processes.

Hills has gone further with his proposal for Structured Interrupts (Hills, 1993).
He has added the facility to send interrupt signals by processes. In this way, the
interrupts are considered as an interprocess synchronisation mechanism. The primi-
tives proposed by Hills are of higher level than our primitives; they include the ready
process queue management. His interrupt handlers are the process-level handlers.

Bjorkman (1994) has pointed out that substantial efficiency gains can be achieved
if interrupt handlers are used instead of threads (process-level handlers) for network
protocol processing. Typical message delivery includes one interrupt and two context
switches on the receiving side. The context switching is extremely costly in many mo-
dern computers, such as RISC processors with large register sets. When the protocol
processing is included in the interrupt handler, the context switching can be avoided.

An approach similar to ours, in building a high-level message-passing mechanism
on the bases of low-level primitives incorporated into programming language, is very
popular in functional languages, which support the first-class continuation concept.
As an example, there is the SML/NJ language (Morrisett and Tolmach, 1993), where

Structuring the message-passing channels 207

quite powerful many-senders-to-many-receivers message passing functions are imple-
mented. This is a ’classic’ shared-memory based implementation for local threads.
Interrupts are not used in this implementation.

7. Conclusion

In this paper we have presented a set of low-level primitives and related protocols
for the implementation of a high-level synchronous message passing mechanism. This
approach allows us to explicitly express both the process scheduling and the message
dispatching algorithms in a high-level language program. Such algorithms are hid-
den from the user inside the high-level primitives offered by most of the distributing
programming languages. Our approach gives the user direct control over these algo-
rithms. The user not only can tailor these algorithms according to his application
needs, but can design a new transmission mechanism which best suits his application
as well.

We propose the link as a major elementary message passing concept. It is a
tool to transmit a simple data value and a synchronisation signal between processes.
The link, however, is not a regular asynchronous channel. We abandoned the idea
of unbounded buffering in the link. It makes the asynchronous message passing too
heavy as a tool for structuring other kinds of channels. At the same time we did
not choose a simple synchronous channel as the elementary tool because that would
involve bi-directional transmissions, not always efficient in building highly organised
channels. Whenever bi-directional transmission is needed, using two independent
links has proven to be more flexible.

The real innovation in our approach, however, is in using the interrupt feature in
order to achieve uniform protocols for remote and local message passing. We consider
the interrupt feature a synchronisation tool not only between the environment (IO
devices, users) and the processes, but between the processes themselves as well.

If the interrupt signals are sent between processes running in the same memory
space, they can be used to support the non-busy form of waiting in the selective
acceptance protocol. With the interrupts, the communication channels can be built
in a hierarchical way, very similar to the way the shared memory tools are built using
monitors.

The efficiency of such protocols can be improved considerably when we allow
the interrupt handlers to execute on the stack of the interrupted process. In this
case the overhead involved in the context switching and process scheduling can be
reduced. This reduces the interrupt response time, which is of special importance for
real-time applications. Further optimisation can be achieved for the servers which
accept the clients’ requests in a loop. If the request operations are implemented as
needle handlers, the server does not have to reattach the same entries and re-evaluate
the same guards repetitively.

Using interrupts as a basic synchronisation tool leads to the concept of a multi-
grain transaction. The multi-grain transaction improves the expressiveness of syn-
chronous transactions. Such transactions can be executed in parallel and nested in a
non-blocking way similar to monitor operations.

208 S. Chrobot, A. Stras and R. Stras

We believe that the uniform implementation of both local and remote message
passing IPC on the basis of interrupts can guarantee expressiveness and efficiency
comparable with that achieved by monitors and other shared memory tools for ligh-
tweight processes. In this way the message passing paradigm will become as efficient
as the shared memory paradigm. The paradigms can become equivalent tools for fine
grained multiprocessor parallel computations.

Acknowledgement

Many ideas presented in this paper emerged during fruitful discussions with Prof.
Zbigniew Banaszak.

References

ADA (1983): United States Department of Defense Reference Manual for the ADA Pro-
gramming Language. — ANSI/MIL-STD 1815A.

Andrews G.R., Ollson R.A., Coffin M., Elshof 1., Nilsen K., Purdin T. and Townsen G.
(1988): An Overview of the SR language and implementation. — ACM Trans. Pro-
gramming Languages and Systems, v.10, No.1, pp.51-86.

Bjorkman M. (1994): Interrupt protocol processing in the t-kernel. — Technical Report
94-14, Computer Science Dept., University of Arizona.

Brinch Hansen P. (1987): A joyce implementation. — Software — Practice and Experience,
v.17, No.4, pp.267-276.
Chrobot S. (1994): Where concurrent processes originate. — Proc. Conf. Programming

Languages and System Architecture, ETH, Zurich, March, Lecture Notes on Computer
Science 782, pp.151-170.

Gehani N.H. and Roome W.D. (1986): Concurrent C. — Software — Practice and Expe-
rience, v.16, No.9, pp.821-844.

Hills T. (1993): Structured interrupts. — Operating System Review, v.27, No.1, pp.51-69.

Hoare C.A.R. (1974): Monitors: An operating system structuring concept. — Comm. ACM,
v.17, No.10. pp.549-557.

Hoare C.A.R. (1978): Communicating sequential processes. — Comm. ACM, v.21,
pp-66—677.

Jagannatan S. and Philbin J. (1994): High-level abstraction for efficient concurrent sys-
tems. — Proc. Conf. Programming Languages and System Architecture, ETH, Zurich,
March, Lecture Notes on Computer Science 782, pp.171-190.

Modula-2 (1992): 2nd Committee Draft of the Modula-2 Standard. — CD 105114.

Morrisett J.G. and Tolmach A. (1993): Procs and Locks: A portable multiprocessor platform
Jor standard ML of New Jersey. — 4th ACM PPOPP, SIGPLAN Notices, v.28. No.7.

Occam (1988): INMOS Limited, occam?2 Reference Manual, New York: Prentice-Hall.

Silberschatz A. (1979): Communication and synchronisation in distributed systems. —
IEEE Trans. Software Engineering, v.Se-5, No.6, pp.542-546.

SunOS (1990): Sun Microsystems, system services overview. — Kernel Interface, pPp-20-24,
Wirth N. (1985): Programming in MODULA-2. — Berlin: Springer-Verlag.

Received: June 28, 1994
Revised: November 10, 1994

