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MULTIDIMENSIONAL SPECTRAL FACTORIZATION
THROUGH THE REDUCTION METHOD OF
MULTIDIMENSIONAL POLYNOMIAL FACTORIZATION

Nikos E. MASTORAKIS*

In this paper, the (unsolved) Spectral Factorization problem, in m dimensions,
is considered. A pure mathematical solution is attempted through the m-D
polynomial factorization method of the Reduction. The necessary and suffi-
cient condition is proved. The proposed method, which is also automated via a
suitable computer code, is illustrated by a two-dimensional example.

1. Introduction

Multidimensional (m-D) Systems have recently attracted attention of many rese-
archers and practitioners. The reasons are their increasing mathematical interest
and their extensive technical applications (digital filter design, image processing,
computer-aided tomography, design of passive sonar arrays, seismic data processing,
underwater acoustics, etc.). Linear and Shift Invariant (LSI) m-D systems can be
described by partial difference/differential equations, m-D transfer functions (that
are ratios of m-D polynomials) and appropriate state-space models. The characteri-
stic polynomial of all these models are polynomials in m variables which are called
multivariable or multidimensional (m-D) polynomials.

So, factorization of m-D polynomials is among the primary processes in the m-D
systems field, since it helps in performing simpler realizations (Galkowski, 1994), sim-
pler stability tests and simpler controllers. However, factorizing an m-D polynomial
is not a simple task since most of the available 1-D theorems and techniques are not
applicable to the m-D case. Up to now, several methods have been proposed for the
m-D polynomial factorization. In (Mastorakis et al., 1994), a new powerful method
for factorizing an m-D polynomial is presented. According to this method, we sepa-
rate the variables zi, ..., z, of the m-D polynomial into two sets of m; and m—m;
variables (m; < m). Let us denote the complex vectors of the m, m;, m — my va-
riables by 2, Z, 2/, respectively. The constant 1 is with the vector z’. The given
f(z) polynomial is written as a sum of three terms. These terms are polynomials of
z, z, z' respectively. So, we write f(z) = u(z) + I(z') + w(z). Since the constant 1
has been included in z’ the constant term of f(2) isincluded in I(z’). Then, always
following the method, possible factors of f(z) are the polynomials q;(2') — r - 55(Z)
with ¢i(2'), sx(Z) the factors of {(z') and u(Z) respectively and r is a constant. We
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check the validity of two theorems (see Appendix) and the constant r is simultaneo-
usly evaluated. This method factorizes a wide class of m-D polynomials actually by
factorizing two other polynomials of less (m;, m — my) variables. In the case of 2-D
polynomials, the factorization of two 1-D polynomials is needed which is always po-
ssible (numerically). This method is called in (Mastorakis et al., 1994) as the method
of Reduction.

One of the most significant and popular problems in the signal processing is the
problem of the spectral factorization (Dudgeon, 1975; Dudgeon and Mersereau, 1984;
Ekstrom and Woods, 1976a; 1976b; Ekstrom and Twogood, 1977a; 1977b; Orfanidis,
1990; Pistor, 1974). In a 1-D case, this problem is stated as follows: Given a 1-D
polynomial b(z), Find a “stable” 1-D polynomial f(z) such that

f(2)f(z71) = b(2)b(=7) (1)

The polynomial f(z) is said to be stable if it corresponds to a stable LSI system.
In other words, the polynomial f(z) is stable if f(z) # 0 for |z| < 1. The 1-D
spectral factorization problem always has a solution (Dudgeon and Mersereau, 1984;
Orfanidis, 1990).

In the m-D case, the 1-D solution cannot be extended in a straightforward man-
ner. The reason is that not ever m-D polynomial is factorized (Mastorakis and
Theodorou, 1993). Several different practical approaches and engineering methods,
however, have been adopted for the solution of the problem (Dudgeon, 1975; Ekstrom
and Woods, 1976a; 1976b; Ekstrom and Twogood, 1977a; 1977b; Pistor, 1974) but a
mathematical solution does not exist.

In this paper, the m-D Spectral Factorization problem is stated and a mathema-
tical solution is presented by using the main results of the m-D factorization algorithm
presented in (Mastorakis et al., 1994) and briefly discussed above. An example is also
included.

2. Multidimensional Spectral Factorization

2.1. Statement of the Problem

In m-D case, the problem is stated as follows:

Let the m-D polynomial

Ny No,m
b(zl,...,zm):z...zab(il,...,im)z’ll...z;'l" (2)
i1=0  ip=0
where Ny 1,..., Ny, are the degrees of b(zy,...,zm) with respect to z1,...,zm.

Find a “stable” m-D polynomial f(z1,...,2m)

Nia Nim

f(zl""xzm): Z Z af(il,...,im)zil...z,"nm (3)

1,=0 tm=0



Multidimensional spectral factorization through the reduction method of ... 25

where Nyi,..., Ny, are the degrees of f(z1,...,2y) with respect to z1, ..
such that

s Zm

f(zl,...,zm)f(zl"l,...,z;ll):b(zl,...,zm)b(zl"l,...,z,;l (4)

A polynomial f(z1,...,2m) such that the transfer function 1/f(zy, ..., Zm) corre-
sponds to a stable m-D system is meant by the term a “stable” polynomial. Obviously,

in the case where b(z1,...,2n) is already a stable polynomial, the obvious solution
Sy zm) = bz, 2m) (5)
there exists. Now, the question is: For what other polynomials b(21,...,2m) eqn. (4)

has a solution. Before giving a complete answer to this question, some very important
results of the m-D systems stability theory should be presented. More specifically
the following theorems have been already proved.

Theorem 1. (Shanks et al., 1972) The m-D polynomial f(z1,...,2m) is stable if
and only if

f(z1, o, 2m) #0 for |z|<1 and ... and |zp|<1
Theorem 2 is a more applicable Theorem than ’I‘heorem 1.

Theorem 2. (Anderson and Jurry, 1974) The m-D polynomial f(z1,.. . 2m) is
stable if and only if

1) f(21,0,...,0)#0 for |zn|<1

and

2) f(z1,22,...,00#0 for |z]=1 and |z|<1

and

and
m) f(z1,22,...,2m) #0 for |z1]=1 and ... and |zjn_1|=1 and lzm| < 1
To test the various conditions of the above theorems several tests have been

proposed. These test are easier to be applied than the above theorems.

Schur-Cohn test, Table test, Zeheb-Walach test, Bose and Basu test, etc are some
of the popular tests that are used to check the conditions of Theorems 1 and 2. For
a detailed discussion see (Tzafestas, 1986).

In the present paper, one definition is still given.

Definition 1. The polynomial f(z,..., Zm) is perfectly unstable if and only if the
polynomial zfvf’l A f(z7t, ..., 2z;1) is stable. The numbers Ni1,...,Nim
have been defined as the degree of f(z1,...,2m) with respect to zi, ..., zm.

The proof of the following Lemma is achieved by using the conditions of Theo-
rems 1 and 2.
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Lemma

1. The product of two or more than two stable polynomials is a stable polynomial.

2. The product of two or more than two perfectly unstable polynomials is a perfectly
unstable polynomial.

2.2. Solution of the m-D Spectral Factorization Problem

In this paragraph, the m-D spectral factorization problem is faced as follows.

In order to find a stable polynomial f(z1,...,2m) as a solution to eqn. (4),
the m-D polynomial factorization method, presented in (Mastorakis et al., 1994) and
briefly discussed above, is used. Using this method the polynomial b(z1,...,2m) is
factorized (if it is possible).

Suppose that the following factorization is obtained.

b(z1, -y 2m) = b1(21, -y 2Zm) .. bi(21, ooy Zm)ui(z1, ooy 2m) - w21, o0 2m)  (6)
where

Ny, 1 Ny;\m

bz, zm) = D o Y ap(in, . im)At e =1,k (7)

23=0 Tm=0
are stable factors, while
Nui,l Nu‘-,m

ui(zl,...,zm):z.,.Zaui(il,...,im)zil...zfﬁ" i=1,...,1 (8)

i1=0  ipm=0
are perfectly unstable ones.
Let us define

Nuim

k !
N.,, - -
flz,ozm) = ]__[bj(zl,...,zm)]:[z1 e T C TR 9)
ji=1 j=1

Therefore

k ! ‘
- - - - -N s _N“‘y'"
f(zll,...,zml)::[—[bj(zl1,...,,27711)]:[21 2y P ug(2, ., 2)(10)
i=1

=1

Obviously, f(z1,...,2m) is a stable polynomial (Lemma) and it satisfies eqn. (4).
Now, we are ready to formulate the following theorem.

m-D Spectral Factorization Theorem. The problem of finding a stable polyno-
mial f(z1,...,2m) satisfying eqn. (4), has a solution if and only if the polynomial
b(z1,...,2m) is factorized in a product only of stable and perfectly unstable factors
(Eqn. (6)). The solution, in this case, is given by eqn. (9).

Proof. Sufficient: It has been already been proved analytically before the statement
of the above theorem. Necessary: Suppose that there exists a stable polynomial
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f(z1,...,2m) such that eqn. (4) holds. If this polynomial is factorized, all of its
factors should be stable factors. Therefore

f(zl,...,zm):Hfj(zl,...,zm) (11)

where
Nf.'.l N.f.',m
fi(z1,.. . 2m) = H . H ag; (i1, tm) 20 - 2 (12)
11=0 tm=0
So
f(zl_l,...,z;ll)zHfj(zl_l,...,z;ll) (13)
j=1
Then b(z1,...,2m) can be derived by a proper recombination of the factors of the
numerator of the product f(z1,...,2m)- f(27%,...,25"). Therefore
4 — Nyja Npjom o 0 —1 -1
b(zl,...,zm)_Hfj(zl,...,zm) ]b_[z1 oz VT fi(e N 2t (14)
j€s JjEs!

where S C {1,2,...,1/}, S’:{l,Q,...,V}—S.

Hence, b(z1,...,%m) consists of stable and perfectly unstable factors. Also, eqn. (4)
holds (as one can see after a simple algebraic manipulation).

Example. Given

b(z1,20) = 102125 — 22 + 102222 + 342129 — 29 + 522 + 1721 + 6 (15)
find a stable polynomial f(z1,z2s) such that

flar, ) f(ert, 231) = bz, 22)b(ar 27 ) (16)

The first step is the factorization of b(z1, z3) using the method which is presented
in (Mastorakis et al., 1994), as well as, without details, in the Introduction of the
present paper.

To this end, we write

b(21,22) = u(z1) + I(22) + w(z1, z2) (1n
where

u(zy) = 522 + 17, (18)

I(Zz) = —Z% — 2946 (19)

w(z1,29) = 102222 4 102225 + 3421 2, (20)
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The factors of u(z1) are: 1,z1,52 +17,(521 4+ 17)z; while the factors of I(23) are:
1,2 — 29,3 + 29, (2 - 22)(3 + 22).

A linear combination of two factors one of u(z1) and one of i(z1) to be a factor of
b(z1, 22) is possible. Let ¢i(z1) and sg(z2) be these factors, respectively. A possible
factor of the polynomial b(z;,2;) is the polynomial ¢;(z1) — r - sg(z2) where r is
a (complex) constant. Generally, for every selection of ¢i(z1) and sg(z2), we check
the validity of Theorems A or B (see Appendix). After some trials, one can find the
proper polynomials: ¢;(z1) = 21, sk(z2) = 3 + z2. By checking these theorems, r
is found equal to 1. Therefore z; + z3 + 3 is a factor of b(z1,22) and by carrying
out the division b(z1,22) : (21 + 22 + 3) the quotient 527 — 25 + 102122 + 2 is found.
Therefore

b(z1,22) = (21 + 22 + 3)(521 — 22 + 102129 + 2) (21)

The next step is the study of the factors of b(z1, 2z2) with respect to the stability.

The factor z1+22+3 is a stable factor since z14+3 # 0 for |21} <1 and z;+22+3#0
for |z;| =1 and |z3] < 1. This is true because if this is not the case z; = —z; — 3,
therefore |z3| = |21 +3|>|-1+3|=2> 1.

The factor 5z; — z3 + 102125 + 2 is unstable since 5z; +2 =0 for z; = —2/5
(| —2/5| < 1). Furthermore, the perfect instability of this factor is examined. Thus,
the stability of the polynomial z;25(527 — 2571 + 102725 +2) is studied. This is
rewritten as 5z; — z; + 10+ 2212z3. One observes that —z; +10# 0 for |z;| <1 and
for |z1| =1, |z2] < 1 we have 523 — 21 4+ 10 4 22122 # 0 because if this is not the
case, then

_ —10+21
23 = ———— = |22

l10~—zl| 9 9
= 1
5+221 >

= > =
5+221] " |54+2n] " 7

Therefore 5z; — 25 + 102122 + 2 is perfectly unstable. Since b(z1,23) is a product of
stable and perfectly unstable factors, the m-D Spectral Factorization problem has a
solution. The solution is the stable polynomial.

f(zl, 22) = (2'1 + 29 + 3)(5Z2 -2+ 10+ 22122) (22)
or
f(z1,22) = 22122 + 2282 + 522 + 102129 — 22 4+ 2520+ 721 + 30 (23)

This is a stable polynomial that satisfies eqn. (16).

Remark 1. The stability of the polynomial factors that discussed above can also be
checked by using the various tests like the Schur-Cohn test, the Table test, etc.

3. Conclusion

The m-D spectral factorization problem has a solution if and only if the given po-
lynomial can be written as a product of stable and perfectly unstable factors. The
factorization of the given m-D polynomial is achieved by the method of reduction.
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The good algorithmic form of the above method permits also the computer imple-
mentation. This is left for the readers.

Appendix

First, we give some indispensable definitions. We start with the extention of the
known definitions of the 1-D case.

Definition 1. A multidimensional polynomial is prime, if and only if it has only
trivial divisors, i.e. itself and the zero degree polynomial (scalars).

Definition 2. Two multidimensional polynomials are called coprime if and only if
they have only trivial common divisors.

Definition 3. A multidimensional polynomial is called composite if and only if it is
not prime.

The multidimensional polynomials divisibility theory is not a simple extension
of the 1-D one, because the basic 1-D theorems do not hold in the m-D case. Ho-
wever, several conclusions from the 1-D polynomials theory also hold in the m-D
polynomials divisibility theory. The following fundamental principles do not hold for
multidimensional polynomials.

1. V couple f,g, 3w, v which are unique such that: f = g7 or f = g7 + v and
degree (v) < degree (g)Vz1,...,2m.

2. I f, g are coprime polynomials, there exists a, b (multidimensional polynomials
in z1,...2m) such that 1 = af + bg.

Two very important theorems are now presented. These theorems are proved in
a different way than the 1-D case, because the above principles 1 and 2 do not hold.

Theorem A. A factor z) — p(za,...,2m) is a factor of f(z1,...,2m) if and only if
f(p(z2,...,zm),Z2,...,zm) =0V2,...,2m

Proof. Necessity: f(z1,...,2m) = (21 — p(22,...,2m)) - 7(21,...,2m) so, if we put
21 = p(z2,...,2m) we take f(p(z2,...,2m),22,...,2m) = 0. Sufficiency: We take:

flzr,. . zm) = (zl —p(zz,...,zm)) (21, Zm) FU(21, - 2Zm) (A1)

From the theory concerning the division algorithm of the two 1-D polynomials
f(z1,...,2m) and 2z, —p(22,...,2m) (with respect to 2z1) we have that 7 and v are
unique, and v(z1,. .., 2x,) has a smaller degree for z; than z;—p(za, ..., zm). There-
fore, v = v(22,...,2m) (i.e.it does not contain z1) and m(z1,..., zy) is a polynomial
of 2, and is in general a function in z3, ..., 2, because zy,...,z, were considered as
parameters. Now, since f(p(z2,...,2m),22,...,2m) = 0 one has v(za,..., 2,) = 0.
Therefore (A.1) will become:

flzr,. . zm) = (z1 —p(zz,...,zm)) (21, Zm) (A.2)
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Let n be the degree of z; in the polynomial f(z1,...,2m), then the polynomial
7(z1,...,2m) has the formula: pn_lz?"l+pn_gz?“2—|— ...+pozy where po,...,Pn_1
are functions of 29,...,2,. However, because the coefficient of z; in the divisor is
constant (one), it is clear by equating the coefficients that p,_; is a polynomial in
29, ..., 2m. Taking now p,_s —p pn_1 = @n-1(22,...,2m) we find that p,_, is a
polynomial in z3,..., 2y, where we denote f(z1,...,2m) = > 1p@i(22,...,2m)2%.
If p,_; is a polynomial in 2s,..., 2y, then p,_r_1 is a polynomial also, because
Prnk—1 = P Pn-k + an-k(22,...,2m). Therefore p,_1,...,po are polynomials in
z3,...,2m. Consequently m(z1,...,2m) is a polynomial in z1,23,..., zZm. ]

Remark 2. Theorem A can be proved as an application of the following theorem,
which is a generalization of the previous theorem. The proof of Theorem B is rather
extensive. In any case, it can be found in (Mastorakis et al., 1994).

Theorem B. A polynomial h(z1,...,2m) s a factor of f(z1,...,2m) if and only if
V(z1,...,2m) such that:

h(z1,...,2m) =0

Vi:ii=1,...,m (A.3)
2 h e Zm
6 (Zl,t y 2, ):0
0z}?
1t follows that
h(z1,...,2m) =0
Vi:i=1,...,m (A.4)
Orh(z1,. .., 2m) -0
828 N
where 11 > t3.
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